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Figure 1. Illustration of results generated by our RADIO framework. Our method targets a one-shot audio-driven talking face
generation, where synchronized mouth shapes are generated while holding on to the identity of a single reference frame. Even with diverse
poses and expressions of reference frames, our method generates accurately synced lips robustly.

Abstract

One of the most challenging problems in audio-driven
talking head generation is achieving high-fidelity detail
while ensuring precise synchronization. Given only a single
reference image, extracting meaningful identity attributes
becomes even more challenging, often causing the network
to mirror the facial and lip structures too closely. To ad-
dress these issues, we introduce RADIO, a framework en-
gineered to yield high-quality dubbed videos regardless of
the pose or expression in reference images. The key is to
modulate the decoder layers using latent space composed
of audio and reference features. Additionally, we incorpo-
rate ViT blocks into the decoder to emphasize high-fidelity
details, especially in the lip region. Our experimental re-
sults demonstrate that RADIO displays high synchroniza-
tion without the loss of fidelity. Especially in harsh sce-
narios where the reference frame deviates significantly from
the ground truth, our method outperforms state-of-the-art
methods, highlighting its robustness.

1. Introduction

Talking head generation [4, 13, 41, 52, 60] has become a
focal point of research attention owing to its wide-ranging
applications in the media industry, e.g. virtual human ani-
mation, audio-visual dubbing, and video content creation.
Audio-driven talking face generation specifically aims to
produce high-quality videos that exhibit precise synchro-
nization with the driving audio. In particular, one-shot
audio-driven methods are designed to generate talking faces
of unseen speakers, given a single reference image.

However, it is challenging to consistently generate high-
quality synced faces, due to the risk of over-fitting to the
single image. In other words, previous methods face dif-
ficulties to generate mouth shapes and poses that deviate
from the source image. We observed that this problem can
be attributed to the susceptibility of previously proposed
frameworks to the choice of reference frame. Early meth-
ods directly incorporate the information of reference image
into the generator through skip-connections [9, 26, 40, 69].
These approaches constrain generated images to rarely di-
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verge from the input image. Deformation-based methods
[7,51,64,65,68,71] aim to adjust facial alignment based on
audio or target frames, but still struggles to generate real-
istic diverse poses. Significant changes in geometric priors
like mesh and landmarks, or latent space also introduce ar-
tifacts and distortions in the images [44, 45, 59, 64, 70].

Despite various efforts made by previous works, we ob-
served that there has been a limited exploration into sce-
narios where the dubbed video demands significantly dif-
ferent generated frames compared to the reference image in
terms of pose and mouth expression. In fact, this scenario is
the most frequently encountered in reality, as it is both in-
convenient and impractical to manually select the appropri-
ate reference frame. The key to consistently produce high-
quality dubbed video is to effectively and distinctly extract
the identity-related characteristics while eliminating unde-
sired elements such as pose, facial expression, and mouth
shape from the reference image.

To address this issue, we introduce RADIO - a method
for Reference-Agnostic Dubbing vIdeO generation. RA-
DIO aims to preserve high-fidelity details from the ref-
erence image and reduce sensitivity to the choice of the
reference image, all within a unified framework. Specifi-
cally, we adopt the decoder structure from StyleGAN2 [23],
and inject the reference frame information, i.e. style fea-
ture, through style-modulated convolution. Unlike previous
methods with style-based generators as backbone, we do
not inject the reference frame directly to the StyleGAN2
input [2, 59, 70]. While style modulation proves to be effi-
cient in capturing identity-related features and diminishing
structural reliance, it falls short in preserving high-fidelity
details. To capture the fine texture and characteristic de-
tails of the source image, we introduce Vision Transformer
(ViT) [12] within the intermediate decoder layers, preced-
ing the style modulation. With this simple framework, we
can produce talking faces in a more practical and challeng-
ing scenario where the reference face significantly differs
from the target face.

Our main contributions are summarized as follows:

• We propose a simple yet effective architecture that ex-
tracts relevant information from a single reference im-
age, thus able to create dubbing videos with improved
lip synchronization that is robust from the reference
pose or mouth shape.

• We improve fidelity preservation by incorporating
carefully designed vision transformer blocks in the de-
coder, which specifically focus on lip-oriented details.

