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Abstract

Scene change detection (SCD) is a critical task for var-
ious applications, such as visual surveillance, anomaly de-
tection, and mobile robotics. Recently, supervised methods
for SCD have been developed for urban and indoor environ-
ments where input image pairs are typically unaligned due
to differences in camera viewpoints. However, supervised
SCD methods require pixel-wise change labels and align-
ment labels for the target domain, which can be both time-
consuming and expensive to collect. To tackle this issue,
we design an unsupervised loss with regularization methods
based on the feature-metric alignment of input image pairs.
The proposed unsupervised loss enables the SCD model to
jointly learn the flow and the change maps on the target
domain. In addition, we propose a semi-supervised learn-
ing method based on a distillation loss for the robustness of
the SCD model. The proposed learning method is based on
the student-teacher structure and incorporates the unsuper-
vised loss of the unlabeled target data and the supervised
loss of the labeled synthetic data. Our method achieves con-
siderable performance improvement on the target domain
through the proposed unsupervised and distillation loss, us-
ing only 10% of the target training dataset without using
any labels of the target data.

1. Introduction

Scene change detection (SCD) has been attracting in-
creasing attention as numerous emerging applications uti-
lize SCD as the core task [24], e.g., visual surveillance [12],
anomaly detection [9], mobile robotics [8], remote sens-
ing [19], and AR [30]. The goal of SCD is to localize
changes in a given scene compared to the same scene at
a different time. When the scene is provided as an im-
age, the objective of SCD is to segment the changed ob-
jects or regions between a reference and a query image,
which are captured at past and current times, respectively.
Over the last few decades, researchers have developed var-
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Figure 1. Our method is a semi-supervised SCD learning that uses
readily available labeled synthetic data and unlabeled data from
the target domain to enhance model performance on the target do-
main. The proposed method is practical since it does not require
the expensive pixel-wise labels of the target domain. f represents
the encoder and g, h are the decoders of the SCD model.

ious SCD methodologies for analyzing satellite images in
remote sensing. More recently, there has been a growing
interest in developing SCD methodologies for images cap-
tured in urban streets and indoor environments where au-
tonomous vehicles or mobile robots are deployed.

For the vehicular or mobile robotic applications of SCD,
the input image pairs usually are not perfectly aligned due
to different camera viewpoints and imperfect matching of
two images [28]. Therefore, developing SCD methods ro-
bust to image pairs with unaligned viewpoints is crucial
for practical use. Recent methods address the viewpoint
variance problem by adopting correlation layers to consider
viewpoint difference implicitly [33], utilizing a pre-trained
optical flow model [3] or jointly learning optical flow and
change detection using a synthetically generated dataset
that has the ground truth labels for flow and change map
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estimation [28].
These methods are based on the supervised learning

framework, which requires a dataset with pixel-wise change
labels for the target domain of SCD. Gathering the correct
pixel-wise change labels is a significant task that has a cru-
cial impact on the performance of SCD. However, annotat-
ing precise pixel-wise change labels is labor-intensive, con-
suming considerable costs and human hours [33, 48]. Fur-
thermore, supervised image alignment also requires labor-
intensive annotations like flow maps, making the supervised
SCD learning methods more challenging to apply to various
target domains in the real world. Although an unsupervised
loss has been proposed for performing warping parameter
estimation and change detection for unaligned images based
on image features [13], the reported performance indicates
that learning solely from the proposed loss is challenging
and does not match the SCD performance of supervised
learning methods.

