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Abstract

Recently, the vision transformer (ViT) has achieved re-
markable performance in computer vision tasks and has
been actively utilized in colorization. Vision transformer
uses multi-head self attention to effectively propagate user
hints to distant relevant areas in the image. However, de-
spite the success of vision transformers in colorizing the im-
age, heavy underlying ViT architecture and the large com-
putational cost hinder active real-time user interaction for
colorization applications. Several research removed redun-
dant image patches to reduce the computational cost of ViT
in image classification tasks. However, the existing efficient
ViT methods cause severe performance degradation in col-
orization task since it completely removes the redundant
patches. Thus, we propose a novel efficient ViT architec-
ture for real-time interactive colorization, AdaColViT de-
termines which redundant image patches and layers to re-
duce in the ViT. Unlike existing methods, our novel prun-
ing method alleviates performance drop and flexibly allo-
cates computational resources of input samples, effectively
achieving actual acceleration. In addition, we demonstrate
through extensive experiments on ImageNet-ctest10k, Ox-
ford 102flowers, and CUB-200 datasets that our method
outperforms the baseline methods.

1. Introduction

Despite the difficulty of colorization due to the require-
ment of a semantic understanding of the scenery and nat-
ural colors that dwell in the wild, various user-guided im-
age colorization methods have shown remarkable results
in restoring grayscale photographs as well as black and
white films. Among the user-guided colorization, the point-
interactive colorization methods [12,27,36] help users with
user-guided hints to assist in colorizing an image, while
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Figure 1. The overview of AdaColViT , which adaptively reduces
the computational cost of less informative patches and layers of
vision transformer based on the difficulty of input image.

minimizing interaction with users. In particular, [36] pro-
posed a colorization method with U-net architecture trained
on ImageNet [3] and training with synthetically generated
user hints through 2-D Gaussian sampling. However, prior
works suffer from partial colorization, where the unclear
boundary of images is not colored successfully. Further-
more, failure in consistent colorization comes from the dif-
ficulty of propagating hints to large and distant semantic re-
gions. In order to tackle this problem, [33] leverages the ar-
chitecture of vision transformers (ViT), allowing the model
to learn to propagate the user hints to other distant and sim-
ilar regions with self-attention. Despite the exceptional per-
formance of ViT in colorization applications, transformer-
based models contain redundant computations resulting in
slow inference speed. This problem limits users’ active in-
teractions on a variety of real-time colorization applica-
tions.

In order to reduce the computational cost of the vi-
sion transformers, efficient vision transformers are utilized
for colorization. Existing efficient ViT [18, 20, 28] uses a
small number of informative patches to reduce computa-
tional cost. It uses more patches for complex images with

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

484



cluttered backgrounds or ambiguous objects and less to-
kens for simple images with plain backgrounds or clear ob-
jects on image classification tasks. Comparing the (b), (c),
and (d) diagrams in Figure 2, we can see that the ViT-tiny
model is sufficient to restore the plain background. There-
fore, the existing Efficient ViT research that removes the
unimportant image patches can be applied to the coloriza-
tion tasks. However, existing efficient ViT causes a seri-
ous performance drop when applied to the colorization task
since it completely removes the image patches of ViT. To
address this issue, we propose a novel flexible end-to-end
framework AdaColViT, the real-time interactive coloriza-
tion ViT that softly removes the image patches according
to the input samples. Unlike simply removing entire im-
age patches or ViT blocks, our proposed approach leverages
a decision network to effectively identify redundant im-
age patches and layers within the transformer. This allows
for precise removal of solely redundant components within
the network. It is important to note that previous pruning
methods’ complete removal of image patches and attention
heads contrasts with our method’s soft removal approach.
As shown in Figure 1, Our proposed framework effectively
utilizes a decision network to determine which redundant
image patches and layers to reduce in the transformer. In
particular, we adapt Gumbel-Softmax trick [17] to enable
backpropagation in the training process since the binary
decisions from decision network are non-differentiable. In
addition, we conduct extensive experiments on ImageNet-
ctest10k to validate the effectiveness of AdaColViT and
demonstrate that our framework outperforms the baseline
methodology. Moreover, our visualization result illustrates
whether computational resources are effectively allocated
based on the easy and hard samples.