• We thoroughly evaluate RADIO with qualitative and
quantitative experiments, and demonstrate its superi-
ority over existing state-of-the-art methods.

2. Related Works

2.1. Audio-Driven Talking Head Generation

The task of audio-driven talking head generation learns
to synthesize talking faces with lip movements synchro-
nized with the driving audio. Early 3D-structure-based
methods animate faces with 3D models such as meshes or
vertex coordinates [20, 46, 72]. Unfortunately, the require-
ment of 3D model training data for individuals limits its ap-
plication to animating general faces and struggles to repro-
duce teeth and hair details. In response to this challenge, re-
cent research has shifted towards directly animating raw 2D
images. 2D-based audio-driven works comprehensively fall
into two categories: generating talking faces in a speaker-
specific or a speaker-agnostic manner.
Speaker-specific methods. Personalized models generate
faces in a speaker-specific manner and require re-training
for an unseen identity [15,27,29,32,35,42,44,47,55,57,58].
Inspired by the development of neural rendering, recent
methods model facial details implicitly by the hidden space
of the neural radiance fields [36]. AD-NeRF [15] first
proposes end-to-end audio-driven neural radiance fields
for talking head generation. SSP-NeRF [32] introduces a
semantic-aware dynamic ray sampling module, and DFA-
NeRF [57] introduces two disentangled representations for
improvement of realistic dynamics. DFRF [42] reduces the
training speed via conditioning the face radiance field on 2D
appearance images. Nevertheless, the need for additional
training efforts and the capability of NeRF to generalize to
unfamiliar identities heavily restricts its applicability.
Speaker-agnostic methods. Speaker-agnostic methods
have gained popularity because they only require a single
image of the target identity to animate the face with driv-
ing audio. Methods that generate the whole head either
utilize warping techniques to drive the entire head move-
ments [7, 18, 19, 31, 51, 63, 65, 70, 71], or generate inverted
images via a well-trained encoder and a pre-trained face
generator [2, 37, 59]. The former approach has controlla-
bility over head motions; however, it comes at the expense
of fidelity degradation and artifacts due to the shifting of fa-
cial landmarks. The latter approach produces high-quality
images but carries the risk of generating images biased by
the pre-trained generators, leading to the potential leakage
of the identity information.

Methods that focus on mouth regions generate synchro-
nized lip movements with the pose fixed by the target image.
Inpainting-based methods [14,39,40,64,68] exhibit high ac-
curacy in synchronization and identity preservation. How-
ever, in a one-shot scenario where only a single reference
image is available, these models fail to preserve lip-oriented
high-fidelity details. Furthermore, in harsh cases where the
pose or expression of the reference image is significantly
dissimilar to the target image, previous methods fail to ro-
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Figure 2. Architecture of RADIO. Our framework is composed of residual block encoders and a StyleGAN-based decoder. Lower half-
masked target frames, reference frames, and mel-spectrograms are encoded by Ec, Es, and Ea, respectively. Basically, the generator G
follows style modulation of StyleGAN2. The content feature fc is fed to the generator G with residual mapping of the intermediate content
features from each block of Ec. fW is a concatenation of features fs and fa, and is mapped to each generator block as a W space for
style modulation. Inserted into the last two blocks of the generator, the ViT block receives the lower half of the fi(query), an intermediate
feature flowing through the generator layers, and the lower half of the f i

s (key, value), extracted from the front end of the style encoder
Es, with patch embedding and positional embedding. Finally, the output of ViT is re-concatenated with the upper half of the fi and passes
through the aforementioned style modulation layer. The final frames are the audio-driven high-fidelity results.

bustly generate accurate mouth shapes. Our method focuses
on extracting the high-fidelity identity information robustly
from a single image, without the guidance of additional ge-
ometric face priors.

