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(a) Input Image (b) PIFu [24] (c) Geo-PIFu [8] (d) IntegratedPIFu [4] (e) Ours

Figure 1. Our proposed PIDiffu could recover high-fidelity reconstruction of clothed human bodies in ”in-the-wild” images. Compared
with state-of-the-art methods, our reconstruction is more accurate and maintains plausible human topology.

Abstract

This paper presents the Pixel-aligned Diffusion Model
(PIDiffu), a new framework for reconstructing high-fidelity
clothed 3D human models from a single image. While ex-
isting PIFu variants have made significant advances us-
ing more complicated 2D and 3D feature extractions, these
methods still suffer from floating artifacts and body part du-
plication due to their reliance on point-wise occupancy field
estimations. PIDiffu employs a diffusion-based strategy for
line-wise estimation along the ray direction, conditioned by
pixel-aligned features with a guided attention. This ap-
proach improves the local details and structural accuracy
of the reconstructed body shape and is robust to unfamiliar
and complex image features. Moreover, PIDiffu can be eas-
ily integrated with existing PIFu-based methods to leverage
their advantages. The paper demonstrates that PIDiffu out-
performs state-of-the-art methods that do not rely on para-
metric 3D body models. Especially, our method is superior
in handling ’in-the-wild’ images, such as those with com-
plex patterned clothes unseen in the training data.

1. Introduction

Reconstructing a high-fidelity clothed human body is an
important research area to implement virtual reality for on-

line shopping, remote attendance, and entertainment. The
research community has shown interest in developing deep
learning models for human digitization from a single im-
age. This interest is because specialized devices, such as
3D scanners and multi-view capture environments, are pri-
marily inaccessible to general users.

Pixel-Aligned Implicit Function (PIFu) [24] has remark-
ably improved in capturing intricate local details by uti-
lizing pixel-aligned image features to determine the oc-
cupancy field. PIFu infers points along the same ray
from same image features, potentially resulting in redun-
dant and elongated human parts. Recent studies concen-
trate on conveying rich features to the multilayer percep-
tron (MLP) while maintaining PIFu’s point-wise occupancy
estimation strategy built on the MLP to address this is-
sue [5, 13, 15, 16, 34, 41, 42].

Although this MLP-based occupancy network is com-
putationally efficient, it heavily depends on image features
without considering the 3D distribution. This limitation can
compromise its ability to reconstruct plausible geometry,
especially when an input image significantly deviates from
the training data distribution.

In this paper, we present PIDiffu, an improved pixel-
aligned implicit model designed to refine PIFU’s MLP-
based occupancy estimation approach. PIDiffu employs a
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diffusion model [10], which learns line-wise distribution
instead of point-wise occupancy to generate an occupancy
field considering 3D distribution. This approach effectively
handles depth ambiguity and improves reconstruction ca-
pability when faced with new images outside the train-
ing domain. In addition, This reconstruction robustness is
strengthened by conditioning the diffusion model on image
features using the guided attention.

Our contribution can be summarized as follows:

• We introduce the Pixel-aligned Diffusion model (PID-
iffu), which is a simple yet advanced pixel-aligned
implicit function. PIDiffu improves local details and
structural accuracy in 3D human reconstructions with-
out additional data.

• We propose an effective conditioning method, Feature-
wise Linear Attention (FiLA), to strengthen the dif-
fusion model’s robust generation ability in the recon-
struction task. This method allows PIDiffu to recon-
struct plausible geometry even with unfamiliar images.

• PIDiffu is designed to incorporate with PIFu-based
methods through simple modifications. In our exper-
iments, the reconstruction results with PIDiffu integra-
tion surpass the original baseline.

2. Related Work
PIFu-based Human Reconstruction. PIFu [24] architec-
ture comprises two essential components: a feature extrac-
tion network that extracts image features and an occupancy
network that estimates occupancy fields using pixel-aligned
image features. This design leads to high-fidelity 3D re-
construction, but challenges such as depth ambiguity and
self-occlusion can arise.

