
Pruning from Scratch via Shared Pruning Module and Nuclear norm-based
Regularization

Donghyeon Lee†, Eunho Lee†, Youngbae Hwang
Dept. of Intelligent Systems and Robotics, Chungbuk National University

{jsleeg98,ehlee,ybhwang}@cbnu.ac.kr

Abstract

Most pruning methods focus on determining redundant
channels from the pre-trained model. However, they over-
look the cost of training large networks and the signifi-
cance of selecting channels for effective reconfiguration.
In this paper, we present a “pruning from scratch” frame-
work that considers reconfiguration and expression capac-
ity. Our Shared Pruning Module (SPM) handles a chan-
nel alignment problem in residual blocks for lossless recon-
figuration after pruning. Moreover, we introduce nuclear
norm-based regularization to preserve the representability
of large networks during the pruning process. By combining
it with MACs-based regularization, we achieve an efficient
and powerful pruned network while compressing towards
target MACs. The experimental results demonstrate that our
method prunes redundant channels effectively to enhance
representation capacity of the network. Our approach com-
presses ResNet50 on ImageNet without requiring additional
resources, achieving a top-1 accuracy of 75.25% with only
41% of the original model’s MACs. Code is available at
https://github.com/jsleeg98/NuSPM .

1. Introduction
Convolutional neural networks (CNNs) have achieved

remarkable success and are used in a wide range of AI appli-
cations. As CNNs offer high performance, their computa-
tional complexity also become higher, which can burden the
deployment on edge devices. To mitigate these challenges,
there are many methods to reduce the computational cost
of a network, such as designing efficient networks [38, 41],
knowledge distillation [12], network search [27, 49], quan-
tization [46] and network pruning [5, 17, 19]. Among them,
network pruning is one of effective methods for reducing
the resource requirements of the network while minimizing
performance degradation. To be specific, structured pruning
reduces the inference time practically by removing entire

† These authors contributed equally to this work.

Figure 1. Comparison of Top-1 Accuracy according to MACs for
compressed ResNet50 models on ImageNet. A blue color repre-
sents requiring a pre-trained network, while a red color represents
not requiring one. Our approach achieves the best accuracy with
minimal computational complexity compared to prior works with-
out relying on pre-trained network.

redundant channels from layers.
Structured pruning can be categorized into two main

approaches: importance-based and regularization-based
methods. Importance-based methods [10, 19] use heuris-
tic metrics, such as ℓ1 norm or geometric median, to eval-
uate the significance of channels. On the other hand,
regularization-based methods [28,47] prune the network by
incorporating regularization loss during the pruning pro-
cess. These structured pruning methods usually follow a
three-step pipeline. First, a large network is pre-trained un-
til it reaches convergence and achieves a high performance
on the target task. Second, the network is pruned to re-
move redundant channels based on specific pruning criteria
or metrics. Finally, the pruned network is fine-tuned to re-
cover from performance degradation caused by the pruning

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1393

process. This three-step pipeline has been widely used in
structured pruning approaches and has shown promising re-
sults in reducing the computational cost and memory foot-
print of inference. Structured pruning methods primarily
emphasize optimizing the last two processes to achieve ef-
ficient and effective network compression. However, train-
ing a large model until it converges is difficult and time-
consuming, which reduces the overall efficiency. To deal
with this inefficiency, we present a framework for pruning
from scratch.

Pruning from scratch is compressing the network started
from randomly initialized weights. In this framework, de-
termining the significance of channels becomes challeng-
ing when using an importance-based approach. Instead,
we adopt a regularization-based method, which gradually
prunes the network over time. However, if the regulariza-
tion is applied to network parameters directly, it has the po-
tential loss of meaningful information and reduces network
flexibility. To mitigate this issue, we use an indirect ap-
proach by applying regularization to the pruning module.
This approach enables us to conduct recoverable network
search during the pruning process.

Practical acceleration of a pruned network through struc-
tured pruning requires a reconfiguration process that actu-
ally removes masked channels. The widely-used residual
blocks consist of convolutional layers and can be catego-
rized into inner and outer layers based on their relationship
to the shortcut connection. The inner layers can be reconfig-
ured without any techniques because they operate indepen-
dently. However, when the outer layers, which are related to
shortcut connections, are reconfigured without considering
channel alignment, the pruned network cannot maintain its
performance after the reconfiguration process. In this paper,
we introduce the Shared Pruning Module (SPM) as an ap-
proach for pruning the outer layers to achieve efficient net-
work compression while preserving performance. By shar-
ing the pruning module of the outer layers, we achieve more
efficient network by properly pruning both inner and outer
layers.

