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Abstract

Facial expression recognition (FER) plays a pivotal role
in computer vision applications, encompassing video un-
derstanding and human-computer interaction. Despite no-
table advancements in FER, performance still falters when
handling low-resolution facial images encountered in real-
world scenarios and datasets. While consistency constraint
techniques have garnered attention for generating robust
convolutional neural network models that accommodate in-
put variations through augmentation, their efficacy is di-
minished in the realm of low-resolution FER. This decline
in performance can be attributed to augmented samples that
networks struggle to extract expressive features. In this
paper, we identify hard samples that cause an overfitting
problem when considering various degrees of resolution
and propose novel hard sample-aware consistency (HSAC)
loss functions, which include combined attention consis-
tency and label distribution learning. The combined atten-
tion consistency aligns an attention map from multi-scale
low-resolution images with an appropriate target attention
map by combining activation maps from high-resolution
and flipped low-resolution images. We measure the classifi-
cation difficulty for low-resolution face images and adap-
tively apply label distribution learning by combining the
original target and predictions of high-resolution input.
Our HSAC empowers the network to achieve generaliza-
tion by effectively managing hard samples. Extensive exper-
iments on various FER datasets demonstrate the superiority
of our proposed method over existing approaches for multi-
scale low-resolution images. Furthermore, we achieved a
new state-of-the-art performance of 90.97% on the original
RAF-DB dataset.

1. Introduction

Facial expression recognition (FER) is important in
human-computer interaction and various computer vision
tasks. Previous deep network-based FER studies have
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Figure 1. Given a hard sample, we intuitively describe how to
work when employing previous consistency loss and our proposed
loss function. Black arrows denote the effect of the loss function
and dashed arrows mean interpolation between two samples. Blue
circles indicate the distribution of samples corresponding to each
class.

primarily focused on addressing noisy label problems in
datasets [16, 19,26], resulting in limited performance when
dealing with low-resolution (LR) facial images commonly
encountered in real-world environments. As shown in Fig-
ure 2 (a), multi-scale LR images arise from factors such
as limitations in camera equipment quality and the distance
between subjects and the camera lens. Compared to high-
resolution (HR) images, LR facial images lack crucial de-
tails, such as muscle movement-induced wrinkles, which
serve as vital cues for accurate facial expression recogni-
tion. Several FER methods for various LR images have
been proposed [15, 23], but their performance remains lim-
ited. Consequently, recognizing facial expressions in multi-
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Figure 2. (a) The multi-scale LR examples of real environments. (b) The visualization of the attention maps from high-resolution (HR),
low-resolution (LR), and flipped LR images (LR Flip). (c) The examples of the hard sample.

scale LR facial images presents a significant challenge, yet
it is essential for real-life applications.

Figure 2 (b) shows class activation maps (CAM) [29]
for the FER model trained with HR images when HR, LR,
and flipped LR images are input, respectively. The attention
maps derived from LR images cover smaller regions of the
face compared to those from HR images. Then, the network
generates different attention maps for the LR image and the
flipped LR face image as confirmed in [27]. To generate a
robust convolutional neural network (CNN) model that can
be utilized in degraded images, the consistency constraint
has been employed in many studies [3, 20,21,27]. They
encourage results (attention map and prediction) from de-
graded input to be close to results from the original input.

Existing consistency constraints suffer from limitations
in improving performance in low-resolution facial expres-
sion recognition (FER) when using down-sampling aug-
mentation. As the facial details are distorted during down-
sampling, augmentations can degrade the original image,
potentially causing the network to be trained on face im-
ages from which the original target’s emotional features
cannot be effectively extracted. We define ‘hard samples’
as those for which the network cannot extract emotional
features when considering various levels of resolution. Fig-
ure 2 (c) displays examples of hard samples. Due to down-
sampling, tears and fine eye wrinkles disappear, resulting
in an appearance resembling an angry face. Consequently,
the prediction of the FER model is *Anger’ rather than the
original label, ’Sad’, as seen on the left side. The issue of
overfitting arises when the representation of hard samples
is compelled to closely resemble the high-resolution (HR)
representation through the application of consistency con-
straints. This occurs because the network learns to achieve
consistency based on various representations, such as face
identity, rather than focusing on the emotion of the hard
sample itself. As shown in Figure 1 (left), the hard sam-
ple is coerced to closely resemble the original sample when
employing the previous consistency loss, thus being treated
similarly to the original and easy samples from which ex-
pression features can be extracted. This impedes the learn-
ing of a generalized model.