Recent studies based on PIFu mainly focus on the lack
of explicit geometric information, an inherent limitation of
single images. While retaining the advantages of MLP-
based occupancy networks, these studies incorporate ex-
tensive additional data into the implicit function to im-
prove performance. For example, depth or LIDAR data
are used into the occupancy network to address the issue
of depth ambiguity [5, 15, 36]. These additional data are
not always available in practical application scenarios. Pa-
rameterized 3D human models such as SMPL [17] and
SMPL-X [19] enable networks to fuse explicit knowledge
about human structure. Geometric information of 3D hu-
man such as pose and shape from SMPL is supplied to
MLP [41,42]. ICON [34] selectively utilizes image features
based on self-occlusion information obtained from paramet-
ric human models. Other studies solve the self-occlusion
problem by converting query points into SMPL’s canonical
space [9, 13, 16].

Another studies propose to extract additional geometric
data such as coarse voxels or depth maps. GeoPIFu [8] em-
ploys a 3D convolutional network to produce coarse occu-
pancy volumes derived from input images. The intermedi-
ate latent voxel features from trained 3D convolutional net-
works are used as geometric priors. IntegratedPIFu [4] uses
a pre-trained network that can infer normal, depth, and re-
gion from images. With a slight deviation from previous
methods PHORHUM [2] infers normal from SDF gradient
predicted from an implicit function and applies this normal
to rendering loss to improve geometric accuracy and detail.

Although these methods successfully improve the qual-
ity of reconstructed 3D geometries through rich additional
data input (or inferred), they still struggle with the chal-
lenges of point-wise occupancy estimation, as discussed in
the Section 3.
Diffusion Model-based 3D Reconstruction. The diffu-
sion probabilistic model [27] consists of the forward pro-
cess which incrementally adds noise to the original data and
the reverse process which removes this noise. This gradual
generation of new samples allows the diffusion model to
generate gradients, which enable the model to progressively
converge to the data distribution [35]. Due to its ability
to capture complex data distributions, the diffusion model
currently exhibits outstanding performance in various gen-
erative tasks such as image generation [10, 22, 29] and 3D
generation [3, 12, 14, 18, 26, 31, 33, 38].

It is a critical concern that network overfitting when ap-
plying the diffusion model to 3D clothed human reconstruc-
tion from single images. This overfitting often leads to the
generation of 3D clothed humans that are not related to the
input image. Such overfitting can arise due to the insuffi-
ciency of available 3D data, which fails to capture the com-
plete 3D distribution. The severity of this issue amplifies
when accounting for varied poses. Rodin [30] can generate
plausible 3D models resembling the input image and they
require extensive datasets to represent the data distribution.
This requirements is extremely difficult to prepare. LAS-
DFDIFF [40] is closely related to our work in that it utilizes
SDF data to train a diffusion model. This method infers
noise using a 3D convolutional U-Net [23] by making the
SDF into voxel form. This voxel representation allows di-
rect use of the diffusion strategy in 3D, but resolution is
limited due to the computational complexity of the 3D con-
volution U-Net.

3. Method
To address challenges related to depth ambiguity and

sensitivity to out-of-distribution images, we introduce the
Pixel-aligned Diffusion model (PIDiffu). In the following
Section 3.1, we detail the PIDiffu architecture and discuss
the seamless compatibility of PIDiffu with existing PIFu-
based methods. Additionally, we introduce how Feature-
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Figure 2. Overview of our PIDiffu framework. A per-pixel feature obtained from the image encoder is propagated to the diffusion model
as a conditional feature through the proposed FiLA. The diffusion network generates all points along the z-axis of the outgoing camera ray
from a pixel at once.

wise Linear Attention (FiLA) provides localized informa-
tion to the diffusion model in Section 3.2. Figure 2 shows
the overall structure of our pipeline.