To address the issues mentioned above, we present two
primary contributions. First, we propose unsupervised loss
with regularization methods based on the feature-metric
alignment for jointly learning the flow and change map.
The proposed loss is designed based on the occlusion-
aware photometric loss with two modifications: replacing
the RGB-based photometric error with the multi-level fea-
ture dissimilarity and weighting by estimated change proba-
bility. Subsequently, we design a practical learning scheme
that combines the unsupervised loss with the supervised
loss of labeled synthetic data, which can be obtained in-
expensively. Specifically, we propose a semi-supervised
learning method based on a distillation loss between a
teacher and a student network. This approach is applica-
ble when labels are absent in the target domain of SCD, like
in Fig. 1. Our learning method utilizes the labeled synthetic
dataset presented in [28] and incorporates two key features.
Firstly, we use the proposed unsupervised loss only for the
teacher network. Secondly, we separate the parameters of
the teacher decoder from the parameters of the student net-
work. By employing this training strategy, we can train
the teacher network to perform better on the target domain
while training the student network with data augmentation
to detect changes robustly.

In summary, our research makes the following contribu-
tions:

1. Unsupervised Loss for SCD: Inspired by unsuper-
vised optical flow estimation, we propose a feature-
metric loss and regularization methods that encourage
the change-aware feature-metric alignment to simulta-
neously learn the flow and change maps to deal with
unaligned image pairs in the target domain of SCD.

2. Semi-Supervised SCD Learning: We propose a
semi-supervised SCD learning method based on a dis-

tillation loss using data augmentation, consolidating
unsupervised loss for unlabeled target data and super-
vised loss for labeled synthetic data. Our proposed
learning method enables the SCD model to learn more
precise estimates of the target domain using the un-
supervised loss while also learning feature represen-
tations that are more robust to illumination changes
through data augmentation.

2. Related Work
2.1. Change Detection

Recent change detection methods leverage CNN models
and have outperformed classical methods: Chen et al. [7]
developed an attention ConvLSTM architecture that local-
izes changed region pixel-wise; Nguyen et al. [26] sug-
gested utilizing pertinent features extracted from triplet
CNN architecture for change detection; Lei et al. [20] in-
troduced hierarchical paired channel fusion network that
detects changed region based on hierarchical features via
spatial attention; Sakurada et al. [33] presented CSCD-
Net that estimates change pixels from the correlation be-
tween query and reference feature maps, and Park et al. [28]
designed SimSaC architecture which jointly learns optical
flow and change detection on the synthetically generated
SCD dataset to deal with unaligned image pairs.

Those methods are all supervised learning frameworks
that require costly human-annotated pixel-wise labels. An
unsupervised SCD method for unaligned image pairs based
on image feature differences was proposed in [13]. Still,
its performance heavily relies on a semantic segmentation
model. Sachdeva et al. [31] proposed a method utilizing
synthetic change detection datasets generated by leverag-
ing the pre-trained image inpainting model, but it performs
a bounding-box-based change detection task. There are
several unsupervised learning frameworks for satellite im-
age change detection [2, 4, 5, 34, 35, 46, 47], but they are
not proper for our scope of SCD since they assume almost
perfect image alignment. In addition, recent research on
semi-supervised learning for change detection in satellite
imagery [1,14,21] has not yet addressed the lack of labeled
data in the target domain.

2.2. Image Alignment

Image alignment is finding the correspondence between
two images, allowing one image to be warped to align
with the other. Among various techniques for correspon-
dence problems, methods for optical flow and geometric
image matching are most related to image alignment re-
garding the task of SCD. The goal of optical flow esti-
mation is to find a flow field, a dense field of displace-
ment vectors that represent the pixel movement required
to align the matching pixels between two images. Opti-
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cal flow estimation usually treats consecutive frames of a
video. Dosovitskiy et al. developed a CNN-based model,
FlowNet [10], that estimates a flow field based on the cor-
relation tensor between two feature maps of an input image
pair. Since the advent of FlowNet, most of the recently pro-
posed methods have taken advantage of the correlation ten-
sor [15,16,36,37,39,40,45]. These models utilize multiple
correlation tensors computed from feature maps of different
resolutions and focus on the flow map refinement method.
Geometric image matching also aims for the same goal of
optical flow estimation but mainly treats image pairs with
massive geometric displacement. Melekhov et al. designed
DGC-Net [25], which leverages a coarse-to-fine framework
for computing correlation tensors considering large pixel
displacements. Inspired by DGC-Net, Truong et al. devel-
oped GLU-Net [41] capable of handling any resolution of
the image pairs with either small or large geometric dis-
placement. Recently, PDC-Net [43], PDC-Net+ [42], and
DKM [11] were proposed to solve the geometric image
matching in a probabilistic manner to estimate the certainty
of correspondences.