It is significant to guide the pruning module towards se-
lecting appropriate channels. This should be done while
maintaining the network’s ability to effectively capture and
express complex patterns and features, which we refer to as
its “representability”. To preserve network representability
while achieving the target compressed network, we intro-
duce two types of losses: Lmac and Lnuc. The Lmac loss
is designed to guide the pruning modules towards achiev-
ing the target Multiply-Accumulate operations (MACs) for
the pruned network [22]. On the other hand, Lnuc aims
at maintaining the representability of the pruned network
where the nuclear norm [40] measures the similarity in ex-
pression capacity between the pruned network and the large
network. By applying both loss functions, we achieve a

compressed network of the target ratio while maintaining
the representability of the large network.

In our experiments, we show that our pruning method
achieves an accuracy of 75.3% on the ImageNet dataset
while utilizing only 41% of the original ResNet50 MACs.
This result is obtained without requiring pre-training of a
large network. Moreover, we prune ResNet56 by 51% of
its original size while still achieving an accuracy of 93.5%
on the CIFAR10 dataset. These results outperform prior
works that utilize pre-trained networks despite pruning from
scratch.

The contributions of this paper are highlighted as fol-
lows:

• The Shared Pruning Module (SPM) is introduced to
address the channel alignment problem without in-
creasing the network size during reconfiguration.

• A novel loss function that leverages the nuclear norm is
proposed to preserve the expression capacity of pruned
networks.

• Experiments show that the accuracy of 93.5% and
75.3% on CIFAR10 and ImageNet are achieved, re-
spectively, without a pre-trained network.

2. Related Works
Network pruning methods have aimed to accelerate the

inference of deep neural networks by eliminating redundant
components, such as parameters or channels in the model.
According to granularity, this method is categorized into
unstructured pruning and structured pruning. Unstructured
pruning methods individually identify and remove unim-
portant connections or weights from the network. There-
fore, real acceleration on a general-purpose GPU requires
specialized libraries. On the other hand, structured prun-
ing method determines redundant elements as channels, en-
abling acceleration of inference time without requiring ad-
ditional resources. Our approach applies structured pruning
for practical acceleration.

2.1. Structured pruning

Structured pruning can be classified into two approaches
based on the removal strategies: importance-based and
regularization-based. Importance-based structured pruning
uses various metrics to assess the significance of channels.
For instance, Li et al. [19] prune channels based on the
ℓ1 norm of network’s weight. However, channels having
a large magnitude of weights does not always represent that
they are important. Instead, He et al. [10] detect informa-
tive channels by assessing their correlation using the geo-
metric median based on network’s weight. In addition to
using network’s weights, the results of activation functions
can serve as an accurate evaluation of importance. Lin et

1394

al. [25] determine channel importance by its rank within the
feature map. Alternatively, channels that receive fewer up-
dates after backpropagation may be considered less impor-
tant [34]. Furthermore, a Hessian matrix approximated by
first-order derivatives can be utilized to assess channel im-
portance [37]. However, these methods typically have lim-
itations in that they determine importance from pre-trained
networks.

Regularization-based structured pruning appends regu-
larization loss during pruning to sparsify large networks.
Liu et al. [28] use ℓ1 regularization on the scaling factors in
batch normalization for network pruning. As this approach
can lead to overall weights being set to zero, causing per-
formance degradation, Zhuang et al. [47] introduce “polar-
ization” regularization to keep important weights intact.

There are several methods to indirectly apply regular-
ization for better information preservation. Lin et al. [26]
utilize detached soft mask from the network and apply ℓ1
regularization to it. In another approach, channel pruning
is achieved by employing regularization on an additional
convolutional layer [22]. Xiao et al. [44] utilize ℓ0 regu-
larization on auxiliary parameters for network pruning. By
using these indirect methods that involve regularization, it
becomes possible to perform recoverable channel selection
and to improve overall performance while mitigating the
loss of valuable information in the original network.

2.2. Reconfiguration after pruning

Modern networks include residual blocks which have
shortcut connections. These connections require an equal
number of input and output feature maps, as well as equal
indices. Given this requirement, careful selection of chan-
nels becomes crucial during reconfiguration after pruning.
If channels in the outer layers are pruned without consid-
ering matching feature maps, applying a union operation
can preserve network performance, but the network size is
increased [16, 32]. To avoid this problem, several meth-
ods [3,10,24,30,31] focus on pruning only the inner layers
of residual blocks. However, achieving an efficient network
without pruning outer layers remains challenging. As al-
ternatives to these methods, Wang et al. [42] compute the
average importance of outer layers to ensure equal scoring,
and Lin et al. [23] manually adjust the channels of outer
layers. In contrast to these approaches, our proposed SPM
automatically addresses this issue during the pruning and
reconfigures without increasing network size.