3.1. Pixel-aligned Diffusion Model

Tackling the issue of depth ambiguity often involves di-
rectly considering the 3D distribution. GeoPIFu [8] em-
ploys a similar strategy by learning 3D correlations through
a 3D U-Net [23], this approach tends to produce geometries
with artifacts or distortions, particularly when handling im-
ages that were not part of its training distribution. To over-
come this limitation, we propose using diffusion models,
known for their robust convergence toward a trained distri-
bution. However, using diffusion models to directly learn
the 3D geometry distribution poses specific challenges, par-
ticularly in the reconstruction of clothed full-body humans.
First, the extensive diversity in poses and appearances ne-
cessitates a large dataset to avoid overfitting [30]. Second,
architectures designed for learning 3D geometries, such as
the 3D U-Net, are computationally expensive, making high-
resolution implementations challenging [18].

PIDiffu focuses on learning the 1D geometry distribution
along camera rays to bypass these challenges since the im-
age encoder learns spatial correlation in the 2D xy-plane in
the training process. In contrast to a 3D structured dataset
that struggles to cover the entire 3D distribution, a dataset
formulated in 1D rays can encompass a broader distribu-
tion. This approach allows for ray-specific sampling that
effectively tackles the issue of data overfitting and enhances
computational efficiency during the training and inference
process.
Image-driven Ray Denoising Diffusion. In this work,
PIDiffu learns a 1D geometry distribution based on input
image features. We define this 1D geometry distribution
as the ray distribution, represented by R. A pixel-aligned
ray, denoted by r, is a specific sample of R. To construct
this ray, we initially samples a fixed number of points from

near to far along the camera ray from a pixel and then cal-
culates the points’ signed distance to the 3D mesh surface.
A pixel-aligned ray r is defined by these signed distances,
represented as r = [znear,zfar]. z is the signed distance at a
3D point to the mesh surface.

Subsequent to the construction of pixel-aligned rays,
PIDiffu learns the ray distribution through the forward and
reverse processes. The forward and reverse process of ri,
corresponding to the ith pixel, are described as follows:

q(ri
t |ri

t−1) = N (ri
t ;
√

1−α tri
t−1,αt I),

p(ri
t−1|ri

t) = N (ri
t−1; µ(ri

t , t,E(x)
i),αt I).

(1)

Both q and p represent the forward and the reverse pro-
cesses, respectively, defined as Markov chains. The pre-
defined variance schedule of diffusion is represented by α .
t denotes the timestep, and I stands for the identity matrix.
We employ a fully connected convolutional image encoder
E, which extracts a per-pixel feature vector from image x.
µ is the predicted output from the denoising network. Dis-
tinct from the typical diffusion models that predict noise, we
directly predict samples as suggested in DALL-E [21] and
DiffuStereo [26]. This approach not only results in high-
quality generation but also notably reduces the number of
iteration steps required during inference. The loss function
for our method is defined as follows:

L = Ex,t [
1
N

N

∑
i=1

(||ri
0 − f (E(x)i,ri

t , t)||)] (2)

During inference, we sample N rays from Gaussian
noise, where N corresponds to the total number of pixels
in the input image and then proceed to iteratively denoise
these rays. The final mesh is generated through the March-
ing Cube algorithm. It is essential to use a consistent noise
set across all pixels for a smooth surface. This consideration
stems from the inherent attributes of the diffusion model.
Even with identical input conditions, varying initial noises
can lead to drastically different outputs.
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(a) FiLM (b) FiLA

Figure 3. Each figure conceptually depicts the architecture and gradient directions of the FiLM (a) and the proposed FiLA (b). Given
the unseen images that deviate enormously from the trained images, networks employing Film (a) might struggle to infer the appropriate
gradient to converge into trained sample distribution R, leading to potential disorientation. Our proposed FiLA (b) effectively mitigates
this issue by retaining the original trajectory.

