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Abstract

Neural Radiance Fields (NeRF) has shown its remark-
able performance in neural rendering-based novel view
synthesis. However, NeRF suffers from severe visual qual-
ity degradation when the input images have been captured
under imperfect conditions, such as poor illumination, de-
focus blurring and lens aberrations. Especially, defocus
blur is quite common in the images when they are nor-
mally captured using cameras. Although few recent stud-
ies have proposed to render sharp images of considerably
high-quality, yet they still face many key challenges. In
particular, those methods have employed a Multi-Layer
Perceptron (MLP) based NeRF which requires tremendous
computational time. To overcome these shortcomings, this
paper proposes a novel technique Sharp-NeRF—a grid-
based NeRF that renders clean and sharp images from the
input blurry images within a half an hour training. To
do so, we used several grid-based kernels to accurately
model the sharpness/blurriness of the scene. The sharp-
ness level of the pixels is computed to learn the spatially
varying blur kernels. We have conducted experiments on
the benchmarks consisting of blurry images and have eval-
uated full-reference and non-reference metrics. The qual-
itative and quantitative results have revealed that our ap-
proach renders the sharp novel views with vivid colors
and fine details, and it has considerably faster training
time than the previous works. Our code is available at
https://github.com/benhenryL/SharpNeRF.

1. Introduction
In the field of computer vision and graphics, with numer-

ous applications in visual effects, e-commerce, AR/VR, and
robotics, it is essential to model and reconstruct 3D scenes
as representations that can synthesize high-quality images.

*Equal contributions
†Corresponding authors

Figure 1. Comparison in terms of training time and image qual-
ity on the real defocus dataset. Left: Evaluated under full-
reference metric (PSNR). Right: Evaluated under no-reference
metric (Niqe).

Recently, Neural Radiance Fields (NeRF) [21] has been
proposed, and it has shown excellent performance in 3D
scene representation and rendering photorealistic images
for novel views. While successful, many existing NeRF
methods assume that the training images are obtained in
perfect condition, which bypasses vital issues that would
arise in many practical settings. For example, training im-
ages captured with commodity hand-held devices inevitably
contain a considerable amount of blur, e.g., motion or defo-
cus blur [19, 39]. This violates 3D view consistency be-
tween different view images during training and deterio-
rates the rendered image quality.

A few approaches have been recently suggested to ad-
dress the issue [16,20,28]. For example, Deblur-NeRF [20]
proposed a deblurring neural radiance fields that renders
clean images at novel views from blurry input images. It
proposed to generate clean images first and apply convolu-
tion operation with the learnable blur kernels. At the time of
inference, blur kernels are not utilized, and hence, it enables
NeRF to produce sharp images. DP-NeRF [16] improved
Deblur-NeRF by imposing 3D consistency to blur kernels
and using depth information. Although promising results
have been shown, they suffer from very long training and
inference times due to the large number of neural network
propagations to render images, please see Fig. 1.
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In this work, we suggest Sharp-NeRF, a fast NeRF-based
framework for rendering sharp images with blurred train-
ing images. Inspired by the recent approaches that incor-
porate additional data structures, such as voxel grids [3,
4, 9, 10], trees [41, 53] and hashes [24, 42], we leverage a
decomposed-grid representation for neural fields architec-
ture [4] to accelerate the training time and efficiently repre-
sent the colors and densities.

In addition, we propose discrete learnable kernels (with-
out neural networks) for blurring convolution operations as
opposed to the existing methods that utilize an extra MLP
to generate the blur kernels. Using a neural network as a
kernel-generating function introduces additional computa-
tional costs, and the bias induced by the neural network
may prevent it from learning complex and sophisticated ker-
nels that are necessary to handle various real-world scenar-
ios. Furthermore, it has been known that the size of neural
networks, e.g., width or depth, determines the complexity
of the functions they can represent. Therefore, more opti-
mal kernels require larger neural networks, which results in
adding more computational burden during training.