2.3. Pruning from scratch

To alleviate the computationally demanding nature of
pre-training over-parameterized networks, several methods
have been introduced to enable pruning from scratch. Fran-
kle and Carbin [4] involve training a neural network with
random initialization for a short period. After this ini-

tial training, they prune the network to create a smaller
sub-network. This pruned sub-network is then reinitialized
with its original random weights and fine-tuned. In Lee
et al. [18], important channels are determined by connec-
tion sensitivity, which is based on the impact of the net-
work’s output from the initial model. And then, they fine-
tune the sub-network as regular training. Similarly, in Wang
et al. [43], they prune a large network from scratch using
a pruning method similar to Liu et al. [28]. After reach-
ing the target network size, they train the sub-model. As
another aspect, Shen et al. [39] determine when to prune
based on sub-network similarity. If their sub-networks are
similar, they prune the network and fine-tune during rest
epochs. In these approaches, redundant channels are iden-
tified from an under-trained model allowing no opportunity
for those pruned channels to update again. Consequently,
this premature channel determination to prune can lead to
misidentifying channels and result in performance degrada-
tion.

3. Methods
We introduce a framework for pruning from scratch that

is free from pre-trained models. In particular, Shared prun-
ing module (SPM) is presented in Sec. 3.1 to consider chan-
nel alignment problem for reconfiguration without increas-
ing the network size. Then, we explain the proposed regu-
larization in Sec. 3.2, aimed at achieving a model with de-
sired computational cost while preserving the representabil-
ity of the original network.

3.1. Shared Pruning Module

In a network with L convolutional layers, the filters
of the l-th convolutional layer wl can be represented by
RCin×Cout×k×k, where k is the kernel size. Cin and Cout

are the number of input channels and output channels, re-
spectively. To reduce the size of the network, structured
pruning removes the filters that have less impact on net-
work performance. We apply the pruning module inspired
by previous works [21,22,44,45], as shown in Fig. 2 (c), to
automatically determine the criterion as below:

olc = (I(alc)⊙ wl
c) ∗ ol−1

c (1)

where ⊙ and ∗ are the element-wise multiplication and con-
volution operation, respectively. olc represents the c-th out-
put feature map of the l-th layer, wl

c denotes the c-th filter
of wl. I is a indicator function as follows:

I(alc) =

{
1, if alc > τ

0, otherwise.
(2)

alc is the pruning indicator for determining whether to re-
move the wl

c. The value of alc determined by the learning

1395

Figure 2. Illustratation of residual blocks applied with pruning methods and reconfiguration process. Light green and deep green convo-
lutional layers represent the inner and outer layers, respectively. (a) This is a part of a residual block in ResNet50. (b) PaS [22] applies
individual pruning modules (PM) to the outer layers, resulting in an increase in the non-masked channels of the feature map after reconfig-
uration. (c) Ours utilizes the Shared Pruning Module (SPM) to address the channel alignment problem, ensuring that the masked feature
map remains unchanged.

process can be represented as a binary mask through the
indicator function I, which have a value of 1 when above
the threshold τ and 0, otherwise. The mask is multiplied to
the wl

c, retaining the value of wl
c if the corresponding mask

value is 1, while pruning it if the mask value is 0.
Since Eq. (1) involves a binary operation, it is

non-differentiable, which presents challenges for back-
propagation. To solve this, straight through estimator (STE)
is used for back-propagation as below:

∂L
∂al

=
∂L

∂I(al)
(3)

where it allows for the direct passing of gradients from I(al)
to al, resulting in the update of the binary convolutional
layer. Therefore, the networks can be automatically pruned
without relying on heuristic criteria.

Modern networks often include residual blocks to im-
prove performance by mitigating the vanishing gradient
problem. As shown in Fig. 2 (a), the residual blocks are
typically stacked consecutively by:

ol+1 = f(ol) + rn(o
l). (4)

The function f corresponds to a 1 × 1 convolutional layer
used to match dimensions of output channels. Meanwhile,

1396

r(·) represents bottleneck layers within the residual blocks,
which comprise 1×1, 3×3, and 1×1 convolutional layers.
ol and ol+1 represent feature maps.