Integration with Variants of PIFu-based Methods. A
major advantage of our method is to integrate seamlessly
with existing PIFu-based methods. Integration becomes
straightforward with a few adjustments, as PIDiffu is fo-
cused on the occupancy estimation network. In the various
PIFu-based methods, the occupancy of pixel x can be sim-
ply defined as :

MLP(E(x),E ′(g),d j) = s ∈ R (3)

where d j is a z-depth of a jth 3D point along the camera ray
from pixel x, and E encodes additional information g such
as depth maps and normal maps to capture rich features.
E ′(g) refers to various methodologies used in variants of
PIFu-based methods. To incorporate this E ′(g), Equation 2
is simply modified as follows:

L = Ex,t,g[
1
N

N

∑
i=1

(||ri
0 − f (E(x)i,ri

t , t,E
′(g))||)] (4)

The entire network is trained in an end-to-end manner,
thereby offering the flexibility to integrate various PIFu-
based methods. This integration can be achieved through
employing the diffusion model as a surface classifier instead
of MLP. Our experiments, detailed in Section 4, demon-
strate this compatibility by integrating with one of the state-
of-the-art networks, IntegratedPIFu [4].

3.2. Feature-wise Linear Attention

A common approach for conditioning external informa-
tion into neural networks is through Feature-wise Linear
Modulation (FiLM) [20], which can be mathematically de-
scribed as:

ẃ = σ(γ(c)∗w+β (c)) (5)

where w represents the neural network’s feature, while γ

and β are linear functions that take the condition c as input.
The output features are denoted by ẃ, and σ is a nonlinear
function, such as ReLU [1]. FiLM is widely utilized in dif-
fusion methods due to its capability to conditionally adjust
the scale and shift of each neural network feature w based
on external information c [7, 30].

Despite its advantages, the FiLM approach often fails
to generate appropriate geometry for previously unseen in-
the-wild datasets, as illustrated in Figure 6. This limitation
arises when the distribution X of the training images does
not adequately represent the overall distribution X of in-
the-wild images. In such cases, there may be a significant
divergence between X and the distribution X̄ of unseen in-
the-wild images, where X̄ is another subset of X . We de-
note the ray distribution corresponding to X as R and that
corresponding to X̄ as R̄.

The conceptual image of the reason that FiLM fails with
given X̄ can be found in Figure 3 (a). Given an image from
X̄ , FiLM modulates features to predict the gradient in the
ray distribution based on the input image conditions. For
clarity, the gradient mentioned here refer the gradient in the
ray distribution during the reverse process [35]. When X̄ is
significantly far from X , FiLM is unlikely to generate fa-
vorable condition features. The hadamard product propa-
gates the inherent error in the condition feature to w. Con-
sequently, essential features for gradient inference can be
deactivated by the activation function. Diffusion model fails
to deduce appropriate gradient to reach R, and drifts toward
an unlearned imaginary R̄.

We propose to use a conditioning method utilizing an
attention mechanism [11,32] to mitigate this limitation. The
equation is as follows :

ẃ = w+σ(γ(c)∗w+β (c)) (6)

The pixel-aligned image features to be emphasized are se-
lected and added to the previous path w with this attention
mechanism such that output features ẃ are not dramatically
shifted toward the gradient for R̄. This approach smooths
the reverse process such that samples are guided to reach R
even given an image from X̄ . Through our observations, this
minor modification allows the model to generate geometry
within the trained distribution when the in-the-wild input
images are given while maintaining the quality when famil-
iar input images are given. More comprehensive results and
comparisons with FiLM and our methods are shown in Sec-
tion 4.3.
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(a) PIFu (b) Geo-PIFu (c) vanilla PIDiffu (e) IntergratedPIDiffu (f) Input(d) IntegratedPIFu

Figure 4. Qualitative evaluation with SOTA methods on Rendering Data (Thuman2.0, BUFF). (a) is a PIFu, (b) is Geo-PIFu, (c) is PID-
iffu(ours) implemented on PIFu(a). (d) is IntegratedPIFu using DOS, Normal map prediction and HRI. (e) is PIDiffu(ours) implemented on
IntegratedPIFu(d) and (f) is the input RGB image. For each method, we show the frontal view and an alternative view which demonstrates
human geometry.