3. Methodology
Overview. Our goal is to develop a semi-supervised

learning method for the SCD model that can effectively per-
form on the target domain, which utilizes unlabeled target
data as well as labeled synthetic data that is inexpensive to
collect. Specifically, our focus is on the scenario where we
have ground truth labels of alignment and change for the
synthetic dataset generated from public image datasets but
have only reference-query image pairs without labels for the
target domain to perform SCD. The scenario is practical in
applying the SCD model to various target domains in the
real world since it does not require alignment and change
labels in each target domain, which are significantly expen-
sive to obtain.

To address the scenario, we propose an unsupervised
feature-metric loss that uses multi-level image features and
regularization methods to train SimSaC [28], the state-of-
the-art supervised SCD model, with unlabeled target data.
In addition, we propose a distillation-based training method
to increase the robustness of the SCD model to environmen-
tal changes, such as illumination changes.

3.1. Network Architecture and Supervised Loss

Architecture. To detect changes in unaligned im-
age pairs, we employ the SimSaC architecture, which is
designed to estimate both flow and change probability
maps through coarse-to-fine refinement using image fea-
tures from feature pyramid networks (FPN). SimSaC con-
sists of three parts: the FPN encoder, denoted as f , and
two decoders, denoted as g and h. g and h estimate the
flow map V̂ ∈ RH×W×2 and the binary change probabil-

Ref. Image Query Image Feature  
Dissimilarity GT Change

Figure 2. Feature dissimilarity maps between the warped refer-
ence image and the query image. Pixels with red color represent
higher dissimilarity. The feature dissimilarity map contains valu-
able information for accurately estimating real changes.

ity map M̂ ∈ RH×W×1, respectively. These predictions
are based on the multi-level features Fr and Fq extracted
by f for a reference image Ir ∈ RH×W×3 and a query
image Iq ∈ RH×W×3, respectively. SimSaC utilizes the
estimated flow map to detect changes robustly to viewpoint
differences between the reference and query images. The
formulations are as follows:

V̂θ = gθ(fθ(Ir), fθ(Iq)), M̂θ = hθ(fθ(Ir), fθ(Iq)), (1)

where θ represents the parameters of the SCD model.
Supervised loss. For training the model with the labeled

data, we use the hierarchical end-point error ℓV [28] and the
hierarchical focal loss ℓM [28] (refer to the supplementary
material), which are used for SimSaC, as follows:

Lsup = E(Ir,q,V,M)∼Dl

[
ℓV (V̂ , V ) + ℓM (M̂,M)

]
, (2)

where Ir,q is an image pair, Dl is the labeled dataset, V
is the ground truth flow map, and M is the ground truth
change mask. Unlike [28], which used both synthetic
dataset and target dataset for Lsup, we compute Lsup only
for the synthetic dataset.

3.2. Feature-metric Loss and Regularization

We propose unsupervised loss that consists of the
feature-metric loss inspired by unsupervised optical flow es-
timation and two regularization methods to complement the
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feature-metric loss. The key aspect of unsupervised optical
flow learning is minimizing photometric loss between two
images, which encourages the flow map to align the images
with a similar appearance. The photometric loss is often
calculated as the Charbonnier [38], SSIM [44], or Census
loss [22] of the RGB values between the pixels of the same
location in the query image and the reference image warped
by the estimated flow map. For computing the photomet-
ric loss, the occluded pixels are excluded by the occlusion
mask, estimated with heuristic methods, since they do not
have a correspondence in the image pairs.