2.2. Vision Transformer

The significant success of transformers [3, 50] in NLP
has motivated numerous endeavors to extend their ap-
plication to various vision tasks. Among them, Vision
Transformer (ViT) [12] has shown remarkable performance
across several discriminative tasks [6, 11, 25, 30, 33, 34, 38,
43, 49, 53, 56, 67]. Concurrently, recent efforts have also
emerged to explore the integration of ViT into generative
tasks. Several studies [28, 61, 66] have shown the compet-
itive nature of ViT-based architectures when compared to
CNN-based architectures [21–23] as the unconditional gen-
erator. Additionally, there have been attempts to utilize ViT
in image-to-image translation [24, 48]. InstaFormer [24]
leveraged ViT to capture the global consensus of a scene.
UVCGAN [48] utilized ViT to learn pairwise relationships
of low-frequency features. They commonly incorporate
self-attention modules at low-resolution layers to discover
the global information from a given image. On the other
hand, our approach adopts ViT to generate high-fidelity re-
sults by capturing global relationships across features from

different images in high-resolution layers.

3. Method
In this section, we propose RADIO, an efficient one-

shot audio-driven talking face architecture. Figure 2 shows
the overview of the architecture design. During the train-
ing phase, RADIO receives consecutive series of target
frames It ∈ RT×3×H×W , randomly chosen reference
frames Ir ∈ RT×3×H×W of a target speaker, and an audio
clip A aligned with the corresponding T frames as input.
Our framework can create high-quality talking head videos
Iout ∈ RT×3×H×W where the target face speaks with high
synchronization agnostic to the facial alignment of refer-
ence frame. T is the clip length and set to five, following
the training strategy in [40] for the usage of sync discrim-
inator [10]. Note that in the inference phase, only a single
target and reference frame are used as inputs, i.e. T=1. H
and W are the height and width of the frames, respectively.

3.1. Notation and Proposed Architecture

The proposed framework consists of four components:
(i) a content encoder Ec for extracting the structural details
of the target image, (ii) a style encoder Es for capturing the
visual attributes linked to the target identity, (iii) an audio
encoder Ea for extracting the per-frame audio feature, and
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at last (iv) a StyleGAN-based decoder G to generate images
that exhibits the transferred style of the reference frames
onto the target image.
Encoder. The content encoder Ec consists of L layers,
which are constructed using L − 2 residual down-blocks
along with two additional convolution blocks. The encoder
extracts the intermediate content features f i

c from each of
the layers, i ∈ 1, ..., L, later used for residual mapping to
the generator G. The final content feature fc ∈ R12×12×512

is used as an input of the decoder.
The structure of the style encoder Es is similar to that

of Ec. It is comprised of L layers, each producing inter-
mediate style features f i

s, i ∈ 1, ..., L. Note that Es has
an additional fully-connected layer to yield a sparse feature
fs ∈ R512 of the reference image. We make the reference
feature sparse, ensuring that the generator solely captures
the broad attributes of the reference image while disregard-
ing its finer structural details.

The audio encoder Ea receives mel-spectrogram A as in-
put. We use the self-attentive pooling layer introduced in [5]
to focus on important frame-level features. The final audio
feature fa ∈ R512 is concatenated with the style feature fs
to formulate fW = {fs, fa} ∈ R1024 as the W space for
the style mapping to the generator layers.
Decoder. The overall structure of the decoder follows the
StyleGAN2 [23], with L hierarchical layers. With the con-
tent feature fc as input and fW to modulate the convolution
kernel weights of the generator, the decoder generates faces
dubbed with the guidance of style and audio features upon
the target image. Previous one-shot audio-driven works that
utilize direct skip connections [40] have higher reliance to
the structural information, like the poses and mouth shapes,
of the reference image. That is, with a reference image with
a dissimilar pose of the target image or ground truth mouth
shape, the model struggles to generate high-fidelity results.
Instead, we employ style modulation to convey the identity
information, which eventually helps the robustness of dis-
tinct poses and mouth shapes from the reference images.
We present empirical results in Section 4.4 to demonstrate
that style modulation of reference image is more effective
than skip-connections or direct input injections for high-
quality lip-sync generation.

3.2. Design of Vision Transformer Blocks

With the sparse feature of the reference image delivered
to the decoder, it is insufficient to reconstruct high-fidelity
details of the target identity. As a solution, we incorpo-
rate Vision Transformer (ViT) [12] to restore these intricate
details. We adopted the attention mechanism of ViT to un-
derstand the meaningful patterns and relationships between
global image patches. With the aid of global attention, our
framework is able to focus on lip-oriented regions even for
misaligned reference frames compared to the target.