4. Experiment

4.1. Experimental Setup

PIDiffu and Baselines. We compare PIDiffu with three
state-of-the-art PIFu-based methods: PIFu [24], Geo-
PIFu [8], and IntegratedPIFu [4]. We divide the experi-
ments into two cases: the vanilla PIDiffu case and the In-
tegrated PIDiffu case.

In the vanilla PIDiffu case, we compare our vanilla PID-
iffu with PIFu [24] and Geo-PIFu [8]. The resolution of the
input image is 512×512, and evaluations are conducted at
a resolution of 171×256×171, consistent with Geo-PIFu.
For the sampling method used in the training process, both
PIFu and Geo-PIFu employ Discrete Spatial Sampling as

described in PIFu [24], where the exterior of the mesh is
represented as 0 and its interior as 1. In contrast, our method
adopts Depth-Oriented Sampling (DOS), introduced by In-
tegratedPIFu [4], which expresses points as the signed dis-
tance along the camera ray. Because our method generates
a fixed number of samples along the ray direction, sampling
methods that define points as continuous values are essen-
tial. An ablation study on the adaptation of PIFu with DOS
is presented in Section 4.3. We note that in the vanilla PID-
iffu, the image feature is conditioned using a simplified ver-
sion of Equation 6: ẃ = w+σ(MLP(c)). This approach
still avoids the direct modulation and activation of w, al-
lowing the model to achieve a comparable effect.

In the IntegratedPIDiffu case, We show PIDiffu can be
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(a) PIFu (b) Geo-PIFu (c) vanilla PIDiffu (e) IntergratedPIDiffu (f) Input(d) IntegratedPIFu

Figure 5. Qualitative evaluation with SOTA methods on in-the-wild data (SSHQ). (a) is a PIFu, (b) is Geo-PIFu, (c) is PIDiffu(ours)
implemented on PIFu(a). (d) is IntegratedPIFu using DOS, Normal map prediction and HRI. (e) is IntegratedPIDiffu(ours) implemented on
IntegratedPIFu(d) and (f) is the input RGB image. For each method, we show the frontal view and an alternative view which demonstrates
human geometry.

incorporated with IntegratedPIFu [4], which is a state-of-
the-art method built on PIFuHD [25], and compare our
method to IntegratedPIFu. The resolution of an input im-
age is 1024×1024, and evaluations are performed at a res-
olution of 2563, following the IntegratedPIFu. Integrated-
PIFu has several combinations of its suggested method, and
we choose one that achieves the best quantitative score in
the paper. This method utilizes DOS, incorporates frontal
normal maps predicted from the input image as additional
information, and employs the High-Resolution Integrator
(HRI). HRI effectively enables high-resolution reconstruc-
tion by training the low-resolution path separately from the
high-resolution path. For IntegratedPIDiffu, we adhere to
the same configurations.

Dataset. We perform experiments using three datasets, only
one of which is used for training. We train both PIDiffu
and the baseline methods on the THuman2.0 dataset [37],
which consists of 525 high-quality human models of Asian
individuals. We use all these meshes and adopt random 80-
20 train-test splits. For each mesh in both the training and
test sets, we render 10 RGB images at various yaw angles.