Feature-metric loss. We propose the feature-metric loss
based on the formulation of the photometric loss. The
feature-metric loss encourages the change-aware feature-
metric alignment of input image pairs. In this loss, the
RGB-based error and the occlusion mask of the photomet-
ric loss are replaced by the multi-level feature dissimilarity
and the change probability map, respectively, as follows:

ℓfeat(M̂, V̂ ) =

∑
i(1− M̂i)(1− s(ω(F̄r, V̂ ), F̄q)i)∑

i(1− M̂i)
,

s(Fr, Fq)i =
∏
l

1 + cos(F l
r,i, F

l
q,i)

2
,

(3)
where i is the index of each pixel location, ω(·) is the dif-
ferentiable warping function, e.g. bilinear sampling [17], l
is the layer level of the multi-level feature maps Fr and Fq ,
cos(·) is the cosine similarity, and the bar above the letter
represents gradient stopping. Note that we match the size
of M̂ , V̂ and F l to the size of F 1 by downsampling M̂ , V̂ ,
and upsampling F l for 1 < l ≤ L.

In contrast to optical flow estimation, which handles con-
secutive frames of video, there may be a considerable dif-
ference in time between the reference and query images in
SCD. This difference in time can result in appearance vari-
ation of the query image caused by environmental changes,
e.g. changes in day/night cycles, weather, or other illumi-
nation conditions. Therefore, instead of RGB-based errors,
we use an error based on image features robust to environ-
mental changes. For the feature-based error, we utilize the
multi-level feature dissimilarity 1− s, where s is computed
by multiplying all feature similarity maps from each FPN
level to consider both low-level and high-level correspon-
dence simultaneously.

The proposed feature-metric loss ℓfeat is the weighted
average of the feature dissimilarity between the F r warped
by V̂ and F q , weighted by the estimated probability of ’not
changed’ (1 − M̂ ). The weighted average is to prevent the
trivial solution M̂ = 1. Minimizing ℓfeat encourages V̂ to
align the reference-query pair with viewpoint difference and
to increase M̂ for regions with high dissimilarity between
the aligned reference and query features. Fig. 2 illustrates
how the multi-level feature dissimilarity map is effective in

estimating genuine changes. Note that we do not update Fr

and Fq by the gradient of ℓfeat to prevent the encoder from
overfitting.

Change regularization. Training the SCD model solely
based on ℓfeat may result in overconfident change proba-
bility since ℓfeat does not encourage low change probabil-
ity on pixels with low feature dissimilarity. To address this,
we impose a regularization on the estimated change map by
taking the negative log, which prevents the overconfident
change probability, as follows:

ℓcr(M̂) = − 1

HW

∑
i

s̄i log(1− M̂i),

s̄ = stop grad(s(ω(Fr, V̂ ), Fq)).

(4)

ℓcr imposes relatively weak regularization on the change
probability of pixels with low feature similarity while regu-
lating the change probability to be low for pixels with high
feature similarity. Therefore, it effectively complements the
blind spot of ℓfeat.

Edge-aware smoothness. Edge-aware smoothness reg-
ularization [18, 22] is a widely used technique in unsuper-
vised optical flow estimation. This aims to enhance the
model’s ability to learn object motion boundaries with finer
detail by regulating the flow map to adapt to edges in the
image. Since the change probability map should also be
estimated to fit the boundaries of the changed objects, we
propose an edge-aware smoothness regularization for the
change probability map as follows:

ℓsm(M̂) =
1

HW

∑
i

(1− s̄i)

(∑
n

ℓbce(
∂M̂i

∂xn
, Ei)

)
, (5)

where ℓbce is the binary cross-entropy loss, and E is an edge
mask of an image whose elements are 1 for the edge pixels
and 0 for the others. We generate the edge mask using the
Canny edge detector.

The conventional smoothness regularization for optical
flow only penalizes non-edge pixels with a high flow gradi-
ent. Unlike the conventional method, we impose an addi-
tional penalty on pixels at edges if the change gradients at
those pixels are not close to 1 by applying the binary cross-
entropy between the change gradient and the edge mask.
Since this additional penalty should only be applied to pix-
els predicted to be part of changed regions, we weight the
regularization with the feature dissimilarity.