In Fig. 2 (b), the pruning modules are added individually
after all convolutional layers including the outer layers. Ad-
ditionally, there are stacked consecutive residual blocks. In
the case of the first residual block, the shortcut connection
operates as follows:

ol+1 = f(ol)⊙ ml + rn(o
l)⊙ml. (5)

The binary mask ml is created by the pruning module’s in-
dicator. As ml is applied to both the 1 × 1 convolutional
layer f and the output of bottleneck layers, the addition op-
eration is conducted using the same mask. Consequently,
the pruned channels of output feature map are not changed
after reconfiguration. However, it should be noted that the
residual blocks following the first one differ from the initial
block in this regard.

ol+2 = ol+1 ⊙ ml + rn+1(o
l+1)⊙ ml+1. (6)

In the subsequent shortcut connection operation as
shown in Eq. (6), the addition is performed using different
binary masks, namely ml and ml+1. These masks are ap-
plied to the respective layers before the addition operation
takes place. Since ml and ml+1 are generated by differ-
ent pruning indicators, they can have varying numbers of
masked channels or even different indices of masked chan-
nels. We call this the channel alignment problem. This
discrepancy in the binary masks can result in different sets
of channels being retained or pruned for each layer, poten-
tially leading to differences in the network’s architecture
and computation flow between the two layers involved in
the addition operation. To reconfigure the network using
these binary masks without any performance degradation, it
should apply a union operation to combine them. This can
be seen in the “Reconfiguration” part of Fig. 2 (b), where
the binary masks ml and ml+1 are merged using a union
operation [16,32]. It can remain all necessary channels, but
it can increase network size as decrease masked channels of
binary mask.

In this paper, we propose the Shared Pruning Module
(SPM) as an approach to automatically address the chal-
lenge of channel alignment, as shown in Fig. 2 (c). The
SPM is specifically designed to prune the outer layers,
which are involved addition operations. By leveraging a
shared pruning indicator, we ensure consistent pruning or
holding of channels participating in these operations. This
eliminates any mismatches or inconsistencies during the ad-
dition operation. Our approach based on the SPM provides
an effective solution for automating channel alignment and
achieving efficient reconfiguration in network architectures
with shortcut connections.

ol+2 = ol+1 ⊙ms + rn+1(o
l+1)⊙ms. (7)

In Eq. (7), the binary mask ms is generated by the SPM. The
pruned channels do not change after reconfiguration. Be-
cause the binary masks applied to the output feature maps
are the same. This allows for channel removal while main-
taining performance and without increasing network size.

3.2. Regularization for pruning from scratch

We introduce two regularization terms: Lmac and Lnuc

for achieving the desired compression ratio and preserving
the representability of the original network, respectively. To
achieve the target ratio by reducing computational complex-
ity of network, Lmac is calculated as follows:

Lmac =

∣∣∣∣∑
l

C ′
out × C ′

in ×Fh ×Fw × k2 − ζ

∣∣∣∣2 (8)

where C ′
out and C ′

in denote the number of pruned input
channels and output channels, respectively. Fh ×Fw is the
size of feature map, and ζ is the target MACs. It is defined
as the squared ℓ2 norm of the difference between current
and target MACs. However, when determining which chan-
nels to retain through the pruning module, it is necessary
to consider not only achieving the target ratio, but also im-
proving performance.

Derived from the inherent nature of pruning, which can
reduce the network’s capacity and lead to performance
degradation, we suggest maintaining network representabil-
ity layer by layer. In mathematics, rank can be used to
express representability, as it refers to the dimension of
the vector space that can be generated by a matrix. Us-
ing rank directly in a loss term may be challenging [40]
due to its limited range of expression as it can only be an
integer value. Instead, we use the nuclear norm, which pro-
vides a more flexible and continuous representation com-
pared to the discrete nature of rank, which is defined as the
ℓ1 norm of the singular values of a matrix. Nuclear norm
regularization differs from L1 or L2 regularization in that
it assesses the network’s representation capacity rather than
merely shrinking the weights.

The representability of the pruned layer can be obtained
by its weight as shown below:

pl = I(al)⊙ wl (9)

where pl denotes the pruned weight of l-th convolutional
layer.

I lp = ||pl||∗, (10)

I lo = ||wl||∗ (11)

1397

Methods PT MACs(M) Top-1 acc.(%)
ThiNet [31] Y 63.6 92.98
CP [11] Y 63.6 92.80
DCP [48] Y 63.6 93.49
AMC [9] Y 63.6 91.90
SFP [7] Y 63.6 93.35
Rethink [29] N 63.6 93.07
PfS [43] N 63.6 93.05
Ours N 63.2 93.50

Table 1. Results of ResNet56 on CIFAR10 dataset. “PT” repre-
sents requiring pre-trained network, and “Y” and “N” means yes
or no, respectively. “MACs” stands for the number of multiply and
add operation for network, and less is better.

where || ||∗ denotes nuclear norm. I lp and I lo denote the
representability of the pruned layer and the original layer,
respectively.