The main contributions of our work are summarized as
follows:

• We propose AdaColViT, a flexible real-time user inter-
active colorization model, which input-adaptively al-
locates computational cost based on the easy and hard
samples.

• We propose novel pruning method with a trainable
decision network. Our decision network determines
which redundant image patches and layers of the trans-
former to prune or retain to achieve efficiency and
real-time colorization needs without significant perfor-
mance drop.

• Through extensive quantitative experiments and quali-
tative analysis, we demonstrate that our model outper-
forms the existing point-interactive colorization with
vision transformer with improved inference speed.

Figure 2. Figures (b), (c), and (d) show the channel-wise mean of
the absolute difference of Igt, IpredV iT−tiny and IpredV iT−small with
RGB 3 channels, respectively.

2. Related Work

Interactive Colorization. Learning-based colorization
methods do not require user interaction to generate ade-
quate color images, while interactive methods require user-
provided conditions to produce specified colored images.
Reference-based colorization is one of the most popular in-
teractive methods, which uses single reference images to
provide overall color information [1, 5, 34]. However, since
the colorized image is highly dependent on a reference im-
age, it is challenging for the user to modify particular re-
gions in the colorized image.

Moreover, the point-interactive colorization model [21,
30,36] enables users to provide precise 2× 2 ∼ 7× 7 color
hints on particular input image regions to cover small re-
gions of the full image, raising the importance of minimal
user effort. Previous works detected simple patterns with
image filters that determine the propagation portion of each
hint, which is propagated within the region by optimization
methods [12, 27]. In contrast to the previous convolution-
based technique in image synthesis, recent prior works uti-
lized transformers [7, 9, 10, 29] to automatically colorize
images. [10] proposed Colorization Transformer (ColTran)
based on Axial Transformer [6] self-attention to uncondi-
tionally generate coarse low-resolution grayscale image and
use color and spatial upsampler to produce high resolution
colorized image. Also, hybrid transformer architectures are
also proposed in colorization. [9] used transformer-based
encoder and color memory decoder to obtain contextual
semantics and color diversity, [7] uses BERT-style hybrid
transformer that utilizes input masked color tokens to re-
store the masked tokens via training on grayscale image.
Also, [33] uses the Vision Transformer as a backbone and
effectively upsampling the image through the local sta-
bilizing layer. However, despite the superior performance
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Figure 3. Overview of our proposed colorization pipeline. The main idea of our work is to use a decision network that uses a policy token
in making a binary decision to dynamically skip or retain the attention layer in ViT. And, the output of transformer blocks are upsampled
via pixel shuffling.

of transformer-based colorization methods, deeply stacked
transformer layers are computationally expensive to use in
user-interactive applications.

Adaptive Inference in Vision Transformer. Pruning meth-
ods have demonstrated considerable performance in reduc-
ing model redundancy, while enhancing inference speed.
In contrast to static pruning methods, adaptive inference
method has demonstrated acceleration in transformer-based
models [2, 13, 18, 24, 28, 31]. A-ViT [28] and Dynam-
icViT [20] reduced the redundancy of the model by remov-
ing redundant image patches of each input, while AdaViT
removed image patches, attention heads, and blocks. How-
ever, it is not appropriate to apply the existing methods
to image colorization tasks, since most of the previous
research completely removes the image patches of ViT.
Therefore, we propose a novel adaptive image colorization
method that softly removes image patches without the per-
formance degradation.

3. Method

In this work, we propose AdaColViT, an adaptive user-
interactive colorization framework to reduce the computa-
tional cost of vision Given an input sample, AdaColViT is
trained to satisfy the reconstruct error, and obtain desirable
computational cost at the same time. An overview of our
method is presented in Figure 3.