Unsupervised loss. The overall unsupervised loss for
the unlabeled target data is defined as follows:

Lunsup = EIr,q∼Du
[ℓfeat + λ1ℓcr + λ2ℓsm] , (6)

where Du is the unlabeled dataset, λ1 and λ2 are weight
coefficients for each regularization.
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Figure 3. The overview of the proposed semi-supervised learning method. The teacher network utilizes unlabeled target data for unsu-
pervised learning to learn more accurate estimates for the target domain. The student network becomes a robust model by training on
augmented unlabeled data using the teacher’s estimates as pseudo-labels.

3.3. Semi-Supervised SCD Learning

Distillation loss. When using the proposed unsupervised
loss, it is important that the features extracted from the im-
age are robust to environmental changes, such as changes in
illumination. However, the unsupervised loss is only used to
learn flow and change maps, not features, so it relies on the
robustness of the pre-trained features. Therefore, to further
improve the robustness of the feature against environmental
changes, we use a distillation loss as an additional training
objective based on the student-teacher structure. We define
the distillation loss using ℓV and ℓM as follows:

Ldist(θ) = E(Ir,q,Ĩr,q)∼Du

[
ℓV (V̂θ, V̂ϕ) + ℓM (M̂θ, M̂ϕ)

]
,

(7)
where Ĩr,q is the photometrically augmented Ir,q , θ and ϕ
represent the student network parameters and the teacher
decoder parameters, respectively. During the training, the
teacher network generates estimates of the original unla-
beled data, and the student network learns to predict correct
outputs for the augmented unlabeled data by leveraging the
teacher’s estimation as pseudo-labels.

Training scheme. We propose a semi-supervised SCD
learning method for the robust model based on the student-
teacher structure, which jointly minimizes Lsup, Lunsup,
and Ldist. The proposed training method has two charac-
teristics to utilize the unsupervised loss and the distillation
loss effectively. First, the supervised loss is used for training
both the student and teacher networks, while the unsuper-
vised loss is used only for the teacher network. This asym-
metry is to prevent the student decoder from being trained
incorrectly by feature-metric alignment based on image fea-
tures that are not robust to augmentation. Second, the de-
coder parameters of the student and the teacher are sepa-
rated. By separating the decoder parameters, we encourage

the teacher to learn accurate flow and change estimation on
the target domain based on the unsupervised change-aware
feature-metric alignment and the student to learn flow and
change estimation robust to the photometric augmentation
based on the distillation loss. We share the parameters of
the encoder so that the teacher also utilizes the robust fea-
ture representation learned by the distillation loss. Fig. 3
represents the proposed learning scheme.

With indicating which specific loss term contributes to
the learning of individual parameters, the total loss is de-
fined as follows:

L(θ, ϕ) = Lsup(θ)+Ldist(θ)+Lsup(ϕ)+Lunsup(ϕ). (8)

The proposed learning method enables the teacher network
to estimate precise change maps by the unsupervised loss.
At the same time, the student network learns robust change
estimation by training on strongly augmented target data,
distilling the knowledge from the teacher’s estimates based
on the feature-metric alignment.

4. Experiments
4.1. Datasets and Experimental Setup

Datasets. To evaluate the effectiveness of our proposed
method, we utilized two target datasets: ChangeSim [27]
and PCD [32]. ChangeSim consists of image sequences
collected from 10 different photo-realistic simulated ware-
house environments, 6 of which are used for training and 4
for testing. The data for each warehouse contains normal,
which is the base data, and dusty-air and low-illumination,
which have visual variations. Following the convention
in [27], we only use the training split of normal (13,221
pairs) for model learning and evaluate the model on the
test splits of normal, dusty-air, and low-illumination, each