As blurriness varies spatially across the scene, the ideal
approach would involve retaining blur kernels for every in-
dividual pixel in every image. However, this becomes im-
practical due to the current prevalence of high-resolution
images and multiple-view images. We introduce a sharp-
ness prior to the proposed framework that enables us to
maintain only a few number of discrete kernels. We pro-
pose to measure the per-pixel sharpness level and assign a
blur kernel to a group of pixels whose sharpness level is
similar. This strategy ensures that the blur kernels learn the
spatially varying sharpness consistently and reliably with a
marginal increase in learnable parameters. The overall ar-
chitecture of our proposed method is shown in Fig. 2.

To optimize the training time further, we propose ran-
dom patch sampling during training. As the blurriness is
attributed to the intermingling of neighboring pixels, the ex-
isting deblurring methods render multiple neighboring pix-
els (usually 5 or 6) to render one pixel. It increases the train-
ing time proportionally to the number of rays per pixel. We
develop a training strategy that renders a patch instead of
a pixel and apply the convolution operation over the patch
with a learned discrete kernel to produce the blurred patch.
This strategy significantly reduces the training time while
maintaining the rendered image quality.

We have tested the proposed approach on a challenging
real-world dataset consisting of blurry training images. The
experimental results have shown that Sharp-NeRF improves
the training speed by a large margin and performs on par
with the existing deblurring methods regarding visual qual-
ity. We also demonstrated that the proposed method out-
performs the prior arts in more representative quantitative
metrics, such as Brisque and Niqe, widely used in measur-

ing visual quality.
To sum up, our contributions are the following:

• We proposed novel learnable grid-based kernels to ob-
tain sharp output from neural radiance fields. These
kernels are optimized directly without requiring addi-
tional networks.

• For better and more reliable kernel optimization, a
sharpness prior has been incorporated that explicitly
measures the sharpness of pixels.

• We proposed to adopt random patch sampling to re-
duce the computational complexity of rendering.

• Novel view images rendered by our method are sharp,
contain vivid colors and fine details, and have been
achieved through the training time of a half an hour.

2. Related Works
2.1. Neural Radiance Fields

Recently, the Neural Radiance Fields (NeRF) has
emerged as a powerful approach for synthesizing high-
fidelity 3D scenes from 2D images. NeRF leverages deep
neural networks to represent volumetric scene properties
and enables realistic rendering from novel viewpoints. A
radiance fields is a continuous function f that maps a 3D
location x ∈ R3 and a viewing direction d ∈ S2 to esti-
mate density σ ∈ [0,∞) and a color value c ∈ [0, 1]3 of the
given point. A multi-layer perceptron (MLP) has been used
by [21] to parameterize this function, where the weights of
MLP are optimized to reconstruct a set of input images of a
certain scene:

fθ :
(
γ(x), γ(d)

)
→ (c, σ) . (1)

Here, θ denotes the network weights, and γ is a predefined
positional encoding [40] applied to x and d. Given the vol-
ume density and color of points, volume rendering [7] is
used to produce the images at novel views [21].

With the success of NeRF, many follow-up studies have
been conducted that improve the one or multiple modules
of NeRF for improved quality of rendering. Several ap-
proaches, e.g., grid-based F2-NeRF [42] and TensoRF [4],
aim to improve the rendering speed [10, 12–14, 24, 31, 38,
53]. Few others, e.g., FreeNeRF [51], PixelNeRF [54] and
MVSNeRF [5], try to predict a continuous neural scene rep-
resentation conditioned on one or a few input images and
SNeRG [13], MeRF [32], and BakedSDF [52] bake model
to achieve real-time view synthesis.
Learning-based deblurring networks for NeRF. Some
studies in the literature have explored a learning-based ap-
proach to directly train the neural networks to deblur the
NeRF-based rendered images. These methods leverage a
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Figure 2. The overall architecture of Sharp-NeRF. ⊠ stands for weighted sum. First, it computes defocus map of each training view using
sharpness measure operator. Then the defocus map is quantized into Nk values which is used as per-pixel sharpness level map L. This
is a preprocess and is not required to compute L druing process. During training, it takes ray patches as inputs to backbone neural fields
model [4] and render sharp and clean image Ic. Ic is then cropped into several small patches I ′C with stride 1 where size of each patch is
K × K. Preprocessed L of the input ray patch is also given as input data and used to indexing blur kernels B to obtain per-pixel weight
wx. Subsequently, wx and I ′c are weighted sum to render blurred image Ib. Note that at the time of inference, only modules in gray box
are valid which means blur kernel is no longer required and only Ic is used as a final rendered outcome.