Lnuc =
∑
l

∣∣∣∣I lo − I lp

∣∣∣∣ (12)

where is defined as the sum of the ℓ1 norm, which reflects
the difference between the representability in the original
and pruned layers. By using Lnuc regualrization, we im-
prove the pruned network performance by minimizing rep-
resentability with original network. The final regularization
can be written as:

Lreg = αnucLnuc + αmacLmac (13)

where αnuc and αmac are scale factors. We integrate reg-
ularization with the classification loss to form the final loss
function. The final loss function is:

min
W,A

L(W,A) + Lreg. (14)

W is the parameters of network and A is the pruning indica-
tors. L(W,A) is a cross-entropy loss of the pruned network.

4. Experiments
We conduct experiments using ResNet [6] to show the

effectiveness of our method for the classification task. We
simply set a threshold of the pruning indicator, τ to 0.5.
To demonstrate the applicability across datasets of vary-
ing sizes, we use CIFAR10 [15] and ImageNet ILSVRC
2012 datasets [1]. All experiments are executed on PyTorch
framework using NVIDIA RTX A6000 GPUs. In order to
demonstrate the efficiency of the Shared Pruning Module
(SPM), we compare the MACs with PaS [22] after reconfig-
uration. We evaluate the impact of our nuclear norm-based
regularization by examining accuracy across various values
of αnuc and analyzing the effect on the architecture of the
pruned network.

Methods PT MACs(G) Top-1 acc. (%) Epochs
GAL [26] Y 2.3 72.0 150
Hrank [25] Y 2.3 75.0 570
SSS [13] N 2.3 71.8 100
Taylor [33] Y 2.2 74.5 -
C-SGD [2] Y 2.2 74.9 -
DSA [35] N 2.0 74.7 120
Hinge [20] Y 1.9 74.7 -
AdaptDCP [48] Y 1.9 75.2 210
SCP [14] N 1.9 75.3 200
PaS [22] Y 1.7 74.5 150
PaT [43] N 1.7 74.9 90
Ours N 1.7 75.3 90

Table 2. Results of ResNet50 on ImageNet dataset. ”Epochs”
represents the number of total epochs from randomly initialized
weights to finetune after pruning. “PT” and “MACs” have the
same meaning as stated in Tab. 1.

4.1. Results on CIRAR10

We experiment on the CIFAR10 dataset [15], which in-
cludes 50,000 training images and 10,000 test images across
10 classes. When performing pruning from a randomly ini-
tialized network on the CIFAR10 dataset, we use the SGD
optimizer with a batch size of 128. The learning rate is
warmed up linearly in the first 8 epochs, after which it fol-
lows a step scheduler with a division factor of 0.2 at epochs
60, 120, and 160. The network undergoes pruning and
fine-tuning all together for a total of 200 epochs, which is
consistent with the fine-tuning epochs used in other meth-
ods [8]. To be specific, we perform pruning for the initial
120 epochs, and then the network is fine-tuned for the re-
maining epochs.

Tab. 1 shows the top-1 accuracy of ResNet56 pruned by
pre-training required and pruning from scratch methods on
CIFAR10 dataset. Compared to the methods which requires
a pre-trained model, the proposed method achieves better
or similar performance with a smaller network size. In
addition, our framework outperforms recent pruning from
scratch methods by 0.43% in top-1 accuracy. These re-
sults demonstrate that our method can search the network
more effectively and yield greater expression capacity than
methods utilizing pre-trained networks. While other prun-
ing from scratch methods may be limited in their expression
capacity, our approach mitigates this limitation.

4.2. Results on ImageNet

ImageNet dataset [1] consists of 1.3M images across
1,000 classes. We employ the original training pipeline,
utilizing PyTorch mixed-precision training based on
DeepLearningExamples [36] with 90 epochs in total. An
individual batch size of 128 is assigned to each GPU with
using Distributed Data Parallel module. The learning rate is

1398

Figure 3. Loss change in pruning process. Red line denotes the
MACs-based regularization loss Lmac and blue line is the nu-
clear norm-based regularization loss Lnuc, respectively. Change
of MACs-based and nuclear norm-based regularization.

initially warmed up linearly during the first 8 epochs, and
then it follows a cosine decay throughout the entire process.
We prune network using our proposed regularization loss
for the first 60 epochs, followed by fine-tuning the pruned
network. In Tab. 2, our pruned network achieves remark-
able Top-1 accuracy while using fewer MACs and smaller
epochs compared to other pruning methods. It is worthy
note that the proposed method has fewer resources due to
avoidance of pre-training the large network.