3.1. Preliminaries

We adopt vision transformer architecture to propagate
user hints. Given a colored train image Ic ∈ RH×W×3,
we convert the colored image to grayscale image, Ig ∈
RH×W×1, by changing RGB color space to CIELab color
space and extracting perceptual lightness value L. We gen-
erate user hints Ihint ∈ RH×W×3 through masking the
non-hint regions with 0 for a, b channels. Ihint consists of
ab channel and the mask channel that represents user hints
where hint-regions have values of 1 and non-hint regions
have values of 0. During training, we simulate user hints by
determining the hint’s location and its corresponding color.
Hints are sampled from uniform distribution, as users may
provide hints anywhere within the image. The color of user
hint is selected via taking the average color values for each
channel in adjacent to the hint region. Hence, the final input
X ∈ RH×W×4 is obtained by concatenating grayscale im-
age Ig and hint input Ihint. This final input is divided into
patches Xp that is fed into transformer encoder. The equa-
tion of obtained input X is defined as follows:

X = Ig ⊕ Ihint, (1)

where ⊕ is channel-wise concatenation.
The vision transformer [4, 22, 23, 32] takes sliced image

patches as input and consists of self-attention layers and
a feed-forward network. As patch embedding of ViT, the
model gets a sequence of embedded tokens Z ∈ R(N+1)×C

as input I , where N and C denote the sequence length and
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Figure 4. Experimental results of user-guided colorization methods demonstrating the performance (PSNR, LPIPS) with different FLOPs.
The result shows the performance of each method according to the number of hints. In particular, the group was set to 2 in AdaColViT.

embedding dimension, respectively. Also, the policy token
Zpolicy ∈ R1×C is propagated as an input to the decision
network and is included in Z. The input of the model can
be demonstrated as follows:

Z = [Zpolicy;Z1;Z2; ...;ZN ] + Epos, (2)

where Epos represents positional encoding matrix. The
single-head attention containing query, key, and value pro-
jected from the same input can be computed as below:

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V, (3)

Multi-head self-attention (MSA) concatenates the output
from numerous single-head attentions and projects it with
another parameter matrix to focus attention more efficiently
on various representation subspaces:

headi,l = Attn(ZlW
Q
i,l, ZlW

K
i,l , ZlW

V
i,l), (4)

MSA(Zl) = Concat(head1,l, ..., headH,l)W
O
l , (5)

where Zl stands for the input at the lth block and
WQ

i,l,W
K
i,l ,W

V
i,l, and WO

l are the parameter matrices in the
ith attention head of the lth transformer block. The output
of the MSA is fed into FFN, a two-layer MLP, to create the
output of the transformer block Zl+1. Residual connections
are applied to MSA and FFN as follows:

Z ′
l = MSA(Zl) + Zl, Zl+1 = FFN(Z ′

l) + Z ′
l . (6)

Using the policy token from the previous transformer
block (Z0

L) as inputs, a linear layer generates the final
prediction. By rearranging a (H/P, W/P, C×P2) feature map
into the shape of (H, W, C), we use pixel shuffling, an
upsampling technique, to create a full-resolution image.

3.2. Decision Network

Each of the decision network at lth attention layer and
FFN layer consists of linear layer with parameter W p

l to
produce usage policies for patch selection. Moreover, the
decision network at lth transformer block consists of linear
layer with parameter W b

l to produce usage policies for layer
selection.

Giving the input Zl and Z ′
l to lth attention layer and FFN

layer respectively, the usage policy matrices for this block
is computed as follows:

(mp
l ,m

b
l ) = (W p

l Zl,W
b
l Zl). (7)

where mp
l and mb

l denote the usage policies of image
patches and transformer block, respectively. mp

l and mb
l

passed through a sigmoid function, indicate the probability
of keeping the corresponding input patch and block of the
transformer, respectively. Thus, we define Mp

l and M b
l to

make decisions by sampling from mp
l and mb

l . In addition,
since the binary decisions are non-differentiable, we adopt
a Gumbel-Softmax trick [17] to enable backpropagation.

Patch selection module. The decision network distin-
guishes between less and more informative patches when
inputs are fed to the attention layer and the FFN layer.
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Figure 5. Qualitative visualization result of Uformer, SwinIR, iColoriT, AdaColViT and ground truth image. In each row, the first square
shows the number of hints used. We show the results on 1, 5, 10, and 50 number of user hints, respectively. As shown, AdaColViT can
generate images equivalent to iColoriT-T, despite the decreased GFLOPs.