pair of blurred and clear image datasets to learn the mapping
between the blurred rendering and the corresponding sharp
image. However, many of these tasks use MLP-based archi-
tectures. The Deblur-NeRF [20] and DP-NeRF [16] take a
long time to train a MLP-based neural fields and kernel. The
Hybrid Neural Rendering Model [6] has a grid kernel, but
it is fixed and applies only to the camera motion blur [43].
In the defocus blurred scene, point spread function (PSF)
is spatially varying and cannot be applied straightforward.
DoF-NeRF [48] has a limitation that all-in-focus images are
required for training. Although PDRF [28] is similar to our
model in that it used grid-based representation, it still uses
two MLPs; first to predict the scene density and the second
to build blur kernels. In contrast, we propose a well-curated
approach Sharp-NeRF—a grid-based model that can render
sharp novel images from blurry input images within half an
hour of training.

2.2. Image Blind Deblurring

It is common to observe that some parts of the pictures
are blurred when we normally capture them using optical
imaging devices. Among a number of factors that cause
this blurriness are lens defocusing, camera shake, and fast
motion [1, 35]. The out-of-focus or defocus blur occurs in
the imaging process when the image plane is away from

the ideal reference plane. Mathematically, the deterioration
of an image due to defocus blur is typically represented by
B = I ⊗K + ϵ , where I is the latent sharp image, B is the
observed blurry image, K is the blur kernel, ⊗ is the convo-
lution operator, and ϵ is the additive white Gaussian noise
that often appears in natural images. The earliest canonical
method that deconvolves an image is [34] where a known
PSF—the blur kernel—is used to iteratively minimize an
energy function to get a maximum likelihood approxima-
tion of the original image. Usually, both the sharp image I
and blurring kernel K are unknown. Recovering the latent
sharp image given only a single blurry image B is known
as image blind deblurring [46]. This is a highly ill-posed
and long standing problem in the image and vision com-
munity. In this process, first a blurring kernel is estimated
which is then used to derive the deblurred image. A variety
of methods have been proposed in the literature to tackle the
blurring problem. The traditional approaches rely on natu-
ral image priors and often formulate deblurring as an opti-
mization problem [19, 27, 49, 57]. On the other hand, most
of the deep learning based methods directly map the blurry
image with the latent sharp image by employing convolu-
tional neural networks (CNN) [26, 33, 56]. However, most
of the learning-based approaches disregard the underlying
imaging process, and hence they perform less effectively in
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the case of severe blur.

2.3. Sharpness Measurement

Computing the sharpness level of image pixels is a cru-
cial step for many imaging applications, including the ob-
ject detection and shape from focus (SFF) system [2,47,50].
In the case of partially out-of-focus image, focused areas
typically exhibit greater intensity variations than defocused
areas. Any operator can be used as a sharpness measure
as long as it can distinguish between sharp (focused) and
blurred (defocused) pixels in a partially blurred (defocused)
image. The sharpness measurements or levels of image pix-
els are obtained by convolving the image with the sharp-
ness measure. A detailed analysis of sharpness measures
for focus computation has been provided in [11,29]. Among
different categories of sharpness measures, derivative-based
measures appear to be an interesting option because of their
inherent ability to capture the rate of change. A well-known
and commonly used focus measure operator is modified
laplacian (ML) [25]. Inspired by the effectiveness of sharp-
ness measures, we propose to leverage a learning-based
sharpness prior in our deblurring approach for NeRF. Our
analysis has shown that enforcing the sharpness prior is ef-
fective in rendering better deblurred images.