The ViT blocks are strategically designed to focus on the
lip regions, which in our scenario corresponds to the lower
half of the image. ViT blocks are attached into the final two
layers, namely the L−1 and L-th layers, of the decoder. We
empirically found that attention in the final two layers were
the most efficient and effective (see experimental results in
the supplementary material). The lower half of the interme-
diate feature of the decoder fL−i

d , is used as the query (Q).
The lower half of the intermediate style feature f i

s is used as
the key (K) and value (V ). We first compute the attention
output with the following equation :

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
· V, (1)

where Q,K, V are each the output of layer normalization
over corresponding features, and dk is the dimension of the
key vector. The attention output is then added to the the
intermediate features. We used eight multi-heads to con-
cat the attention score, and linearly transformed them with
multi-level perceptron (MLP) layers to produce the final at-
tention layer. Finally, The output of the ViT block is con-
catenated with the upper half of the intermediate feature
fL−i
d , then passed to the style modulation layer.

The patch size of ViT block is empirically set to Hi

32 ×
Wi

32
for the i-th intermediate features layers. The ViT blocks
consist of two attention layers, resulting in a total of four at-
tention layers considering the entire architecture. We name
each of these layers Attij , where i ∈ {L − 1, L} and
j ∈ {1, 2}.

3.3. Loss Function

In the training phase, we use five consecutive target
frames aligned with the audio clip, while the reference
frames are randomly chosen . We use the following training
objectives to enhance image quality and synchronization ac-
curacy.
Reconstruction Loss. The reconstruction loss Lrec is com-
posed of an L1 pixel loss and a perceptual loss:

Lrec = ∥It − Iout∥1 +
L∑

i=1

λi∥ϕi(It)− ϕi(Iout)∥1, (2)

where ϕi is the i-th layer of the VGG network and L is the
number of VGG layers. We use different weight λi for each
layer, increasing for deeper layers.
GAN Loss. To maintain high fidelity of the generated im-
age, we use adversarial loss Ladv commonly used in gener-
ative networks:

Ladv = E [log(1 + exp(D(Iout)) + log(1 + exp(−D(It))] ,
(3)

where D is the StyleGAN2 [23] discriminator, trained
jointly with our generator.
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Figure 3. Qualitative comparison with baselines. We visualized the dubbed results for five adjacent frames from the HDTF (left) and
VoxCeleb2 (right) dataset, and zoomed-in images of the mouth region for the closer inspection. The reference frame for HDTF clip was a
frontalized face with closed mouth, and the reference frame for VoxCeleb2 was a face facing the left side. Our method showed the highest
fidelity and accurately synced results, agnostic to the reference image.

Sync Loss. Following [40], we additionally train a gray-
scale sync discriminator S, consisting of a vision encoder
Sv and audio encoder Sa. The encoder architecture fol-
lows [8] with self-attention pooling after ResNet layers.
The details of our modified sync discriminator architecture
can be found in the supplementary material. The sync dis-
criminator is trained with a binary-cross entropy loss (eq.
5) to increase the cosine similarity (eq. 4) of the vision and
audio features of five consecutive frames that are in-sync
(yi = 1), while pursuing the opposite for frames that are
off-sync (yi = 0).

pi(I, A) =
Sv(Ii−2:i+2)

T · Sa(Ai−2:i+2)

∥Sv(Ii−2:i+2)∥ · ∥Sa(Ai−2:i+2)∥
, (4)

Lsync = −E [yi log(pi) + (1− yi) log(1− pi)] . (5)

During training the RADIO framework, we fix the
weights of the pre-trained sync discriminator, and enhance
the synchronization quality by the same sync-loss.

The overall training loss is formulated as follows:

Ltotal = Lrec + λadvLadv + λsLsync, (6)

where λadv and λsync are balancing weights.