To address these challenges, we present a solution called
hard sample-aware consistency (HSAC) for multi-scale
low-resolution (FER), which includes both combined atten-
tion consistency and label distribution learning. Our ap-
proach involves down-sampling the high-resolution image
(Ig) to create a low-resolution image (I1,), along with gen-
erating a horizontally flipped low-resolution image (I ).
These three images (I, I, I F) are then fed into a shared
CNN, and predictions as well as attention maps are obtained
using CAM.

We construct a combined attention map through linear
interpolation of the attention maps from Iy and I, and
we aim to align the attention map of Iy, closely with this
combined attention map. Label distribution learning tech-
niques are employed by merging the original target and pre-
dictions from Iz. We determine whether the input image
is classified as a hard sample by assessing its classification
difficulty. In the event that an input sample is categorized
as a hard sample, label distribution learning for an LR im-
age is not executed. Our HSAC exhibits linear behavior
across multi-resolution samples while circumventing opti-
mization for hard samples. After sufficient optimization,
hard samples are predominantly positioned at the periphery
of the class sample distribution, unlike the previous consis-
tency loss function, as illustrated in Figure 1. In our visu-
alization, we observe that hard samples are only positioned
at the outskirts of the distribution of class samples in Sec-
tion 4.6. Then, it encourages the network to learn more
discriminative representation. Experimental results demon-
strate that our HSAC outperforms models utilizing previ-
ous consistency constraints and augmentation techniques on
both synthetic and real datasets. Moreover, HSAC attains a
new state-of-the-art performance on original FER datasets.

2. Related Works
2.1. Facial expression recognition

Facial expression recognition (FER) aims to provide af-
fective behavior information of humans for real-life appli-
cations in human-computer interaction systems. While FER
on “in-the-lab” datasets has shown good results, existing
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Figure 3. The overview of our proposed method. The black arrows denote forward propagation.

methods have limitations in terms of generalization. Conse-
quently, researchers have focused on addressing challenges
in “in-the-wild” scenarios, which involve label noise, oc-
cluded faces, and degraded images [16, 18, 23]. Various
approaches have been proposed to overcome these chal-
lenges. For example, [19] addresses label noise by iden-
tifying uncertain samples and relabeling them in a low-
importance group. [| 1] employs label distribution learning
to handle noise labels by combining one-hot labels with
distributions based on uncertainty values. To tackle oc-
cluded facial expression recognition, [22] propose step-wise
and adversarial learning using unpaired non-occluded face
data. They demonstrate robust performance under intra- and
cross-database evaluation. Additionally, [15] employs fea-
ture super-resolution and adversarial learning to enhance
FER for LR face inputs. However, there are still limita-
tions in achieving accurate multi-scale LR facial expression
recognition.

2.2. Attention Mechanism for Classification

CAM is an effective tool to visualize the predicted class
scores and localize discriminative parts detected by the
CNN. The attention maps from CAM can be also utilized
to generate pseudo labels and are trained to capture more
complete regions to design robust models in recent stud-
ies [2,3]. For the number of classes K, height H, and width
W, the attention map A € REXH*W ig calculated as:

C
A=) Wi Fe, e
c=1

where C' is the number of channels for the feature map
F € ROXHXW of the last convolutional layer. W € RE*¢
denotes the weights of the fully connected layer.

[1, 2] generate pseudo labels by introducing a self-
supervised task and perform weakly supervised learning
to improve the attention maps. [9, 21] eliminate the most
discriminative region of attention maps and encourage the

network to learn classification features from other regions
and capture expanded activations. [20] proposed a self-
supervised equivariant attention mechanism to solve incon-
sistency problems on the generated attention maps when ap-
plying down-sampling with different factors in general im-
age classification. [0, 27] achieve better visual perceptual
plausibility and classification performance by employing
attention consistency methods in multi-label classification
and facial expression recognition.