3. Method

3.1. Preliminary: Tensorial Radiance Fields

We adopted Tensorial Radiance Fields (TensoRF) [4] as
our backbone grid-based neural radiance fields. It encodes
and reconstructs the scene using two 3D grids Gσ and Gc

that estimate density and color respectively, which are fur-
ther decomposed to several low-rank 2D and 1D tensors as
following:

Gσ =

Nx∑
i=0

vxi ◦M
y,z
i +

Ny∑
i=0

vyi ◦M
x,z
i +

Nz∑
i=0

vzi ◦M
x,y
i , (2)

where Nx is the number of the decomposed tensors, vx is
1D vector along the x-axis, My,z is 2D matrix along the
y- and z-axis. The grid for color estimation Gc is defined
identically to Gσ . TensoRF takes input coordinates x ∈ R3

and viewing directions d ∈ S2, and produces 4D vectors
comprising of density and RGB values, such as,

σ(r) = ζ(Gσ(x)), (3)
c(r) = fθ(Gc(x), d), (4)

where θ denotes the parameters of shallow MLP for color
rendering and ζ denotes softplus activation function [8] .
Then these σ(r) and C(r) are finally used to compute pixel

intensity using volume rendering [7]:

C(r) =

Q∑
q=1

Tq(1− exp(−σ(r)q∆q))c(r)q, (5)

Tq = exp(−
q−1∑
p=1

σ(r)p∆p), (6)

where C(r) is the approximated intensity of ray r, q is sam-
pled points, and ∆p is the distance between pixels.

3.2. Patch Sampling

Random ray sampling has been widely used in NeRF
literature [18, 21, 45]. This approach selects rays arbitrar-
ily across the scene, where it is highly unlikely that it will
sample the rays belonging to a local region simultaneously.
However, as mentioned earlier, defocus blur occurs due to
the intermingling of neighboring pixels which happens due
to the shallow depth of field of the camera. In order to
model such interference of neighboring pixels, peripheral
region of the interesting pixel must be rendered as well.
Therefore, instead of conventional random ray sampling,
we adopted random patch sampling that samples a group
of rays within a close location, namely a patch. However,
rendering the neighboring pixels increases the training time,
and this increase is inevitable in deblurring neural fields lit-
erature. Naively reducing the number of rays to minimize
the training time rather degrades the reconstruction quality.
As the neural fields lack the notion of 3D consistency, we
adopted the patch sampling approach to model the blurring
phenomenon by learning the affinity among the neighboring
pixels.

Fig. 3 suggests that N×K×K pixels should be rendered
to produce blurred intensity values of N pixels, where N is
the number of target pixels and K × K is the size of blur
kernel. Interestingly, under random patch sampling, target
pixels can share their neighboring pixels within a patch so
that the number of neighboring pixels is reduced. Such that,
only (P ′ +K + 1)2 pixels need to be rendered to produce
the same number of target pixels, where P ′ is the width and
height of region to compute intensity. The number of sam-
pled rays is no longer dependent on N but P ′2, so random
patch sampling can effectively reduce the training time by
shrinking the amount of ray rendering. This approach saves
a lot of time, in contrast to NeRF that fetches thousands of
rays per training iteration where N >> P ′2. With random
patch sampling, we have reduced the number of required

neighboring rays per ray from K2 to (P ′+K+1)
2

P ′2 .

3.3. Sharpness Prior

We propose to leverage a sharpness prior to accurately
model the deblurring phenomenon for sharp NeRF. By ap-
plying this sharpness prior, sharpness level of image pixels
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is determined. This sharpness information plays a key role
in learning the suitable blur kernels for those pixels. We
used the defocus map estimation network (DMENet) [17],
which is the first end-to-end CNN framework to directly
estimate spatially varying defocus map from a given de-
focus image. We estimate defocus map of every training
view and quantize it uniformly into Nk values. Addition-
ally, the sharpness prior is computed only once as part of
the preprocessing, taking less than a couple of minutes, and
it does not affect the subsequent training and testing times.
Quantized defocus map is used as a sharpness level map L
which divides pixels into Nk groups based on their degree
of sharpness. Here, it is worth mentioning that our pro-
posed method is not specific to applying DMENet [17], but
is generic. That is, any operator from the literature can be
utilized as a sharpness prior as long as it can reliably mea-
sure the sharpness level of image pixels.