For evaluation, we use the BUFF dataset [39], following
the test split as outlined in IntegratedPIFu [4]. Additionally,
we use the SHHQ dataset [6] for only qualitative compar-
isons, as it absences 3D ground truth meshes. This dataset
comprises 2D masked color images of various individuals
and accessories. We conduct tests on the first 100 numbered
images from this dataset.
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Thuman2.0 BUFF
CD (104) ↓ P2S (104) ↓ Normal ↓ CD (10−3) ↓ P2S (10−3)↓ Normal ↓

Geo-PIFu [8] 3.933 3.477 1.190 3.832 4.095 1.603
PIFu [24] 4.607 5.183 1.172 4.575 6.584 1.461
vanilla PIDiffu 3.680 3.181 0.992 3.453 3.986 1.162
IntegratedPIFu [4] 3.337 3.433 0.936 2.968 3.024 1.221
IntegratedPIDiffu 3.110 2.936 0.806 2.861 2.959 0.978

Table 1. Quantitative results of our method with other baselines on THuman2.0 and BUFF dataset. For the CD(↓) and P2S(↓) metrics, we
multiplied the Thuman2.0 values by 104 and the BUFF values by 10−3. For the Normal(↓) metric, we multiplied the values for all datasets
by 102.

Metrics. We quantitatively evaluate our method using three
metrics: Chamfer Distance (CD), which measures shape
similarity between two point sets; Point-to-Surface Dis-
tance (P2S), which measures how close the points of the
reconstructed shape are to the surface of the ground truth
shape; and Normal Reprojection Error, which evaluates the
alignment between the estimated and ground truth normals.

4.2. Comparison with Baselines

Qualitative Results. We qualitatively evaluate our method
against baselines in both vanilla PIDiffu and IntegratedPID-
iffu cases. The geometry reconstruction results for the Thu-
man2.0 test set and BUFF are shown in Figure 4. Results
for the SHHQ dataset are presented in Figure 5.

Figure 4 and Figure 5 show that our method effectively
addresses issues such as floating artifacts, duplicated arms,
and elongated bodies seen in the baseline while preserving
the local detail-capturing ability of traditional PIFu. The
comparison between figures (d) and (e) demonstrates that
our method can seamlessly incorporate complex structures
such as HRI, improving reconstruction results.

Furthermore, Figure 5 demonstrates the robustness of
PIDiffu in handling a range of unfamiliar image features,
such as complex clothing, hats, and bags. Utilizing the dif-
fusion model that converges to the training data distribution,
PIDiffu effectively avoids the floating artifacts commonly
encountered in other PIFu-based methods, leading to more
plausible geometries. Notably, (d) and (e) in Figure 5 high-
light a characteristic of the diffusion model: although PID-
iffu produces high-quality facial reconstructions, the faces
generated tend to have oriental features, reflecting the fea-
ture distribution in the training data.
Quantitative Results. We quantitatively compare our
method against baselines in vanilla PIDiffu and Integrated-
PIDiffu cases as shown in Table 1. We evaluate the methods
using 10 rendered images for each mesh as input, taken at
36-degree yaw intervals for the Thuman2.0 dataset [37]. For
the BUFF dataset [39], we use a single frontal image. Nor-
mal values are assessed from the same view as the image.
As illustrated in Table 1, our method outperforms baselines

across all metrics and datasets.

4.3. Ablation Study

We evaluate the effectiveness of the diffusion model and
Feature-wise Linear Attention (FiLA) conditioning, both
quantitatively and qualitatively. To assess the contribution
of the diffusion model, we introduce Ray Prediction PIFu
(RayPIFu), a variant that employs a multi-layer perceptron
(MLP) to predict sample points along the ray direction, as
opposed to using a diffusion model. We also compare the
efficacy of FiLA conditioning against Feature-wise Linear
Modulation (FiLM) conditioning. For this study, we ex-
amine several distinct methods: the baseline PIFu, RayP-
IFu, vanilla PIDiffu with FiLM, vanilla PIDiffu with FiLA,
IntegratedPIDiffu with FiLM, and IntegratedPIDiffu with
FiLA. All methods are implemented using PIFu with DOS,
taking both an RGB image and a predicted normal map im-
age as inputs.
Qualitative Results. Figure 6 shows the qualitative com-
parison between the six methods on the SSHQ dataset.
RayPIFu(b) improves upon the baseline PIFu(a) by reduc-
ing issues, such as duplicate body parts, through the use of
3D correlations. However, it struggles to capture fine de-
tails, leading to issues including removing hands and dis-
torted facial features.