4.3. Ablation study

Regularization Effects. In this section, we demonstrate
the impact of MACs and nuclear norm based regulariza-
tion by showing the loss of each term during the pruning
process in Fig. 3. Initially, the primary focus is on MACs-
based loss function to achieve the target MACs ratio. As the
pruned network approaches the target ratio, nuclear norm-
based loss becomes more dominant. This is because the
pruned network initially lacks representability compared to
its original network. The observation highlights that MACs-
based regularization has a significant impact at the initial
steps, while nuclear norm-based regularization contributes
to improving representability throughout the pruning pro-
cess.
Effects of Nuclear Norm Regularization. We demonstrate
the impact of Lnuc at various αnuc values on the perfor-
mance of the pruned network in Tab. 3. “Latency” is calcu-
lated as the average time required for processing one image,
with a batch size of 1 and using only one GPU. The original
network has 4.1G MACs. For fair comparison, we prune
the network to achieve the same MACs for all networks by
setting the same αmac. As a result, the pruned networks

αnuc Params MACs Latency Top-1 acc. (%)
0 16.3M

1.7G

8.34ms 74.4
0.0001 16.9M 8.50ms 74.5
0.0005 19.1M 8.74ms 74.9
0.001 19.2M 8.70ms 75.3

Table 3. Comparison of different αnuc under fixed αmac and
MACs. αmac and αnuc represent the weights of MACs-based and
nuclear norm-based regularizations, respectively. “Params” repre-
sents the number of parameters of pruned networks. αmac is set
to 0.5.

exhibit similar latency despite having different numbers of
parameters. When αnuc is set to zero, only MACs-based
regularization is applied during pruning. As we increase
αnuc, the performance improves gradually because it can
preserve more representability from the large network. This
shows that the regularization based on the nuclear norm has
a positive impact on the performance of the pruned network.
Additionally, when evaluated on a CPU, it resulted in only
about a 20% decrease in latency despite of 60% MACs re-
duction. This reduction in latency is not as much as the
decrease in MACs, mainly because of constraints related to
memory access time.

Fig. 4 provides an overview of the number of remaining
output channels in convolutional layers after pruning. The
green architecture represents the pruned network utilizing
only MACs-based regularization, while the blue architec-
ture incorporates nuclear norm-based regularization in ad-
dition. These two network architectures differ in terms of
the number of parameters, yet they have a similar MACs
size (1.7G), indicating comparable computational costs.

We can observe several features as follows. First, since
we utilize our proposed SPM, the number of remaining
channels in the outer layers of residual blocks is the same.
Therefore, we enable lossless performance after reconfigu-
ration without adding any computational complexity. Sec-
ond, when we add nuclear norm-based regularization loss
during pruning, pruned network has fewer channels in the
initial layers of the network than without this regulariza-
tion. Because the input feature maps of the initial layers are
larger than those of the deeper layers, they involve higher
computational complexity in terms of MACs, even though
they contain fewer parameters. Hence, by retaining fewer
channels in the initial layers, our method achieves an effi-
cient network in terms of MACs. Third, when we incorpo-
rate nuclear norm-based regularization loss during pruning,
it leads to fewer channels being pruned in the outer layers
of the network’s residual blocks. These outer layers are re-
peatedly employed in shortcut connections, making them
potentially more informative than the inner layers. There-
fore, our pruning method, which retains a greater number
of channels in the outer layers, contributes to preserving the

1399

Figure 4. Channel pruning results for ResNet50. Green bars represents the number of remaining channels after applying MACs-based
regularization alone, while blue bars represent the number of remaining channels after applying both MACs-based and nuclear norm-based
regularization. Hatched bars indicate the remaining channels in the outer layers, while plain bars represent the remaining channels in the
inner layers (excluding the first layer). The x-axis denotes the index of convolutional layers in ResNet50, and the y-axis represents the
number of remaining output channels.

Methods Before MACs After MACs Top-1 acc. (%)
PaS 1.7G 2.1G 74.5
PaS 1.4G 1.7G 74.1
Ours 1.7G 1.7G 75.3

Table 4. Comparison MACs with PaS: Before and After. Before
MACs and After MACs indicates calculated MACs from remained
channels in network and the MACs after reconfiguration for real
acceleration, respectively.

network’s representability.