1230



Labeled Data Unlabeled Data Method ChangeSim PCD

Normal Dusty-air Low-illum. Tsunami GSV

Synthetic - SimSaC [28] 57.8 29.4 26.4 75.1 31.2
SimSaC† 57.8 29.2 32.8 64.5 57.4

Synthetic
&

Target (10%)
- SimSaC† 66.0 42.3 39.3 73.5 62.5

Synthetic Target (10%) Ours 66.6 52.0 43.9 85.2 78.2

Target (100%) -

CDNet++ [29] - - - 86.0 68.0
HPCFNet [20] - - - 86.8 77.6
CSCDNet [33] 32.6 15.5 13.5 75.7 69.1
DR-TANet [6] 40.2 22.0 17.7 74.1 68.6

Synthetic
&

Target (100%)
-

SimSaC [28] 66.5 56.8 42.7 90.4 78.4

SimSaC† 70.2 50.5 44.6 87.6 75.7

Synthetic Target (100%) Ours 68.3 54.1 44.5 86.4 78.4

Table 1. Quantitative results of the comparative study on the target datasets. The target datasets are ChangeSim and PCD, respectively.
The baselines are the supervised model trained with only the Synthetic dataset or both the Synthetic and the labeled target datasets. For
evaluating our method, we do not use the labels of the target datasets. The percentage value in parentheses means the ratio of the number
of the used image pairs for training to the size of the entire target training set. SimSac† is our implementation of SimSaC. The best two
results are marked in bold and underlined, respectively.

of them has about 4,200 pairs of images. PCD contains
100 panoramic image pairs of street views (GSV) and an-
other 100 pairs of post-tsunami environments (TSUNAMI).
Based on the setting in [33], we collect 60 cropped images
per panoramic image by sliding and plane rotation, result-
ing in 9,600 image pairs for training and 2,400 pairs for
evaluation.

We utilized the synthetic dataset introduced in [28] as the
labeled dataset for the proposed semi-supervised learning
method. The change and flow labels of the Synthetic dataset
are generated by randomly compositing foreground object
images to background images using the cut-paste method
and by applying random geometric transformations to the
composited images, respectively. Following the instruction
in [28], we randomly sampled and exploited the same num-
ber of data samples in the synthetic dataset as for the num-
ber of the target dataset.

Evaluation. We use the F1-score, the harmonic mean of
precision and recall, of change detection as the evaluation
metric. We set the baseline as the supervised SCD models
trained with the Synthetic dataset alone or both the Syn-
thetic dataset and the target dataset with GT labels. When
using both the Synthetic and the labeled target datasets,
we follow the training schedule used in SimSaC. For Sim-
SaC, which is the state-of-the-art supervised SCD model,
we present both the performance reported in [28] and the

performance of our implementation of SimSaC, SimSaC†.
Implementation. We followed the training protocol

of SimSaC and pre-trained the network on the synthetic
dataset for 25 epochs before fine-tuning the network using
the proposed semi-supervised learning approach. We opti-
mize the model for 15 epochs by the AdamW optimizer [23]
with a learning rate decay of 4×10−4. We employed a batch
size of 8 for both the labeled synthetic and unlabeled target
datasets. The learning rate is 2×10−5 and halves at epoch 3,
epoch 6, and epoch 9. Every image of the datasets is resized
to 520×520 for training. λ1 is 0.2 for ChangeSim and 0.01
for PCD. λ2 is set to 1 for all datasets. For data augmenta-
tions, we use random color jittering, random gray scaling,
random shadowing, random brightness contrast, and ran-
dom sun-flare, which are all used for the original SimSaC.
We implement our method using Pytorch on a 4.2GHz i7
CPU desktop with a single NVIDIA RTX 3090 GPU.

4.2. Comparative Study

Table 1 shows the quantitative comparison results on the
ChangeSim and PCD datasets.