In contrast, methods employing diffusion (c, d, e, f) suc-
cessfully reconstruct more realistic and detailed clothed hu-
man geometry. Notably, PIDiffu with FiLA conditioning
(d,f) outperforms PIDiffu with FiLM conditioning (c,e). It
generates consistently plausible geometries across various
scenarios, including in-the-wild images. It is particularly
effective in capturing details of the face and bags shown in
Figure 6.
Quantitative Results. Quantitative evaluation results are
presented in Table 2 and Table 3. As indicated in Ta-
ble 2, PIDiffu with FiLA conditioning outperforms its
FiLM-conditioned except for the CD metric on Thuman2.0
dataset. Importantly, our FiLA-based method excels on
the unseen BUFF dataset, indicating its ability to deal with
out-of-distribution features. Regarding evaluating the diffu-
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(g) Input(a) PIFu (b) RayPIFu (c) vanilla PIDiffu
with FiLM

(d) vanilla PIDiffu
with FiLA

(e) IntergratedPIDiffu
with FiLM

(f) IntergratedPIDiffu
with FiLA

Figure 6. The ablation study on in-the-wild data (SSHQ). We evaluate the effect of the diffusion process (a,b,d) and FiLA conditioing
(c,d,e,f).

Thuman2.0 BUFF
4view (360◦) 1view

CD↓ P2S↓ Normal↓ CD↓ P2S↓ Normal↓
PIDiffu w.FiLM 3.087 3.251 0.917 3.188 3.999 0.944
PIDiffu w.FiLA 3.158 2.964 0.880 2.949 3.399 0.904

Table 2. Quantitative results PIDiffu with Film conditioning and
PIDiffu with FilA conditioning in THuman2.0 and BUFF dataset.
Both methods trained with low-resolution images (512×512).

sion model in Table 3, PIDiffu outperforms other CD and
Normal metrics methods. However, RayPIFu shows better
scores in the P2S metric. This discrepancy is partly due
to RayPIFu’s strategy of eliminating difficult-to-estimate
parts. Because the P2S metric measures the distance from
generated mesh points to the nearest ground truth surface,
the absence of a mesh in complex regions, as observed in
the second column of Figure 6, can improve the score.

5. Conclusion
In this paper, we have introduced PIDiffu, a new ap-

proach that addresses the existing challenges in PIFu-based
human reconstruction. By integrating the robust probabilis-
tic reasoning of diffusion models with spatial image fea-
tures, PIDiffu offers enhanced human specific geometric
structure without compromising local details. In addition,
by introducing and utilizing the FiLA mechanism, PIDiffu
demonstrates a remarkable ability to generate precise 3D
geometries, even when presented with unfamiliar images.
Moreover, PIDiffu is designed for easy integration with cur-
rent PIFu-based methods, which demonstrates its adaptabil-

Thuman2.0 BUFF
4view (360◦) 1view

CD↓ P2S↓ Normal↓ CD↓ P2S↓ Normal↓
PIFu 3.540 3.897 1.015 3.335 4.176 1.170
RayPIFu 3.320 2.715 1.040 3.163 2.830 1.309
PIDIffu 3.158 2.964 0.880 2.949 3.399 0.904

Table 3. Quantitative results of RayPIFu, PIDiffu with Film condi-
tioning, PIDiffu with FilA conditioning in THuman2.0 and BUFF
dataset. All methods are trained using DOS and low-resolution
images of 512×512 with its predicted normal maps.

ity. While this study did not compare methods using para-
metric body models such as ARCH++ [9], and DIFu [28],
future work could explore such integration.
Limitation. In cases involving extreme self-occlusion,
PIDiffu sometimes fails to produce accurate outputs. This
limitation is particularly noticeable in high-occlusion sce-
narios, for example, when one body part entirely obscures
another. We believe that this issue could potentially be al-
leviated by training the model on a more extensive dataset.
A broader range of examples might improve the model’s
ability to learn accurate ray distributions, especially in high-
occlusion scenarios.