3. Proposed Method

Figure 3 illustrates the framework of HSAC, compris-
ing a CNN-based backbone network and a fully connected
layer. Initially, we down-sample the HR facial image I us-
ing a randomly selected down-sampling factor to generate a
multi-scale LR face image I;,. Subsequently, Iy, is horizon-
tally flipped to create the flipped LR version, Iy, . Through
bicubic interpolation, both I, and I are up-sampled to
match the dimension of I before being fed into the net-
work. The network then generates feature maps from [y,
Iy, and I r. The feature maps originating from [y and
I, are propagated into a fully connected layer, yielding two
predictions (P and Pr) corresponding to Iz and I;,. For
the generation of attention maps, the feature maps for each
input and the weights of the fully connected layer are uti-
lized, following the same approach as described in Equa-
tion 1. This process yields three attention maps (Agy, Ay,
and Apr) from Iy, I, and I F.

3.1. Preliminary

The existing methods employ attention consistency loss
function [6,27] between Ay and Aj to solve inconsistency
problems as follows:
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where D, is the function that can compute the distance be-
tween two attention maps, such as L1- or L2-norm. Sim-
ilarly, they can try to use the consistency loss function for
prediction from augmented input as:

LP:DP(PLaPT)a (3)

where D), is a loss function that can capture the difference
between two categorical distributions and Pr denotes the
target probability distribution, such as a one-hot logical la-
bel and prediction from original input, Py.

3.2. Combined Attention Consistency

The attention consistency loss function mentioned above
in Eq. 2 has the potential to result in an overfitting issue.
This occurs as the network is conditioned to treat multi-
resolution samples equally in terms of attention maps. This
uniform treatment is extended to hard samples, diverting the
network’s focus toward learning facial image identity fea-
tures. As a consequence, the network’s capacity to concen-
trate on acquiring discriminative facial expression features
becomes compromised.

To mitigate the overfitting problem, we introduced a
combined attention consistency loss function. The pur-
pose of the combined attention consistency is to align at-
tention maps from multi-scale low-resolution images with
appropriate target attention maps. Aypr and Ay can serve
as valuable references for A;. We first calculate the L1
distance between the attention maps from LR (Ap) and
the attention maps from HR and LRF (Agy and App),
and we can acquire distances d4,, = ||ArL — Agll1 and
da,p = ||AL — Flip(ALF)||1, respectively. Flip(-) is hor-
izontal flip operation. d 4, ,, is the distance between Ay, and
Apr,and d 4, . denotes the distance between Ay, and flipped

App. The similarity between Ay, and Ay can be calculated
— ALFR

as 54 = dapptoary

App is defined as 1 — s4. The combined attention consis-

tency loss can be expressed as

, and the similarity between Ay and

K
1
Lea = 75 ,; Da(Ac,, AL,). )

Ac =((1—sa)-Ag+sa-Flip(Arr)) denotes combined
attention maps, and the combined attention consistency
minimizes the difference between A; and combined atten-
tion maps. We use L1-norm as D,(-). The large s 4 means
that activation maps are imbalanced in the early training
epoch because attention maps (Ap and flipped App) are
different despite images of the same resolution. So, as Ay p
occupies a large proportion of combined attention maps, Ay,
and Ay r become close to each other. In contrast, the small
s4 denotes that attention maps are balanced, and L., fo-
cuses on transferring the knowledge of discriminative rep-
resentation into attention maps from LR. In contrast to the

prior attention consistency loss, our proposed method offers
a suitable target attention map from the perspective of label
distribution learning. This is achieved due to the balanced
nature of s4, as opposed to being biased towards a single
side, as elaborated in Section 4.7. As a result, attention
maps derived from multi-scale low-resolution inputs retain
a distance from the high-resolution attention map commen-
surate with the extent of distortion. The combined attention
consistency enables the network to learn linear behavior on
features from multi-resolution LR images in sample aug-
mentation points of view [3,24,26].

3.3. Label Distribution Learning

Label distribution learning proves to be an effective so-
lution for addressing noisy label issues stemming from am-
biguous samples, low-quality images, inconsistent annota-
tions, and incorrect annotations. It has already been in-
corporated into numerous FER models. Considering this,
LR samples can be perceived as ambiguous and of lower
quality. As a result, we utilize label distribution learning
to tackle ambiguity and formulate target distributions for
easy samples that do not fall under the category of hard
samples. We calculate the L1 distance to acquire dp,,, =
||Pr. — Pyll1 and 6p,, = ||Pr — T||1, where T is one-
hot logical label. The similarity, sp, between Pr, and Py is
calculated as (M?fgw.

