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Abstract

Natural scene analysis and remote sensing imagery
offer immense potential for advancements in large-scale
language-guided context-aware data utilization. This po-
tential is particularly significant for enhancing perfor-
mance in downstream tasks such as object detection and
segmentation with designed language prompting. In light of
this, we introduce the CPSeg (Chain-of-Thought Language
Prompting for Finer-grained Semantic Segmentation), an
innovative framework designed to augment image seg-
mentation performance by integrating a novel ”Chain-of-
Thought” process that harnesses textual information as-
sociated with images. This groundbreaking approach has
been applied to a flood disaster scenario. CPSeg encodes
prompt texts derived from various sentences to formulate a
coherent chain-of-thought. We use a new vision-language
dataset, FloodPrompt, which includes images, semantic
masks, and corresponding text information. This not only
strengthens the semantic understanding of the scenario but
also aids in the key task of semantic segmentation through
an interplay of pixel and text matching maps. Our qualita-
tive and quantitative analyses validate the effectiveness of
CPSeg.

Image segmentation has emerged as a critical compo-
nent in the analysis of remote sensing imagery, aiming to
partition an image into multiple segments, or sets of pix-
els, that correspond to distinct objects or object compo-
nents [3,13,16,30,34,36]. Its significance is further magni-
fied in the context of remote sensing as a global observation
system, encompassing various applications such as urban
planning, resource management [20, 25, 35], environmental
monitoring [14, 15, 40], and particularly, disaster response
[23]. However, accurately segmenting remote sensing im-
ages using language modeling is confronted with complex-
ities arising from diverse textures, irregular shapes, corre-
sponding alignment, and varying scales present in these im-
ages. Consequently, the development of effective segmen-

Figure 1. In the visualization of fine-grained image seman-
tic segmentation, the incorporation of chain-of-thought language
prompting proves instrumental in attaining meticulous and accu-
rate outcomes. The left panel of the illustration showcases a bird’s-
eye view, juxtaposed with the output mask derived from the ap-
plication of CPSeg to the original image. This arrangement of-
fers a comprehensive outlook on the original image and its cor-
responding segmentation. Conversely, the right panel emphasizes
the chain-of-thought prompting process, employing diverse ques-
tion types. It showcases color-coded masks that represent each
thought-provoking question in the chain, accompanied by their
finer-grained segmentation outputs. This dual-paneled visualiza-
tion approach effectively portrays the intricate procedure and in-
tricate outcomes of image semantic segmentation through the uti-
lization of chain-of-thought language prompts.

tation with contrastive VL (Vision-Language) pre-training
remains an ongoing challenge and a research priority.

Drawing inspiration from the success of contrastive
VL pre-training, specifically CLIP [22], several recent
works [12, 24, 32, 33] have explored CLIP-based segmenta-
tion approaches to improve the transfer of language features
and enhance segmentation performance. VL segmentation
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methods [11,12,32] also face challenges in terms of training
with additional image data, acquiring segmentation anno-
tations, or obtaining natural language supervision. These
challenges are crucial when adapting pre-trained vision-
language models to downstream segmentation tasks, and
they significantly impact the optimization and scalability of
these models.

Existing methodologies for VL based image semantic
segmentation often overlook the incorporation of human
cognitive processes and sequential thought patterns [29],
particularly within the field of remote sensing where such
approaches are scarce. The work of Wei et al. [29] intro-
duced a chain-of-thought network that demonstrated the ef-
fectiveness of this approach in natural language processing.
However, there has been limited exploration of this method-
ology in the context of image segmentation. This gap in
research becomes evident when analyzing complex images,
such as flood scenes [23], as depicted in Figure 1. A hu-
man observer naturally engages in a tiered process of anal-
ysis, initially identifying distinct classes within the image
(e.g., buildings or roads), followed by evaluating the quan-
tity and extent of their impact due to flooding (e.g., num-
ber of submerged buildings or impassable roads). Unfortu-
nately, this sequential and logical cognitive process remains
largely unexplored in existing image semantic segmentation
frameworks. This presents an opportunity to enhance these
models by integrating insights from human cognitive pro-
cessing.

Meanwhile, the progress in remote sensing technologies
has opened up intriguing possibilities for enhancing image
segmentation methodologies. In this study, we aim to in-
vestigate this potential by introducing a novel framework
for image segmentation that harnesses language-guided
context-aware data, an approach that has been widely uti-
lized in the analysis of natural scenes but remains relatively
unexplored in the domain of remote sensing imagery. Our
experimental results have substantiated the effectiveness of
the proposed framework, specifically in its utilization of a
chain-of-thought process to iteratively incorporate textual
information into the image segmentation pipeline.

Our work explore to address this gap by introducing a
novel framework that utilizes a chain-of-thought continual-
vision strategy to enhance image segmentation in remote
sensing. While several studies have explored different
strategies to improve image segmentation accuracy, our ap-
proach focuses on leveraging the chain-of-thought process,
which involves sequential reasoning to analyze complex im-
ages. By mimicking human cognition, this approach en-
ables the sequential thought process that humans employ
to identify, relate, and understand various elements within
an image. Our framework integrates textual information de-
rived from images in a continuous manner, effectively lever-
aging language data to enhance segmentation performance.