Baselines trained with Synthetic. We first compared
the performance of our proposed semi-supervised learning
method with baseline supervised models trained on the syn-
thetic dataset. This experiment covers the scenario of per-
forming SCD on target domains where GT labels do not
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exist, which is our main concern. In this experiment, to
demonstrate the efficiency and effectiveness of the proposed
method, we randomly sampled only 10% of training sam-
ples from each unlabeled target training dataset and used
them for our method, assuming the scarcity of the unlabeled
target dataset. The results show that our learning method
achieves considerable performance improvement compared
to the baselines on all benchmarks. Compared to the base-
line on ChangeSim, our method improves the F1-score by
15.2%, 76.8%, and 33.8% for normal, dusty-air, and low-
illum., respectively. Our method also improves performance
by 13.4% and 36.2% for TSUNAMI and GSV, respectively.
In addition, we compared our method with SimSaC† trained
on both the synthetic dataset and the 10% of the target train-
ing dataset with GT labels. Interestingly, our method per-
forms better than the baseline in such a challenging condi-
tion. This suggests that our learning scheme is highly ef-
fective in addressing scenarios where the target dataset is
scarce and the ground truth labels are unavailable.

Baselines trained with the target labels. To investi-
gate the extent to which the proposed learning method can
replace GT target labels, we compared the performance of
our method to the performance of supervised baseline mod-
els trained fully exploiting the labels of the target training
dataset. As same as the previous experiment, we also did
not use any labels of the target datasets for our method. In-
stead, we used all the unlabeled training data, not just 10%
of the dataset. This comparison setting is highly challeng-
ing since the baselines fully utilize the labels of all the data.
Our method performs slightly worse on ChangeSim normal,
ChangeSim dusty-air, and TSUNAMI of PCD by 2.7%,
4.7%, and 4.4% compared to the state-of-the-art supervised
model, respectively, and achieves almost same performance
on ChangeSim low-illum. and GSV of PCD. These results
again demonstrate the effectiveness of the proposed semi-
supervised SCD learning method. Fig. 4 presents the qual-
itative results of our method compared with the supervised
baseline.

4.3. Ablation Study

In all ablation experiments, we used 10% of the target
training dataset on each domain. We configured λ2 as 1 and
λ1 as 0.2 for ChangeSim and 0.01 for PCD.

Configuration ChangeSim PCD

Normal Dusty-air Low-illum. TSUNAMI GSV

ℓfeat 52.5 25.9 20.2 83.1 75.1
+ ℓcr 65.2 37.2 33.8 84.0 76.1
+ ℓsm 64.0 29.5 26.6 84.8 77.0

+ ℓcr, ℓsm 65.4 35.2 37.5 85.1 77.5

Table 2. Ablation study on the regularization methods of unsuper-
vised loss

Regularization methods for unsupervised loss. Table
2 presents the performance of four different unsupervised
learning settings without Ldits to exclude the effect of the
distillation. Both regularization methods are designed to
suppress excessive change estimation, with ℓcr serving to
lower the change estimation threshold and ℓsm ensuring that
the estimated change region equals the object area inside the
estimated change region. Both for the ChangeSim dataset
and the PCD dataset, using both the change regularization
and the smoothness regularization methods shows the best
performance except for dusty-air, and not using both reg-
ularization methods shows the worst performance. The re-
sults show that the proposed regularization methods effec-
tively compensate for the blind spot of ℓfeat.

Configuration ChangeSim PCD

Normal Dusty-air Low-illum. TSUNAMI GSV

Lsup 57.8 29.2 32.8 64.5 57.4
+ Ldist 60.1 36.9 35.5 50.8 47.6

+ Lunsup 65.4 35.2 37.5 85.1 77.5
+ Lunsup,Ldist 66.6 52.0 43.9 85.2 78.2

Table 3. Ablation study on the loss terms of the proposed semi-
supervised learning method

Loss terms of semi-supervised learning. Table 3
demonstrates the effectiveness of each loss term of the pro-
posed semi-supervised learning method. By utilizing both
Lunsup and Lcon, the model accomplishes the best perfor-
mance both on ChangeSim and PCD. Training Lcon alone
shows improvement on ChangeSim but records the worst
performance on PCD, which implies the distillation loss
alone can not deal with the domain gap between Synthetic
and the target. By using Lunsup alone for training, the
model achieves fairly high performance, but there is no sig-
nificant performance improvement when visual variations
occur due to factors such as illumination and air turbidity.