The less informative patch requires less computation cost
according to the number of groups. For example, when the
group is set to 4, the less informative patch only utilizes
25% of the channel to reduce the computational cost. In
contrast, if the patch is considered as more informative,
the other 75% of channels are computed and added with
the previous output from the less informative patch, thus
using 100% of the channels in total. Determining the less
informative patch and more informative patch from lth

attention layer can be demonstrated as follows, and it is
considered as the more informative patch if Ml value is 1.

Z∗∗
l = [zl,policy;M

p
l,1z1; ...;M

p
l,NzN ], (8)

head∗i,l = Attn(ZlW
′Q
i,l , ZlW

′K
i,l , ZlW

′V
i,l ),

head∗∗i,l = Attn(Z∗∗
l W

′′Q
i,l , Z∗∗

l W
′′K
i,l , Z∗∗

l W
′′V
i,l ),

(9)

MSA(Zl) = Concat(head∗1,l, ..., head
∗
H,l)W

′O
l

+Concat(head∗∗1,l, ..., head
∗∗
H,l)W

′′O
l .

(10)

where Z
′′

l denote the more informative tokens. Also, W
′

l

and W
′′

l are masked parameters, and when the group value
is 4, W

′

l uses only 25% of the embedding dimension and
W

′′

l uses 75%. At this time, the policy token is always
maintained and Z ′

l is formulated equal to Zl.

Layer selection module. Using our patch selection
method alone is not sufficient to reduce the redundancy
of the model. Therefore, when a transformer layer is
redundant, that layer can be skipped. In this paper, we
dynamically skip the attention layer and the FFN layer
according to the input sample. The operation according to
skip can be expressed as follows:

Z
′

l = M b
l,0 ·Attention(Zl) + Zl,

Z
′

l+1 = M b
l,1 · FFN(Z

′

l ) + Z
′

l .
(11)

3.3. Loss function

Our goal is to optimize overall huber loss [8] and the
sparsity loss to train a vision transformer with an ideal tar-
get computational cost and minimal performance drop at
the same time. The loss function of our AdaColViT can be
defined as follows:

Lhuber =
1

2
(Ipred − IGT )

2
1|Ipred−IGT |<1 (12)

+ (|Ipred − IGT | −
1

2
)1|Ipred−IGT |≥1,

Lsparsity = (
1

L

L∑
l=1

Mp
l − β1)

2 + (
1

L

L∑
l=1

M b
l − β2)

2,

(13)
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Dataset Method FLOPs (G) PSNR@10 ↑ LPIPS@10 ↓

Oxford 102flowers

Uformer-S 2.46 24.64 0.132

SwinIR-S 1.96 24.64 0.131

iColoriT-T 1.43 24.67 0.130

AdaColViT-T (Ours) 0.78 24.71 0.128

Cub-200

Uformer-S 2.46 29.56 0.092

SwinIR-S 1.96 29.57 0.092

iColoriT-T 1.43 29.60 0.090

AdaColViT-T (Ours) 0.78 29.63 0.089

Table 1. Performance of the model trained with ctest10k, evalu-
ated on the Oxford 102flowers and CUB-200 datasets, which are
frequently used in existing colorization tasks.

Methods Latency FLOPs (G) PSNR@10

Uformer-S 472ms±6ms 2.46 28.79±0.02

SwinIR-S 97ms±8ms 1.96 28.78±0.01

iColoriT-T 61ms±6ms 1.43 28.81±0.01

AdaColViT-T (Ours) 34ms±8ms 0.78±0.01 28.83±0.01

AdaColViT-T-d24 (Ours) 48ms±7ms 1.18±0.01 29.03±0.01

Table 2. Comparison between actual acceleration (Throughput and
Speed up) and theoretical acceleration (GFLOPs) of Uformer,
SwinIR, iColoriT, and AdaColViT. Also, the group was set to 2
in AdaColViT. We repeatedly ran our network 5 times and mea-
sured the corresponding mean and std values.