The original NeRF and many other derived works [18,
21, 45] treated the image pixels and their corresponding
rays independently. This approach considers that the col-
ors/intensities of the pixels/points have association only
along the ray, i.e., along the principal axis. This approach
ignores any transversal relation among neighboring points
or rays during volume rendering. Therefore, these works
cannot mitigate the defocus effects and result in blurry ren-
dered pixels. In contrast, we propose to exploit the transver-
sal relation among neighboring rays as well. Specifically,
we compute the sharpness level of points in their neighbor-
hood. Furthermore, we leverage depth information to im-
prove the extraction of regions with sharp focus. Initially,
we segment the scene based on depth information and as-
sess the level of focus within each segment. The calculation
of depth information is accomplished through the applica-
tion of the MIDAS [30].

3.4. Grid-based Blur Kernel

We propose multiple trainable grid-based blur kernels
B ∈ RNimg×Nk×K×K×C where Nimg is the number of
training views, Nk is the number of blur kernels, K is ker-
nel size, and C is the number of channels. We will omit
channel C for brevity from now on. Our grid-based blur
kernels can be directly optimized to model the spatially-
varying blurriness of the given scene, in contrast to the pre-
vious works [16, 20, 28] which employed MLP to generate
blur kernels. Learnable grid-based kernels allow to obtain
blur kernels wx of each pixel through simple indexing:

wx = F (B, L, x), (7)

where F is a mapping function that maps each pixel to
corresponding blur kernel wx ∈ RP ′×P ′×K×K based on
sharpness level L. Then we crop the clean image Ic along
to height and width with stride 1 and get cropped image
I ′c ∈ RP ′×P ′×K×K . Using the obtained wx and I ′c, blurred

image can be convolved from clean image as following:

Ib[h,w] =

K∑
i=0

K∑
j=0

I ′c[h,w, i, j]wx[h,w, i, j], (8)

where Ib is a blurred image with the shape of P ′ × P ′, [·]
is an indexing operation, and h, w represents index along
the height and width of image and blur kernels respectively.
Both blur kernels B and neural fields are optimized via loss
Lrecon in Eq. (9) which is an MSE loss within Ib and ground
truth image Igt:

Lrecon = ||Ib − Igt||2. (9)

Using learnable grid-based blur kernels, we can easily im-
prove expressivity of the blur kernels by simply increasing
the size of grid which does not require extra cost to produce
kernels and successfully rendered clean image even from
harshly defocus region.

Instead of optimizing per pixel blur kernels, we train Nk

blur kernels which is identical to the number of the unique
groups of L and pixels in a same group share a blur kernel,
for effective optimization. It is worth to note that applying
appropriate blur kernels to appropriate regions of the im-
ages plays pivotal role to estimate the scene blurriness be-
cause different regions in various depth of fields have vary-
ing degrees of blurriness. As pixels are blurred because of
the interference of the neighboring pixels, the value of blur
kernels tend to be spread widely to estimate the interrup-
tion of wide range of peripheral pixels if given pixels are
severely blurry, while they tend to focus on the central part
of neighboring pixels if given pixels are sharp. Fig. 4 shows
different form of blur kernels depending on the blurriness
of their interesting regions. Therefore, each blur kernel can
estimate blurriness correctly only if it is assigned to right re-
gion where the degree of blurriness is similar within pixels.
Table 3 shows the quantitative results on comparing build-
ing L with sharpness prior and other approaches without
sharpness prior.