Our label distribution learning loss function is formu-
lated as:

Lig = Dy(Py, Pc), )

where D), (+) is the cross-entropy loss function. Pc = (sp -
Pr+ (1 —sp)-T) denotes target label distributions for LR
generated by combining Py and 7" with sp. When dealing
with images exhibiting slight degradation, the minimization
of L4 prompts Py, to converge towards a distribution that
is more akin to the distribution shared between Py and T'.

3.4. Total loss function for Hard Sample

To learn discriminative features, we require a cross-
entropy loss function using logical labels for HR images,
which is defined as L. = D,(Pg,T). Furthermore, we
also utilize adversarial learning to create an indistinguish-
able Ay, from Ay, thereby compensating for the deficiency
in representing Ay, when solely utilizing L.,. For discrim-
inator D(-), adversarial loss function for discriminator is
defined Log,, = —logD(Ap) — log(1 — D(AyL)) and ad-
versarial loss function is expressed as

Ladvg = log(l - D(AL)) (6)

To circumvent overfitting issues, it becomes imperative to
selectively apply the aforementioned loss function to hard
samples. To distinguish hard samples, we compare the ex-
pression class outcomes among Py, P, and logical label
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Loss Functions

[ Accuracy of Down-sampling Factors (%)

n0. [ Lee | La [ Lp [ Lea | Liar | Ladgw | x2 | x4 | x8 ] Avg
LT v [ x[xT]x X x [ 8875 ] 87.03 | 76.96 84.24
2 | v | vV | x| X x x| 9055 | 89.90 | 84.35 88.26
3 v | x| x|V x x| 9048 | 89.93 | 8533 88.58
41 v | x| v | x X x| 8875 | 88.10 | 83.83 86.89
50 v | x| x| x v x| 8875 | 88.07 | 85.06 87.29
6 | v | v | v | X X X | 89.80 | 89.41 | 81.58 86.93
T v x| V|V X x| 9061 | 90.06 | 8521 88.62
8 | v | x| x|V v X | 9038 | 89.86 | 86.38 88.87
9 | v I x| x| v |V v 19058 | 90.03 | 86.25 88.95

Table 1. Ablation study for the proposed loss functions on RAF-DB. Avg is the average accuracy for all downscale factors x2, x4, and

X 8.

T. If the maximum index (estimated result) of Pj, differs
from both the expression class outcomes of Py and T', we
consider an LR image as a hard sample. Subsequently, we
define the classification difficulty indicator 7 = 0 when the
LR image is identified as a hard sample. The classification
difficulty indicator is computed as

0 i C(PL) # O(Py) and C(PL) # O(T),
T =
1 otherwise,
where C(-) = argmaxy(-) that estimated class is extracted,
where k is the class index. Our total loss function is formu-
lated as:

L — Lce + AchLca + Aldllel + )\adeudvg; ifr=1
g Lee + Aealca, otherwise
(3)

where A.q, \ig; and \yq4, are hyper-parameters. We prevent
the network from overfitting to hard samples by incorporat-
ing a classification difficulty indicator, and L., inherently
establishes connections between each representation from
multi-scale low-resolution images. Further training details
for the algorithm and loss functions can be found in the Sup-
plementary Materials.

4. Experiments
4.1. Implementation Details

Datasets To evaluate the facial expression recognition
performance on synthetic multi-scale LR images, we use
RAF-DB [13], AffectNet [14], and SFEW2.0 [4] in our ex-
periments, which are “in-the-wild” datasets. They are cre-
ated by collecting images from the internet, movies, and
other real-life scenarios, and these datasets contain seven
facial expression classes (surprise, fear, disgust, happy, sad,
angry, and neutral). Our data split process is following
previous works [11, 15]. To evaluate the facial expression
recognition performance on real LR images, We employ
CAER-S and FER+ because these are very close to real
LR scenarios. We extracted 1223 images with less than 68

pixels in width and height for the real LR image test from
the CAER-S dataset. The FER™ dataset consists of 3588
48x48 grayscale LR images.