4. Experiments
4.1. Experimental Settings

Datasets and Preprocessing. We trained our RADIO and
sync-discriminator with LRW [17] dataset, a commonly
used audio-visual dataset with 1,000 utterances of 500 dif-
ferent words. For evaluation, we used 50 randomly selected
videos from HDTF [65] and VoxCeleb2 [16] datasets. The
HDTF dataset primarily consists of videos with frontalized
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HDTF VoxCeleb2
Methods PSNR↑ MS-SSIM↑ LPIPS↓ Sync-C↑/D↓ LMD↓ PSNR↑ MS-SSIM↑ LPIPS↓ Sync-C↑/D↓ LMD↓

GT 100.0 1.0 0.0 8.716*/6.853* 0.0 100.0 1.0 0.0 6.363*/8.014* 0.0

ATVGNet [7] 30.101 0.780 0.170 6.422/8.640 9.893 29.555 0.716 0.194 5.203/9.087 11.454
MakeItTalk [71] 29.230 0.646 0.232 5.226/9.784 10.963 29.066 0.619 0.233 4.472/9.759 12.415
PC-AVS [70] 29.667 0.730 0.173 9.060/6.461 10.305 28.997 0.687 0.210 7.179/7.413 11.773
Wav2Lip [40] 30.645 0.818 0.135 9.918/6.105 7.882 30.487 0.791 0.146 7.397/6.105 7.913
DINet [64] 30.892 0.858 0.088 7.969/7.372 7.632 30.077 0.766 0.145 5.466/8.682 8.781
IP-LAP [68] 32.111 0.902 0.068 7.072/8.075 7.702 31.395 0.844 0.106 4.942/8.765 8.589
RADIO 33.939 0.909 0.058 8.310*/7.038* 7.235 32.804 0.896 0.073 6.671*/7.856* 7.544

Table 1. Quantitative comparison of baselines. We measured the perceptual and lip-sync quality for baselines in HDTF and VoxCeleb2
datasets. We denote the best scores in bold, second-best underlined, and the closest Sync-C/D scores to the ground truth with * mark.

head poses, and VoxCeleb2 consists of videos with a wide
range of head poses. All videos are resampled to a frame
rate of 25 FPS.

For the image preprocessing, we first detected faces and
cropped the images with FFHQ-alignment [22], then re-
sized them to resolution 192 × 192. This alignment crop
contains the whole lower half of faces, with both the mouth
and nose vertically positioned at the center. We used L = 6
layers for all encoders and decoder to match the resolution.
For the audio preprocessing, we first converted audios to a
sample rate of 16 kHz, then extracted mel-spectrograms us-
ing FFT window size 1,280, a hop length of 160, and 80
mel filter-banks.
Baselines. We compared our methods with person-
agnostic talking face methods, including recent meth-
ods that claim to be state-of-the-art. The baselines in-
clude ATVGNet [7], MakeItTalk [71], PC-AVS [70],
Wav2Lip [40], DINet [64], and IP-LAP [68]. Note that
the first three methods generate the entire head driven by
the audio, so the alignment of synthesized faces differs from
the ground truth. The last three and RADIO correspond
to inpainting-based methods, with slightly different masked
regions around the mouth. DINet [64] and IP-LAP [68]
authors used multiple reference frames for better grasp of
identity. For a fair comparison, all baselines used only the
first frame of the video as an identity reference.

4.2. Qualitative Evaluation

Figure 3 shows the qualitative comparisons for an exam-
ple clip of five adjacent frames. Specifically, for HDTF [65]
video clip on the left, generated images should resemble
ground truth frames with widely opening mouths, given a
source face image with a closed mouth. For VoxCeleb2 [16]
video clip on the right, methods should generate realistic
faces tilted rightwards, given a source face image facing
the left. Except for ATVGNet [7], we aligned all generated
frames using FFHQ alignment for clear comparison.

In comparison to other methods, our approach gener-

ated faces that closely resemble the ground truth in terms
of visual fidelity and lip synchronization. Methods that
synthesize the whole head [7, 70, 71] showed poor iden-
tity preservation and the alignment highly deviated from the
ground truth due to the missing resource to drive the pose.
Wav2Lip [40] generated blurry lower faces with indistinct
mouth attributes. DINet [64] and IP-LAP [68] showed poor
performance, with the generated lip regions more closely
resembling the source image than the ground truth. IP-LAP
failed to generate open lips throughout the whole video, and
created artifacts for deviating pose alignments, e.g. seventh
row. More qualitative comparisons for challenging scenar-
ios are provided in the supplementary material.
Experiments for Robustness. In this section, we explore
the robustness of our method by dubbing the same target
frames with various reference images. Figure 4 shows gen-
erated images of RADIO using three different reference im-
ages. Specifically, each reference image are facing the front
(A), the right with a closed lip (B), and the left with an open
lip (C). An ideal scenario is to consistently generate accu-
rate lips regardless of the varying pose and mouth shapes.
Remarkably, our method demonstrated almost zero sensi-
tivity to the reference image, as evidenced by the dubbed
results. The synthesized images also closely resembled the
ground truth, with nearly identical mouth shapes. With this
guarantee of robustness, RADIO can be used without the
need for additional reference frame selection processes.