4. Experiments
4.1. Implementation Details

We used TensoRF [4] as the baseline and build a grid-
based learnable kernel. Grid-based blur kernels are jointly
optimized with the grid-based neural fields, starting from
the first training iteration, as the grid-based neural fields
converge rapidly. We set the size of each blur kernel to
11, learning rate of the kernel to 0.05 and initialize with
2D Gaussian distribution. We use 400 for Nk and skip con-
volution for pixels in 100 groups of each view with high
sharpness value. For random patch sampling, we sample
28 patches with the patch size P = 22, so the number of
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Figure 3. Left: random ray sampling. Right: random patch sam-
pling. Blue pixels are P ′ × P ′ interesting pixels to be rendered
and skyblue pixels are required neighboring pixels for blur convo-
lution.

Figure 4. Visualization of blur kernels. From left to right, the val-
ues of kernels are widely spread which implies that leftmost kernel
is responsible for sharp region and rightmost kernel is responsible
for blurry region.

the interesting pixels P ′2 is 122. We reduce the grid res-
olution from 6403 to 4803 and raise the number of grid
component from 96 to 132. We use the learnable camera
response function proposed by [20]. All the experiments
were conducted on a single NVIDIA A100 GPU and please
refer TensoRF [4] for more details.

4.2. Evaluation Metrics

Usually during the image acquisition and processing,
distortions can cause an image’s quality to decrease. Ex-
amples of distortion include noise, blurring, ringing, and
compression artifacts. Efforts have been made to develop
impartial metrics of quality. A useful quality metric corre-
sponds favorably with the subjective assessment of quality
made by a human observer in many situations.
Full-reference quality metrics: If a distortion-free im-
age is available, it can be used as a reference to measure
the quality of other restored/reconstructed images. In such
cases, full-reference quality metrics can be used to compare
the target image with the reference image. We have used
peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) [44].
No-reference quality metrics: If distortion-free reference
image is not available, an alternative is to employ a no-
reference image quality metric. These metrics compute the
image quality based on image statistics. When compared to
full-reference metrics, all no-reference quality metrics typ-
ically perform better in terms of agreement with a subjec-
tive human quality score. We have used Blind/referenceless

image spatial quality evaluator (Brisque) [22], and Natural
image quality evaluator (Niqe) [23]. All of these quality
metrics have been defined in the supplementary material.

4.3. Dataset

We conducted experiments on the scenes which contain
real and synthetic defocus blurred images of the Deblur-
NeRF dataset [20]. There are ten scenes in the real de-
focus category and five in synthetic defocus category of
this dataset. They utilized the in-built skills of Blender to
produce depth-of-field images in order to reduce defocus
blur. Realistic defocus blur effects were obtained by es-
tablishing the aperture size and arbitrarily choosing a focal
plane between the nearest and farthest depths. They se-
lect a large aperture to capture the defocus image and use
COLMAP [36, 37] to compute the camera pose of the blur
and reference image in the real scene.

4.4. Results

In this section, we present full reports of experiments
with both qualitative and quantitative results. We compare
the proposed method to existing deblurring neural fields
models, Deblur-NeRF [4], DP-NeRF [16], and PDRF [28].
We also compare ours with TensoRF [4] trained with de-
blurred image using Restormer [55]. Restormer is a mod-
ern Transformer-based model that showed noticeable image
restoration performance. Table 1 shows the quantitative re-
sults on real defocus dataset evaluated using full-reference
quality metrics PSNR and SSIM. We also evaluated our
model using no-reference quality metrics, Brisque and Niqe
as shown in Table 2. Sharp-NeRF achieves comparable re-
sults to other MLP-based models consistently under various
image quality evaluation metrics and even attains state-of-
the-art performance under Niqe metric while reducing train-
ing time to less than a half hour which is the shortest train-
ing time among all deblurring neural fields models. Due to
the page limit, results on synthetic data and other experi-
ments will be covered in supplementary materials.