Preprocess In the training phase, we use the horizon-
tal flip and the random erasing as augmentation techniques
and then the original face image is resized to 224 x224 pix-
els to make HR. To acquire I}, Iy is down-sampled by
non-integer factors x1 to x8 with bicubic down-sampling.
We can obtain I r by flipping I;, horizontally. I; and
I F are upsampled by 224x224 pixels with bicubic up-
sampling. In the test phase, we resize the original image
to 28 %28 (x8), 56x56 (x4), 112x112 (x2), and 224 x224
(x 1) using bicubic regardless of the original image size for
fair comparisons. Then, we interpolate resized images to
224 x224 using bicubic for inference, as the input size of
the networks is 224 x224.

Hyper-parameter Setting For a fair comparison, we
use the pre-trained ResNet50 (RN50) [8] with MS-Celeb-
1M [7] dataset as a backbone network. During training, the
mini-batch size is 32 and the learning rate is set to 1074,
We empirically set Aeq, Ajgz and Agg, to 3, 1072, and 1075,
respectively. We use Adam optimizer [10] and the training
epoch is set to 60.

4.2. Ablation Study

In this section, we will demonstrate the impact of the
proposed loss functions and validate the criteria for select-
ing hard samples, followed by an analysis of performance
variations based on hyper-parameter settings. All experi-
ments in the ablation study are conducted on the RAF-DB
dataset. Table I illustrates the effectiveness of our proposed
loss functions for multi-scale low-resolution Facial Expres-
sion Recognition (FER). In the first row, a model trained
with L., exhibits poor performance at a down-sampling ra-
tio of x8. In the second and third rows, the results using
L, are lower than those using our L., by 0.98% in the
x 8 down-sampling case. Similarly, in the fourth and fifth
rows, our L;q; outperforms L, by 1.23% in the x8 down-
sampling case. In the sixth row, where the previous con-
sistency loss function is employed, significant performance
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Down-sampling RN50

RN50 EAC

Dataset Factors RNS50 +L, | +RCAN FSR-FER | EAC +L, HSAC
X2 (%) 88.75 | 88.75 86.44 84.02 90.06 | 89.90 | 90.58

RAF-DB x4 (%) 87.03 | 88.10 86.54 80.02 89.47 | 88.55 | 90.03
X8 (%) 76.96 | 83.83 76.11 65.97 81.94 | 84.62 | 86.25

Avg (%) 84.24 | 86.89 83.03 76.67 87.15 | 87.69 | 88.95

X2 (%) 62.80 | 63.09 59.03 - 6520 | 65.26 | 65.43

AffecNet-7 x4 (%) 61.26 | 62.77 58.63 - 64.37 | 64.31 | 65.17
X8 (%) 49.89 | 57.83 42.26 - 61.31 | 63.03 | 63.40

Avg (%) 5798 | 61.23 53.30 - 63.62 | 64.20 | 64.66

X2 (%) 49.01 | 46.78 42.57 55.14 56.19 | 5347 | 59.16

SFEW2.0 x4 (%) 49.01 | 47.28 43.81 49.64 55.94 | 54.21 5891
' X8 (%) 45.79 | 46.53 38.12 40.00 53.47 | 53.96 | 55.20

Avg (%) 47.93 | 46.86 41.50 48.26 55.20 | 53.88 | 57.75

Table 2. Evaluation of our proposed HSAC for multi-scale LR FER on various FER datasets. The best results are highlighted.
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Figure 4. Evaluation results for the proposed method according to
different regularization parameters, L., and L;q;.

The hard sample selection criteria Acc (%)
C(Pr) # C(Pg) 88.76
C(Pr)#C(T) 88.82
C(Pr) # C(Pyg)and C(Pr) # C(T) 88.95

Table 3. Comparison of HSAC according to the hard sample se-
lection criteria.

degradation is observed when the network is trained with
both L, and L,. In contrast, our HSAC consistently main-
tains high performance regardless of the down-sampling ra-
tio, as demonstrated in the ninth row. These results under-
score that our proposed loss functions, in conjunction with
the consideration of hard samples, empower the network to
surmount performance degradation stemming from overfit-
ting.

Figure 4 shows evaluation results for our proposed
method according to different regularization parameters,
Acq and Ajg;. The left and right figures show accuracy for
multi-scale LR FER about \., and \;4;, respectively. A,
ranges from 0 to 5. As A, increases from 0 to 3, we can
see a trend of improved performance and then accuracy de-
creases slightly. \;q ranges from 1074 to 1. As )y in-
creases from 10~% to 10~2, we can see a trend of improved
performance and then accuracy decreases rapidly. We ac-
quire the best performance at A\, = 3 and \jq; = 10—2.