Comparison of reconfiguration. To demonstrate the effec-
tiveness of our reconfiguration process, we reproduce the
pruning approach introduced in PaS [22]. Then, we calcu-
late the network’s MACs both before and after reconfigura-
tion and compare the results with our approach as shown in
Tab. 4. Because PaS individually applies the pruning mod-
ule to all convolution layers including the outer layers of
residual blocks, more channels of the outer layers should
be retained to preserve information [16, 32]. Therefore, the
MACs of PaS increase after reconfiguration to address the
channel alignment problem. However, our method not only
preserves MACs after reconfiguration due to the SPM, but
also achieves higher accuracy compared to networks of the
same size before reconfiguration. In case of the same MACs
after reconfiguration, the performance gap is larger up to
1.2%. This method has more practical computational com-
plexity for pruning network architecture by the SPM-based
reconfiguration scheme.

5. Conclusion

In this paper, we proposed a new framework for prun-
ing from scratch by considering the reconfiguration and en-
hancing the expression capacity. We introduced the Shared
Pruning Module (SPM) to automatically address the chan-
nel alignment problem that arises with outer layers. It keeps
the number of outer channels the same, enabling the recon-
figuration without increasing the model size. Additionally,
we presented MACs and nuclear norm based regulariza-
tion terms to achieve target MACs and enhance the rep-
resentability of the pruned network, respectively. Experi-
ments on CIFAR10 and ImageNet showed that our frame-
work achieved better performance at smaller model size
than previous methods that require pre-training or perform
pruning from scratch. It demonstrated that the proposed loss
function can effectively reduce the model complexity while
maintaining the performance. In addition, we validated that
our framework can reconfigure the model without increas-
ing the model size. In the future work, the generalizability
of our framework is investigated by applying to other learn-
ing tasks instead of image classification.

Acknowledgement

This work is supported by Institute of Information &
communications Technology Planning & Evaluation (IITP).
(No. 2020-0-01077 and No. 2021-0-02068)

1400

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6

[2] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong
Han. Centripetal sgd for pruning very deep convolutional
networks with complicated structure. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4943–4953, 2019. 6

[3] Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han,
and Chenggang Yan. Approximated oracle filter pruning for
destructive cnn width optimization. In International Confer-
ence on Machine Learning, pages 1607–1616. PMLR, 2019.
3

[4] Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural networks. In
7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. Open-
Review.net, 2019. 3

[5] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 1

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[7] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. In Proceedings of the Twenty-Seventh In-
ternational Joint Conference on Artificial Intelligence. Inter-
national Joint Conferences on Artificial Intelligence Organi-
zation, 2018. 6

[8] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. In Jérôme Lang, editor, Proceedings of the
Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Swe-
den, pages 2234–2240. ijcai.org, 2018. 6

[9] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and ac-
celeration on mobile devices. In Proceedings of the Euro-
pean conference on computer vision (ECCV), pages 784–
800, 2018. 6

[10] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi
Yang. Filter pruning via geometric median for deep con-
volutional neural networks acceleration. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4340–4349, 2019. 1, 2, 3

[11] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proceedings
of the IEEE international conference on computer vision,
pages 1389–1397, 2017. 6

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1

[13] Zehao Huang and Naiyan Wang. Data-driven sparse struc-
ture selection for deep neural networks. In Proceedings of
the European conference on computer vision (ECCV), pages
304–320, 2018. 6

[14] Minsoo Kang and Bohyung Han. Operation-aware soft chan-
nel pruning using differentiable masks. In International Con-
ference on Machine Learning, pages 5122–5131. PMLR,
2020. 6

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images, 2009. 6

[16] Donghyeon Lee, Eunho Lee, and Youngbae Hwang. Lossless
reconstruction of convolutional neural network for channel-
based network pruning. Sensors, 23(4):2102, 2023. 3, 5,
8

[17] Eunho Lee and Youngbae Hwang. Layer-wise network
compression using gaussian mixture model. Electronics,
10(1):72, 2021. 1

[18] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S.
Torr. Snip: single-shot network pruning based on connec-
tion sensitivity. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. 3

[19] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In
5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. 1, 2

[20] Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool,
and Radu Timofte. Group sparsity: The hinge between fil-
ter pruning and decomposition for network compression. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 8018–8027, 2020. 6

[21] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu
Timofte. Dhp: Differentiable meta pruning via hypernet-
works. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part VIII 16, pages 608–624. Springer, 2020. 3