4.5. Ablation Studies

Sharpness Prior. Firstly, we conducted an ablation study
on the selection of focus measure operator. We compared
not only the hand-crafted operators like sum modified lapla-
cian (SML) [25] and Tenengrad [15], but also deep neural
network-based model DMENet [17]. The results are pre-
sented in Table 3. The better values of PSNR and SSIM
for DMENet [17] indicate that this sharpness prior is more
effective in accurately measuring the sharpness levels of im-
age pixels.
Sharpness Level. Next, we conducted experiments on
building sharpness level map L. It can be observed in Ta-
ble 4 that constructing L using sharpness measurement is a
major factor that considerably affects the rendering quality.
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Table 1. Quantitative results on real defocus dataset under Full-reference metrics.

Cake Caps Cisco Coral Cupcake
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NeRF [21] 24.42 0.72 22.73 0.63 20.72 0.72 19.81 0.56 21.88 0.68
TensoRF [4] 24.08 0.70 21.55 0.53 20.56 0.70 19.27 0.54 21.16 0.65

Restormer [55]+TensoRF 23.96 0.68 21.54 0.51 20.28 0.69 19.15 0.52 21.37 0.65
Deblur-NeRF [20] 26.27 0.78 23.87 0.71 20.83 0.72 19.85 0.59 22.26 0.72

DP-NeRF [16] 26.16 0.77 23.95 0.71 20.73 0.72 20.11 0.61 22.80 0.74
PDRF-5 [28] 27.03 0.79 24.29 0.72 20.67 0.72 19.65 0.58 22.94 0.74

PDRF-10 [28] 27.06 0.80 24.06 0.71 20.68 0.72 19.61 0.58 22.95 0.74
Ours 26.23 0.77 23.98 0.70 20.88 0.72 20.07 0.59 22.75 0.73

Cups Daisy Sausage Seal Tools Average Time
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ Hours ↓

NeRF [21] 25.02 0.75 22.74 0.62 17.79 0.48 22.79 0.62 26.08 0.85 22.40 0.66 2.30
TensoRF [4] 23.56 0.70 22.74 0.63 17.04 0.44 21.19 0.55 21.75 0.74 21.29 0.62 0.39

Restormer [55]+TensoRF 23.03 0.68 22.53 0.62 16.59 0.42 20.52 0.52 23.78 0.79 21.28 0.61 0.39
Deblur-NeRF [20] 26.21 0.79 23.52 0.68 18.01 0.49 26.04 0.77 27.81 0.89 23.46 0.71 10.35

DP-NeRF [16] 26.75 0.81 23.79 0.69 18.35 0.54 25.95 0.77 28.07 0.89 23.67 0.72 20.20
PDRF-5 [28] 26.37 0.80 24.30 0.73 18.82 0.55 26.12 0.78 28.00 0.89 23.82 0.73 1.00

PDRF-10 [28] 26.39 0.80 24.49 0.74 18.94 0.56 26.36 0.79 28.00 0.89 23.85 0.73 1.67
Ours 25.34 0.77 23.66 0.70 18.77 0.54 25.82 0.77 27.98 0.90 23.55 0.72 0.48

Table 2. Quantitative results on real defocus dataset under No-reference metrics

Cake Caps Cisco Coral Cupcake
Brisque↓ Niqe↓ Brisque↓ Niqe↓ Brisque↓ Niqe↓ Brisque↓ Niqe↓ Brisque↓ Niqe↓

TensoRF [4] 30.27 3.11 33.90 3.08 35.03 3.83 36.15 3.45 38.24 3.82
Deblur-NeRF [20] 25.78 3.23 28.8 3.33 31.89 3.86 39.18 4.43 33.68 3.51

DP-NeRF [16] 24.15 3.24 26.52 3.34 30.22 3.68 36.77 4.37 32.43 3.46
PDRF-5 [28] 25.00 3.60 37.37 3.58 30.66 3.97 35.75 4.13 32.17 3.71

PDRF-10 [28] 21.93 3.50 30.46 3.40 30.39 3.84 38.07 3.99 31.52 3.59
Ours 27.54 3.26 31.66 3.22 28.56 3.63 29.43 3.59 31.05 3.49

Cups Daisy Sausage Seal Tools Average
Brisque↓ Niqe↓ Brisque↓ Niqe↓ Brisque↓ Niqe↓ Brisque↓ Niqe↓ Brisque↓ Niqe↓ Brisque↓ Niqe↓