As demonstrated in Table 3, a performance comparison
of HSAC based on the hard sample selection criteria in Eq. 7
is presented. In the first row, the LR image is classified as
a hard sample when the prediction outcome of the HR im-
age diverges from that of the LR image. This implies that
only the predicted value for the HR sample is considered,
and the corresponding label is disregarded. This can re-
duce the number of trainable samples when predictions for
HR fail. The criteria of the second row mean that the LR
image is considered a hard sample when the target expres-
sion class is different from the prediction outcome of the
LR image. This signifies that samples with label noise are
excluded, even if they represent less distorted images. This
approach also contributes to a reduction in the number of
training samples. The third row introduces our proposed
criterion for determining whether a facial sample qualifies
as a hard sample. Our hard sample selection criterion was
carefully designed to secure as many hard samples as feasi-
ble for inclusion in the learning process.

4.3. Evaluation of HSAC on Synthetic Multi-Scale
Low-resolution Datasets

To compare our proposed method on three datasets, we
employ several FER models and techniques for multi-scale
LR FER. As shown in Table 2, RN50 and EAC [27] are
trained with the FER dataset without a data augmentation
technique for multi-scale LR. EAC is our baseline model,
which uses the consistency method. +L,, and +L, mean
that the model is trained with previous consistency con-
straints. We also employ single-image super-resolution
method RCAN [25] for x2, x4, x8 to interpolate LR im-
ages. FER models without consistency constraints show
limited performance especially as the down-sampling fac-
tor becomes large. RCAN performed poorly at all down-
sampling factors, which, as reported in [15], adversely af-
fects the FER that needs to capture detailed facial move-
ments due to small and large artifacts. EAC+L, per-
formed worse in SFEW2.0 compared to EAC. This is be-
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Dataset | DACL | MVIiT | SCN [ EfficientFace | DMUE | RUL | EAC [ HSAC
RAF-DB [ 87.78% | 88.62% | 88.14% 88.36% 89.42% | 88.98% [ 90.35% | 90.97%
AffectNet-7 | 6520% | 64.57% - 63.70% 63.11% - 65.23% | 65.29%
SFEW2.0 - - - - 58.34% - 56.68% | 58.42%

Table 4. Comparison with state-of-the-art methods on original face images. The best performance is highlighted.

ResNet50 + L,

Figure 5. Visualization of the activation maps generated by CAM about RN50 + L,, EAC + L,, and HSAC on RAF-DB.

Datasets RN50 | RN5O +L, EAC EAC +L, | HSAC
CAER-S | 62.71% 62.74% 63.19% 63.88% 65.63%
FERT 64.34% 64.61% 64.55% 65.34% 67.15%

Table 5. Evaluation of HSAC on real LR datasets.

cause SFEW2.0 contains more ambiguous emotional ex-
pressions than other datasets, and hard samples are trained
with original labels. In contrast, our HSAC shows con-
sistently high performance on all datasets. Specifically,
HSAC outperforms EAC+L, by 1.26%, 0.46%, and 3.87%
in terms of the average accuracy on RAF-DB, AffectNet,
and SFEW2.0, respectively. In addition, our method outper-
forms other methods by a large performance difference at
x 8 while maintaining performance at other down-sampling
factors.

4.4. Comparison with State-of-the-art Methods

Our proposed method is compared with the state-of-the-
art on original datasets. The comparison methods can be
divided into architecture and solving noisy label problem-
based methods. DACL [5] designed attention network and
MVIT [12] is based on vision transformer architecture for
FER. EfficientFace [28] employed a teacher network to pro-
vide target distribution. SCN [19], DMUE [16], RUL [26],
and EAC are methods to solve the noisy label problem in
the FER dataset and they show state-of-the-art performance.
Table 4 shows the performances of comparison methods on
original FER datasets. Our HSAC outperforms state-of-the-
art methods in original FER performance even though it was
trained for multi-scale LR FER. This result suggests that our
hard sample-aware strategy on ambiguous samples makes
the model robust.