L = Lhuber + Lsparsity. (14)

where L, Lhuber, and Lsparsity represent the number of
transformer layers, huber loss, and sparsity loss. Also, the
hyperparameters β1 and β2 are the target computation bud-
gets with values between 0 and 1, which can adjust the
remaining ratio of patches and transformer blocks, respec-
tively. Moreover, we determined the values of β1 and β2 by
considering model performance and computational cost.

4. Experiments
Experimental settings. In training, we use ViT [4] as
the transformer backbone for equitable comparison with
iColoriT [33]. First, we set the image size to 224 × 224
and use 8 GPUs with 1024 batches. Second, we use patch
size of P = 16 with sequence length N of 196. Moreover,
we use AdamW optimizer [16] with 0.004 learning rate, a
weight decay 0.05 and a cosine annealing scheduler [15]
for 50 epochs.

Methods FLOPs (G) PSNR@10

DynamicViT 1.24 28.75

AdaViT 1.20 28.81

A-ViT 1.23 28.74

AdaColViT-T (Ours) 1.18 29.03

Table 3. Comparison with efficient ViTs: DynamicViT, AdaViT,
A-ViT, and AdaColViT. Also, the group was set to 2 in Ada-
ColViT.

FLOPs (G) # of Groups PSNR@10 ↑ LPIPS@10 ↓

0.74 2 28.71 0.085

0.74 4 28.66 0.086

0.75 8 28.67 0.086

Table 4. Performance according to the number of groups used
in AdaColViT-T.

Baselines. We compare the performance of our Ada-
ColViT with iColoriT [33], a recent interactive colorization
method based on Vision Transformer. iColoriT used
ViT-tiny, ViT-small, and the ones that scaled depth to 6
and 24 as baselines: iColoriT-tiny-d{6,24}, and iColoriT-
small-d{6,24}. Moreover, we compare our model with
SwinIR [14] and Uformer [25], which use Transformer-
based architecture for image restoration. We trained the
SwinIR and Uformer models by referring to the official
implementation, and we named them SwinIR-S, SwinIR-T,
Uformer-S, and Uformer-T as we adjusted the width of the
model to compare performance. Moreover, with regards to
the naming convention of our model, the x in our model
name, AdaColViT-T-dx refres to the depth of the model
(i.e. AdaColViT-T-d24 has 24 layers).

Datasets. To extensively explore model scalability,
we utilize ILSVRC-2012 ImageNet dataset with 1.3M
images and 1, 000 classes for training. We used 10,000
images for test set (also referred as ImageNet ctest10k).
ImageNet ctest10k [11] is a subset of ImageNet that is used
as a benchmark for colorization tasks. To further evaluate
the performance of our model, we also selected CUB-200
dataset [26] and Oxford 102 Flower dataset [19] with 5, 794
test images of 200 classes and 1, 000 flower images of 102
classes, respectively.

Evaluation metric. To quantitatively evaluate the perfor-
mance of our method, we measure and compare PSNR
and learned perception image patch similarity LPIPS [35]
between the ground truth and the output image. Also, to
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Figure 6. Comparison between 3 methods of AdaColViT to demonstrate the effect of each component. In this figure, (a) patch selection
method and layer selection method; (b) patch selection method; (c) layer selection method are compared with the random selection method,
respectively.

Figure 7. A set of sample images that require the least and most
computation.

evaluate and compare model efficiency, we mention then
number of giga floating-point operations (GFLOPs).

Quantitative results. In Figure 4, we provide quanti-
tative results in ImageNet-ctest10k. We set the number
of hints to 5, 10, 20, and 50 and compared the models
with PSNR, LPIPS, and FLOPs, respectively. We com-
pared our method with Uformer-S, Uformer-T, SwinIR-S,
SwinIR-T, iColoriT-S-d24, iColoriT-S, iColoriT-S-d6,
iColoriT-T, iColoriT-T-d6, AdaColViT-S-d24, AdaColViT-
S, AdaColViT-T-d24, and AdaColViT-T. Our model showed
significantly better performance with 5, 10, 20, and 50 hints
than other baseline models. Also, we provide additional
quantitative results in two datasets: Oxford 102flowers and
CUB-200, respectively. In Table 1, our model with 10 hints
showed better performance than other baseline models.
In other words, AdaColViT , which removed the width
and depth redundancy of model was more effective than
other baselines. This demonstrates the effectiveness of our
method that removes the less informative tokens and layers.