Acknowledgement

This work was supported by Institute of Information
communications Technology Planning Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.RS-
2023-00225630, Development of Artificial Intelligence for
Text-based 3D Movie Generation)

5179



References
[1] Abien Fred Agarap. Deep learning using rectified linear units

(relu). arXiv preprint arXiv:1803.08375, 2018. 4
[2] Thiemo Alldieck, Mihai Zanfir, and Cristian Sminchisescu.

Photorealistic monocular 3d reconstruction of humans wear-
ing clothing. CVPR, pages 1506–1515, 2022. 2

[3] Yukang Cao, Yan-Pei Cao, Kai Han, Ying Shan, and Kwan-
Yee K Wong. Dreamavatar: Text-and-shape guided 3d hu-
man avatar generation via diffusion models. arXiv preprint
arXiv:2304.00916, 2023. 2

[4] Kennard Yanting Chan, Guosheng Lin, Haiyu Zhao, and
Weisi Lin. Integratedpifu: Integrated pixel aligned implicit
function for single-view human reconstruction. ECCV, pages
328–344, 2022. 1, 2, 4, 5, 6, 7

[5] Zijian Dong, Chen Guo, Jie Song, Xu Chen, Andreas Geiger,
and Otmar Hilliges. Pina: Learning a personalized implicit
neural avatar from a single rgb-d video sequence. CVPR,
2022. 1, 2

[6] Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin,
Chen Qian, Chen-Change Loy, Wayne Wu, and Ziwei Liu.
Stylegan-human: A data-centric odyssey of human genera-
tion. arXiv preprint, arXiv:2204.11823, 2022. 6

[7] Giorgio Giannone, Didrik Nielsen, and Ole Winther. Few-
shot diffusion models. arXiv preprint arXiv:2205.15463,
2022. 4

[8] Tong He, John Collomosse, Hailin Jin, and Stefano Soatto.
Geo-pifu: Geometry and pixel aligned implicit functions for
single-view human reconstruction. Advances in Neural In-
formation Processing Systems, 33:9276–9287, 2020. 1, 2, 3,
5, 7

[9] Tong He, Yuanlu Xu, Shunsuke Saito, Stefano Soatto, and
Tony Tung. Arch++: Animation-ready clothed human re-
construction revisited. CVPR, 2021. 2, 8

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. NeurIPS, pages 6840–6851, 2020.
2

[11] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 4

[12] Shuo Huang, Zongxin Yang, Liangting Li, Yi Yang, and
Jia Jia. Avatarfusion: Zero-shot generation of clothing-
decoupled 3d avatars using 2d diffusion. arXiv preprint
arXiv:2307.06526, 2023. 2

[13] Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and
Tony Tung. Arch: Animatable reconstruction of clothed hu-
mans. CVPR, 2020. 1, 2

[14] Byungjun Kim, Patrick Kwon, Kwangho Lee, Myunggi Lee,
Sookwan Han, Daesik Kim, and Hanbyul Joo. Chupa:
Carving 3d clothed humans from skinned shape priors
using 2d diffusion probabilistic models. arXiv preprint
arXiv:2305.11870, 2023. 2

[15] Zhe Li, Tao Yu, Chuanyu Pan, Zerong Zheng, and Yebin Liu.
Robust 3d self-portraits in seconds. CVPR, 2020. 1, 2

[16] Tingting Liao, Xiaomei Zhang, Yuliang Xiu, Hongwei Yi,
Xudong Liu, Guo-Jun Qi, Yong Zhang, Xuan Wang, Xi-
angyu Zhu, and Zhen Lei. High-fidelity clothed avatar re-
construction from a single image. CVPR, 2023. 1, 2

[17] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. Smpl: a skinned multi-
person linear model. ACM TOG, 2015. 2

[18] Norman Müller, Yawar Siddiqui, Lorenzo Porzi,
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