4.5. Evaluation of HSAC on Real Low-resolution
Datasets

We trained RN50, RN50 +L,,, EAC, EAC +L,, and our
HSAC on both AffecNet and RAF-DB to evaluate CAER-S
dataset. Additionally, we trained RN50, RN50 +L,,, EAC,
EAC +L,, and our HSAC on a grayscale AffectNet and
RAF-DB to evaluate FER' dataset. As shown in Table 5,
our HSAC still outperforms the state-of-the-art method and
models with previous consistency constraints on real LR
images. The results imply that our strategy of considering
hard samples works well in real scenarios.

4.6. Visualization

To demonstrate that our proposed methods work as in-
tended, we visualize the acquired feature maps. As depicted
in Figure 5, we present activation maps generated through
Class Activation Mapping (CAM) for RN50 +L,, EAC
+L,, and our proposed HSAC. RN50 +L,, failed to cap-
ture the distinctive regions across all down-sampling fac-
tors, and it is evident that the attention area gradually di-
minishes as the down-sampling factor’s intensity increases.
EAC +L, encompassed the entire facial area, encompass-
ing not only the discriminative facial region but also irrele-
vant regions for Facial Expression Recognition (FER). Fur-
thermore, EAC 4L, completely faltered in classifying the
facial expression of the low-resolution image at a X8 down-
sampling ratio. In contrast, our proposed HSAC precisely
captures the most discriminative facial area, specifically the
facial wrinkles, while effectively excluding irrelevant re-
gions.

To validate the superiority of our proposed methods,
we further visualize feature distributions on RAF-DB for
all down-sampling factors (x1, x2, x4, and x8) using t-
SNE [17]. Figure 7 illustrates the feature distributions of
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Figure 6. Evaluation results for down-sampling factors according to training epoch (Left). The value of similarity s4 and average 7

according to training epoch (Middle and Right).

Figure 7. t-SNE visualization results of feature distributions about
EAC +L,, and HSAC on RAF-DB.

EAC +L, and HSAC. Hard samples are denoted by black
dots. The red box corresponds to the scenario where hard
samples are positioned amid the distribution of class sam-
ples (a). The blue box signifies the situation where hard
samples are placed at the periphery of the class sample dis-
tribution (b). The feature distribution of EAC +L, en-
compasses cases (a) and (b), whereas HSAC exclusively
contains case (b). In addition, it is clearly observed that
the boundaries of the feature distributions generated from
HSAC between different classes are more obvious. How-
ever, the feature distributions generated from comparison
methods seem relatively vague. The sole distinction be-
tween EAC + L, and HSAC lies in the consideration of hard
samples. The results suggest that controlling hard samples
is important for creating a discriminative feature distribu-
tion and a generalized model for multi-scale LR FER.

4.7. Performance, s4 and = Value According to
Epoch

Figure 6 illustrates the evaluation results across down-
sampling factors (x2, x4, and x8) over epochs, alongside
the changes in the average values of s 4 and 7. In the left fig-

ure, the black line represents the average accuracy of HSAC
across all down-sampling factors. The network’s learning
stability tends to increase as the down-sampling factor de-
creases. The middle figure demonstrates the gradual de-
crease and convergence of the similarity between Ay and
Ap, represented by s 4, during the training process. This
phenomenon can be interpreted as an effort to balance the
gap between Apr and Ap, effectively maintaining a cer-
tain distance between HR samples and multi-resolution LR
samples. This indicates that perfect alignment between hard
samples and HR samples is not attainable. The right figure
displays the average value of 7, representing the count of
non-hard samples in each training epoch. Over the course of
training, the average value of T progressively increases and
eventually stabilizes. This trend arises from L., aligning
attention maps for LR samples with those of HR samples.
However, HSAC is observed to designate 1% of the down-
sampled training images as hard samples after 20 epochs.

5. Conclusion

We identify hard samples that lead to overfitting issues
when applying consistency constraints across various reso-
lutions of images. To address this challenge, we introduce
HSAC—a framework comprising combined attention con-
sistency, label distribution learning, and a classification dif-
ficulty indicator. The proposed method allows for linear
behavior on multi-resolution samples and prevents the net-
work from overfitting to hard samples. Our evaluation re-
sults demonstrated the superiority of our approach in multi-
scale LR FER, surpassing the performance of state-of-the-
art methods on original datasets. Our observations indicate
that hard samples are placed on the outskirts of the distribu-
tion of the class sample, and it implies that HSAC creates a
generalized model.
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