Configuration ChangeSim

Normal Dusty-air Low-illum.

Shared 65.6 47.1 41.7
Separated 66.6 52.0 43.9

Table 4. Ablation study on the decoder parameter settings

Parameter separation. Table 4 represents the effective-
ness of the parameter separation for robustness to environ-
mental changes of the model. The results show that the
teacher and student networks perform better when the de-
coder parameters are separated per our design intent.
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Figure 4. Qualitative results of the proposed method. The baseline is the supervised SimSaC trained with the target data fully using
the ground truth labels. Our method effectively learns to estimate actual changes without using any target labels. Red circles show the
incorrectly estimated change. Blue circles represent the actual areas of change that the baseline does not predict, while our method does.

5. Conclusion

In this paper, we proposed a practical and effective semi-
supervised SCD method that incorporates the supervised
loss of the labeled synthetic data and the unsupervised loss
of the unlabeled target data. To enable training of the SCD
model without using target labels, we made the following
key contributions: (1) developing a feature-metric loss that
allows for joint learning of change detection and alignment
by leveraging change-aware feature-metric alignment, (2)
designing two regularization methods that compensate for
the feature-metric loss, and (3) proposing a semi-supervised

learning approach that trains a teacher and a student net-
work with separate parameters, with the teacher network
trained using the unsupervised loss. Our method demon-
strated its effectiveness by achieving comparable perfor-
mance to the supervised model on the target domain, all
without relying on any target data labels.

Acknowledgment

This work was supported by Institute for Information
& communications Technology Promotion (IITP) grant
funded by MSIT (South Korea) (No.2020-0-00440).

1233



References
[1] Wele Gedara Chaminda Bandara and Vishal M Patel.

Revisiting consistency regularization for semi-supervised
change detection in remote sensing images. arXiv preprint
arXiv:2204.08454, 2022. 2

[2] Luca Bergamasco, Sudipan Saha, Francesca Bovolo, and
Lorenzo Bruzzone. Unsupervised change detection using
convolutional-autoencoder multiresolution features. IEEE
Transactions on Geoscience and Remote Sensing, 60:1–19,
2022. 2

[3] Shuhui Bu, Qing Li, Pengcheng Han, Pengyu Leng, and Ke
Li. Mask-cdnet: A mask based pixel change detection net-
work. Neurocomputing, 378:166–178, 2020. 1

[4] Hao Chen, Zipeng Qi, and Zhenwei Shi. Remote sensing im-
age change detection with transformers. IEEE Transactions
on Geoscience and Remote Sensing, 60:1–14, 2021. 2

[5] Jie Chen, Ziyang Yuan, Jian Peng, Li Chen, Haozhe Huang,
Jiawei Zhu, Yu Liu, and Haifeng Li. Dasnet: Dual attentive
fully convolutional siamese networks for change detection
in high-resolution satellite images. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing,
14:1194–1206, 2020. 2

[6] Shuo Chen, Kailun Yang, and Rainer Stiefelhagen. Dr-
tanet: Dynamic receptive temporal attention network for
street scene change detection. In 2021 IEEE Intelligent Ve-
hicles Symposium (IV). IEEE, 2021. 6

[7] Yingying Chen, Jinqiao Wang, Bingke Zhu, Ming Tang, and
Hanqing Lu. Pixelwise deep sequence learning for moving
object detection. IEEE Transactions on Circuits and Systems
for Video Technology, 29(9):2567–2579, 2017. 2

[8] Erik Derner, Clara Gomez, Alejandra C Hernandez, Ra-
mon Barber, and Robert Babuška. Change detection using
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