TensoRF [4] 37.41 3.58 36.79 4.07 36.86 3.56 34.72 3.18 39.65 3.49 35.90 3.52
Deblur-NeRF [20] 32.65 3.40 29.10 4.11 28.63 3.37 32.09 3.46 31.44 3.14 31.32 3.58

DP-NeRF [16] 31.00 3.33 30.01 4.09 30.17 3.38 31.82 3.29 29.86 3.05 30.29 3.52
PDRF-5 [28] 33.75 3.60 29.18 4.37 29.38 3.60 32.78 3.45 35.73 3.44 32.18 3.75

PDRF-10 [28] 29.09 3.46 28.40 4.24 26.67 3.49 29.31 3.50 34.28 3.29 30.01 3.63
Ours 33.70 3.29 26.35 3.85 28.51 3.45 32.63 3.19 33.10 3.13 30.25 3.41

Table 3. Ablation study on selection of the sharpness prior. Aver-
age values for the real defocus testset have been mentioned.

Methods PSNR ↑ SSIM ↑
SML [25] 22.56 0.67

Tenengrad [15] 22.49 0.66
DMENet [17] 23.55 0.72

Table 4. Ablation study on constructing sharpness level map. Ran-
domly assigning (Random) and allocating pixels into the groups
based on their position (Local) show degraded performance.

Methods PSNR ↑ SSIM ↑
Random 22.09 0.66

Local 21.43 0.63
Ours 23.55 0.72

Table 5. Comparison on kernel generation time.

Methods Time ↓
MLP-based kernels 2.20 ms

Ours 0.18 ms

Kernel Generation Time. Finally, we investigated the time
taken by the MLP-based and grid-based methods in generat-
ing the blur kernels. To do so, we computed the time taken
by the recent MLP-based blur kernels of PDRF [28] and
by our method. These times are computed for real defocus
dataset, and their average values are mentioned in Table 5.
The considerably reduced time of our method indicates its
superiority in terms of computational efficiency.
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Figure 5. Qualitative results on real defocus dataset. Our proposed method renders sharp images which have vivid colors and fine details.

5. Limitations & Future Works

Although our approach, involving learnable grid-based
blur kernels, has produced appreciably good quality results,
yet it has limitation. For example, our method produces de-
graded results for motion blurred images. This is because
our approach relies on the sharpness measurement of the
input images, and we have incorporated a sharpness prior
only for the defocus blur, and not for the motion blur. In
other words, when the input images have motion blur, our
sharpness prior fails in accurately estimating the sharpness
of the pixels, which ultimately leads to the poor quality of
rendered images. However, it is worth mentioning that this
limitation is due to the design methodology of our approach.
For instance, instead of defocus blur, our approach can be
adjusted and applied to motion blurred scenes by incorpo-
rating a sharpness prior designed for the motion blurred im-
ages. We anticipate that estimation of the camera motion
blur can be achieved by computing the orientation and mag-
nitude of blurriness in the pixels using higher order deriva-
tives, and we will explore it in our future work. Further, it
seems interesting that whether few other priors, or group
of priors, can be incorporated in our method to produce
good quality results for other image degrading situations,
like haze, raining, and under water imaging. In future, we
will learn the blur kernels in 3D and we will cover all types
of blur. Further, we will seek any gain that can be achieved

by learning the kernels through joint optimization with the
rest of the network.

6. Conclusion

This paper proposes first fully grid-based deblurring
neural fields—Sharp-NeRF. In the literature, it has been
observed that grid-based neural fields suffer from qual-
ity degradation when rendering under imperfect conditions
such as defocused images [28]. To overcome this short-
coming, in this work, we proposed novel learnable grid-
based blur kernels. This approach can produce blur ker-
nels with simple indexing and sharpness measurement to
promote blur kernel optimization. Coupled with grid-based
kernel and random patch sampling, we could achieve state-
of-the-art training time, taking only a half an hour to train.
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