4.3. Quantitative Evaluation

We evaluated methods with the following metrics to
measure the reconstruction and lip synchronization quality.
PSNR, MS-SSIM [54] and LPIPS [62] measure the pixel-
wise and feature-wise similarity between generated and
ground truth images. The SyncNet [10] confidence score
Sync-C and distance score Sync-D measure the audio-
visual synchronization quality. We used the officially re-
leased version of SyncNet* [10] for a fair comparison. Lip

*https://github.com/joonson/syncnet_python
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landmark distance (LMD) measures the normalized land-
mark distance of the mouth between generated and ground-
truth images for lip synchronization evaluation.

Evaluating raw images with metrics designed for recon-
struction quality would be unfair due to the varying sizes
of the generation regions across different methods, e.g.,
DINet [64] synthesizes only the small region around the
mouth using its own cropping algorithm, Wav2Lip [40] in-
paints the lower half of the tightly cropped face, and RA-
DIO inpaints the lower half of the FFHQ aligned face which
includes more background for generation. Since the final
dubbed videos only need the tightly zoomed face to be at-
tached, we employed a cropping method that zooms in on
the faces with the same ratio and then resized them to the
same resolution for evaluation. Please refer to the supple-
mentary material for details on the cropping method.

Table 1 shows the quantitative comparison between com-
peting methods. Our proposed method achieved the best
performance on all visual quality metrics (PSNR, MS-
SSIM, LPIPS). While IP-LAP [68] generated compara-
ble visual quality synthesizing talking face to ours, it fell
short in audio-visual synchronization, such as Sync-C/D
and LMD. The reason for this is that IP-LAP focuses on
the personalized facial traits and only uses landmarks pri-
ors for lip synchronization, which can be quite inaccurate
from a single image. Regarding audio-visual synchroniza-
tion, our method performed the best on LMD. Although
Wav2Lip [40] performed the best on Sync-C/D, this result
may be attributed its use of SyncNet, which was pre-trained
on the same LRS2 [1] dataset as the official SyncNet used
for our evaluation. PC-AVS [70] also achieved high Sync-
C/D scores, but generated jerky lip movements to match the
audio, which degraded the LMD scores. While our method
demonstrated the third-best performance on Sync-C/D, it’s
noteworthy that this score is the closest to the ground truth.
RADIO generated the most synchronized natural lip move-
ments, as supported by qualitative results. Compared to
baselines, RADIO is the only method that can robustly de-
liver both fidelity preservation and synchronization.

4.4. Ablation Study of ViT blocks

In this section, we first analyzed the ViT blocks via visu-
alizing the attention map. Then, we demonstrated the effec-
tiveness of our ViT design with a thorough ablation study.
Attention Visualization. Figure 5 displays the attention
map, which highlights the important region in the reference
image for each corresponding patch of the synthesized im-
age. Arbitrary identity is presented on the first column in
each row. For each row, the patch location is illustrated
with green on the generated images in the upper half, and
the reference image with the corresponding attention map
in the lower half. In particular, we visualized the attention
map of Att5,2, which is located in the second layer of the

A

B

C

Ground
Truth

Reference

Figure 4. Qualitative validation of the robustness of RADIO.
Our method consistently produced accurately dubbed videos,
showcasing its robustness in generating lip-synchronized content
regardless of the variations in the reference frames.

attention block in the fifth decoder layer. The attention map
of ViT block in the last decoder layer is also visualized in
the supplementary material.