[22] Yanyu Li, Pu Zhao, Geng Yuan, Xue Lin, Yanzhi Wang,
and Xin Chen. Pruning-as-search: Efficient neural archi-
tecture search via channel pruning and structural reparam-
eterization. In Lud De Raedt, editor, Proceedings of the
Thirty-First International Joint Conference on Artificial In-
telligence, IJCAI-22, pages 3236–3242. International Joint
Conferences on Artificial Intelligence Organization, 7 2022.
Main Track. 2, 3, 4, 6, 8

[23] Mingbao Lin, Liujuan Cao, Yuxin Zhang, Ling Shao, Chia-
Wen Lin, and Rongrong Ji. Pruning networks with cross-
layer ranking & k-reciprocal nearest filters. IEEE transac-
tions on neural networks and learning systems, 2022. 3

[24] Mingbao Lin, Rongrong Ji, Shaojie Li, Yan Wang, Yongjian
Wu, Feiyue Huang, and Qixiang Ye. Network pruning us-
ing adaptive exemplar filters. IEEE Transactions on Neural
Networks and Learning Systems, 33(12):7357–7366, 2021.
3

[25] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. In Proceedings

1401

of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1529–1538, 2020. 3, 6

[26] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,
Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-
mann. Towards optimal structured cnn pruning via genera-
tive adversarial learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 2790–2799, 2019. 3, 6

[27] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018. 1

[28] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2736–2744, 2017. 1, 3

[29] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
In International Conference on Learning Representations
(ICLR), 2019. 6

[30] Jian-Hao Luo and Jianxin Wu. Autopruner: An end-to-end
trainable filter pruning method for efficient deep model in-
ference. Pattern Recognition, 107:107461, 2020. 3

[31] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compression.
In Proceedings of the IEEE international conference on com-
puter vision, pages 5058–5066, 2017. 3, 6

[32] Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen,
Sujay Sanghavi, and Mattan Erez. Prunetrain: fast neural
network training by dynamic sparse model reconfiguration.
In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
pages 1–13, 2019. 3, 5, 8

[33] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Fro-
sio, and Jan Kautz. Importance estimation for neural net-
work pruning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 11264–
11272, 2019. 6

[34] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for re-
source efficient inference. arXiv preprint arXiv:1611.06440,
2016. 3

[35] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu
Wang, and Huazhong Yang. Dsa: More efficient budgeted
pruning via differentiable sparsity allocation. In European
Conference on Computer Vision, pages 592–607. Springer,
2020. 6

[36] NVIDIA. Deeplearningexamples, 2023. https://
github.com/NVIDIA/DeepLearningExamples. 6

[37] Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou
Huang. Collaborative channel pruning for deep networks.
In International Conference on Machine Learning, pages
5113–5122. PMLR, 2019. 3

[38] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 1

[39] Maying Shen, Pavlo Molchanov, Hongxu Yin, and Jose M
Alvarez. When to prune? a policy towards early struc-
tural pruning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12247–
12256, 2022. 3

[40] Yang Sui, Miao Yin, Yi Xie, Huy Phan, Saman
Aliari Zonouz, and Bo Yuan. Chip: Channel independence-
based pruning for compact neural networks. Advances in
Neural Information Processing Systems, 34:24604–24616,
2021. 2, 5

[41] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 1

[42] Wenxiao Wang, Cong Fu, Jishun Guo, Deng Cai, and Xiaofei
He. Cop: Customized deep model compression via regu-
larized correlation-based filter-level pruning. arXiv preprint
arXiv:1906.10337, 2019. 3

[43] Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang
Su, Bo Zhang, and Xiaolin Hu. Pruning from scratch. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 12273–12280, 2020. 3, 6

[44] Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. Au-
toprune: Automatic network pruning by regularizing auxil-
iary parameters. Advances in neural information processing
systems, 32, 2019. 3

[45] Changdi Yang, Pu Zhao, Yanyu Li, Wei Niu, Jiexiong Guan,
Hao Tang, Minghai Qin, Bin Ren, Xue Lin, and Yanzhi
Wang. Pruning parameterization with bi-level optimization
for efficient semantic segmentation on the edge. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15402–15412, 2023. 3

[46] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li,
Bing Deng, Jianqiang Huang, and Xian-sheng Hua. Quan-
tization networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7308–7316, 2019. 1

[47] Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng,
Kai Shuang, and Xiang Li. Neuron-level structured pruning
using polarization regularizer. Advances in neural informa-
tion processing systems, 33:9865–9877, 2020. 1, 3

[48] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.
Discrimination-aware channel pruning for deep neural net-
works. Advances in neural information processing systems,
31, 2018. 6

[49] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 1

1402