Qualitative results. We provide the visualization of
the qualitative results in Figure 5. Given a test grayscale

image, our goal is to reproduce a realistic colorized image
that is equivalent to the ground truth. The results illustrate
that the colorized output of ours is most similar to the
ground truth image relative to other methods, with respect
to the quality of the produced result.

Actual acceleration. Table 2 demonstrates the latency,
GFLOPs, and PSNR of Uformer-S, SwinIR-S, iColoriT-
T AdaColViT-T, and AdaColViT-T-d24. Latency was
measured by the CPU and to provide a fair comparison, we
experimented with only single thread. AdaColViT-T-d24
achieved the higest PSNR value and 47ms of latency with
only 1.18 of GFLOPs, which is more than 10× faster
than the comparison method Uformer-S. In particular,
AdaColViT-T outperformes icoloriT-T by 1.75× faster,
showing better PSNR value 28.83 with only 0.79 GFLOPs.
In conclusion, our method reduced theoretical FLOPs
with performance enhancement while achieving actual
acceleration.

Patch removal method. Table 3 demonstrates a per-
formance comparison between methods that reduce model
redundancy through patch removal. To compare with
baselines, we made slight modifications to the publicly
available implementation codes. Existing patch removal
methods permanently delete image patches, resulting in
significant performance degradation. However, our method
excels in performance compared to existing methods as we
softly remove image patches.

5. Discussion

Number of groups. Table 4 demonstrates PSNR and
LPIPS values according to the number of groups of Ada-
ColViT with different FLOPs. The model with 2 groups
showed the best PSNR value of 28.71 at 0.74 GFLOPs.
Therefore, we conduct our experiment by setting the
number of groups to 2.
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Figure 8. Visualization of tokens from the third block of our AdaColViT over the ctest10k dataset.

Effectiveness of each component. Figure 6 demon-
strates that AdaColViT effectively adjusts computational
budgets according to hyperparameters β1 and β2. In addi-
tion, performance changes between each selection methods
represent the effectiveness of our method compared to
random selection.

Allocation of computational resources. To validate
the result whether we have adjusted the computational
cost appropriately for difficulty of each input, we visualize
example images that take the least and most computation
in Figure 7. For least computed images, the images do
not show diverse colors and illustrate only a single object
(i.e. airplane, bird). Furthermore, background of least
computed images are mostly plain background with simple
pattern. For images that take most computation, multiple
objects appear in a single image. For example, in the 3rd

row, image of people riding camels have multiple mixed
objects with various colors. This makes the model more
challenging resulting in taking more computation compared
to the easy images.

Visualization. Figure 8 illustrates the tokens of the
third block’s MLP layer of AdaColViT that are adaptively
pruned during inference over the ctest10k image samples.
Remarkably, our AdaColViT shows high efficiency by
removing redundant tokens and their corresponding com-
putations, only focusing on relatively important regions of
images. For example, airplane image at the 1st and 5th rows
mainly retains the plane object while using fewer tokens in
the sky. In addition, the images with birds on trees at the
2th, 3th, 4th, and 5th rows distinctly keep the bird and tree
region while removing the simple background. The result

demonstrates that adaptive tokens from AdaColViT can
effectively focus on relevant objects and efficiently reduce
the computational cost.

6. Conclusion

In this work, we present AdaColViT, an adaptive vision
transformer for real-time interactive colorization. Our ap-
proach adaptively reduces the amount of computation of
less informative patches and vision transformer layers based
on the difficulty of input samples. To achieve this, we use
a trainable decision network to determine more important
patches and layers in the transformer architecture. Our ex-
tensive experiments demonstrate that our method signifi-
cantly reduces computational costs while maintaining per-
formance.
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