Even with differently synthesized mouth shapes com-
pared to the reference image, patches near the mouth suc-
cessfully attended to important features like cheeks and
similar locations of the mouth, as seen in the second and
third columns. In contrast, patches unrelated to mouth
details primarily focused their attention on correspond-
ing regions on the reference face, with less attention di-
rected towards the mouth, as evident in the fourth and fifth
columns. This phenomenon showed that our proposed ViT
block leverages its global context understanding and se-
mantic knowledge to successfully focus on lip-oriented de-
tails. With the capacity of ViT blocks to substantially guide
global attention, RADIO can generate high-fidelity talking
faces, even with misaligned reference frames.
Ablation Study. We further conducted ablation studies to
validate the effectiveness of our proposed framework. In
Table 2, we quantitatively compared the performance while
changing each component we proposed, evaluated on the
LRW [17] validation dataset. We used PSNR and LPIPS
to assess the perceptual quality compared to the ground
truth. For assessing lip-sync accuracy, we calculated the
similarity score between audio and visual SyncNet features
(eq. 4), employing our SyncNet pre-trained on the LRW
train dataset. In this comparison, all models were trained
for 210K iterations with a batch size of 16, with resolution
scaled down to 96× 96 for the sake of resource efficiency.

We added up different parts of our model starting from a
baseline (A), which directly injects the reference frame in-
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Figure 5. Analysis of ViT Blocks. For three different identities,
we visualized the green patches on generated frames (upper half)
with the attention map on reference frames (lower half). Our well-
trained attention layer consistently focused on the globally rele-
vant region of the reference frame for each local patch.

formation to the decoder consisting of no ViT blocks. In this
configuration, the model takes concatenated target and ref-
erence frames as input to the visual encoder, following the
input design of Wav2Lip [40]. Instead of learning identity
via style modulated convolution, the baseline uses the ref-
erence feature as input to the decoder, with decoder layers
only modulated by the audio feature, i.e. fW = fa ∈ R512.
Quantitative results show that the generated images become
more susceptible to the influence of the reference frame,
thereby compromising the synchronization quality.

Method B separates the reference and target frames us-
ing individual encoders, specifically the style encoder and
content encoder. Then it utilizes the style feature fs to com-
pose the latent space for style modulation, along with the
audio feature, i.e. fW = {fa, fs} ∈ R1024. In this regime,
the model captures less structural information from the ref-
erence frame, which enables it to improve synchronization
quality by reducing its dependence on the source mouth
shape. Method C builds upon method B by incorporating
a fidelity mapping via a straightforward addition adding the
lower half of reference frame features to the intermediate
decoder layers, i.e., fL−i

d + f i
s. Even with this naı̈ve skip-

connection of reference frame, we observe improvements
across perceptual evaluation metrics. However, this simple
integration eventually degraded the synchronization quality,
because of its sensitivity to the reference frame.

Method D, our RADIO framework, attached ViT blocks
into the decoder layers to selectively extract high-fidelity
details necessary for generating synchronized mouth move-
ments. With the combination of modulated convolution
via style features and fidelity mapping via ViT, our frame-
work earned the most gain compared to the baseline model.
This configuration demonstrated the best quantitative per-

Method PSNR↑ LPIPS↓ Sync↑

A Baseline 32.672 0.040 0.520

B + Style modulation 33.089 0.072 0.576
C + Fidelity mapping w/o ViT 34.493 0.037 0.554
D + Fidelity mapping w/ ViT 34.938 0.031 0.609

Table 2. Ablation study with quantitative evaluation on
LRW [17]. We varied the latent space for modulated convolution
and the method for fidelity mapping. Our framework (D) achieved
the most improvement compared to the baseline.

formance by simultaneously learning high-fidelity details
and maintaining high synchronization.

5. Conclusion

In this paper, we presented an efficient framework that
generates accurately dubbed faces with lip-oriented details
preserved from a single source image. Our work especially
standed out in the challenging yet under-investigated sce-
nario where the face orientation and lip shape between the
source and target frames are significantly different. RADIO
adapts to the identity of a person via StyleGAN2 style mod-
ulation, whilst reducing the reliance on facial alignment.
With the aid of ViT blocks, RADIO is finally able to syn-
thesize faces with high-fidelity details by focusing on the
important facial attributes of the reference image. Through
extensive experimentations, our method has demonstrated
its unique capability to consistently generate high-fidelity
videos while maintaining precise lip synchronization. This
achievement establishes it as the new state-of-the-art in the
field of one-shot audio-driven talking face generation. Con-
sidering the simplicity and practical applicability of our
framework, we look forward to wide usage in future work.
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