This approach is particularly beneficial in time-critical sce-
narios such as disaster response, where the ability to not
only identify but also understand the spatial relationships
and context of objects through chain-of-thought processing
in an image can be crucial.

Our findings demonstrate that our proposed method sig-
nificantly improves segmentation outcomes in a flood dis-
aster scenario when using the FloodPrompt for empirical
validation. The utilization of a text encoder to process
prompt texts from different sentences, and the incorpora-
tion of the encoded information in the semantic segmenta-
tion task, have proven to be particularly advantageous. Our
contributions can be summarized as follows:

• We introduce a novel methodology for finer-grained
image semantic segmentation specifically designed for
remote sensing imagery, harnessing the power of lan-
guage prompting.

• We propose a novel task that incorporates the concept
of chain-of-thought prompting into the domain of im-
age semantic segmentation, paving the way for more
advanced segmentation algorithms.

• Through an extensive validation process, we demon-
strate that our proposed FloodPrompt dataset outper-
forms conventional methods in terms of label semantic
segmentation and language-guided approaches, high-
lighting its superior efficacy.

We begin this paper with a comprehensive introduction,
which includes a detailed overview of our novel framework
and a review of related work in the field. We then proceed
to present a thorough explanation of our methodology, out-
lining the various components and their roles. Following
this, we provide an extensive analysis of our experimental
results, encompassing both quantitative and qualitative as-
sessments. To further elucidate the contributions of differ-
ent components, we also include an ablation study. Finally,
we conclude the paper with a discussion on the implications
of our findings and outline potential avenues for future re-
search.

1. Related Work
Vision-language pre-training. Recent advancements in
vision-language models, which are pre-trained on large-
scale image-text datasets, have demonstrated remarkable
efficacy in adapting to novel tasks within the context of
zero-shot and few-shot learning, spanning diverse domains
[1, 2, 31]. These developments highlight the significant
potential for applying such models in complex computa-
tional domains. Notably, models incorporating dual en-
coders, multi-modal encoders, and encoder-decoders, such
as CLIP, have further improved cross-modal representation
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Figure 2. The CPSeg framework is designed for image semantic segmentation and involves several key steps. Firstly, it extracts embeddings
from both images and chain-of-thought text prompts. These embeddings are then used to compute pixel-text aware maps, which represent
a novel adaptation of CLIP’s image-text matching problem. CPSeg introduces a context-aware approach that enables dense prediction in
segmentation tasks. Additionally, it incorporates a transformer module [27] for both the text and vision backbone, leveraging pre-trained
knowledge to improve the accuracy of segmentation results. This innovative methodology expands the possibilities for achieving more
precise and nuanced image semantic segmentation.

quality through contrastive pre-training. Concurrently, the
”pre-training + fine-tuning” paradigm has revolutionized
computer vision and natural language processing by ini-
tially pre-training models on extensive datasets like Ima-
geNet [10], JFT [26], and Kinetics [6], followed by fine-
tuning for various downstream tasks. This framework of-
ten evolves into a prompt-based paradigm, wherein down-
stream tasks are reformulated to align with those addressed
during the pre-training process. Collectively, these strate-
gies reflect the evolving landscape of vision-language pre-
training, holding promise for advancing performance in
complex tasks.

Image segmentation with Vision-language. Image seg-
mentation [7, 17, 19, 37] remains a central yet challeng-
ing task in computer vision, particularly when segmenting
novel visual categories. A variety of approaches have been
explored, including unsupervised, zero-shot segmentation,
and methods leveraging vision-language models. Unsu-

pervised segmentation approaches often focus on cluster-
ing dense image representations and matching these to cor-
responding segmentation categories, while vision-language
(VL) [18, 39] driven strategies aim to replace the match-
ing process with text encoders for enhanced efficiency and
transferability. Meanwhile, transferring methods [4] of-
ten necessitate class-agnostic or class-specific segmentation
annotations, despite recent innovations using VL models.
In the context of these developments, this paper explores
image-free semantic segmentation, aiming for practical ap-
plicability in scenarios where only segmentation vocabulary
is given, providing a simpler alternative to collecting images
or other annotations. To address the significant annotation
burden associated with previous supervised pre-training set-
tings, several self-supervised pre-training approaches have
been introduced in the field of dense prediction [5, 24, 28]
with fine-tuning strategy that harnesses the knowledge em-
bedded within large-scale vision-language pre-trained mod-
els. Importantly, this strategy incorporates language infor-
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mation as a guiding component within the learning pro-
cess, marking a distinct departure from traditional method-
ologies. The evolving intersection of computer vision and
natural language processing fields, especially with vision-
language pre-training, offers new perspectives for these
challenges, with models like CLIP demonstrating impres-
sive transferability over diverse classification datasets. Yet,
very few attempts have been made to apply such models
to image segmentation prediction tasks, making it a com-
pelling area for future exploration.

2. Methodology
The CPSeg begins with the extraction of embeddings

from both the input image and the chain-of-thought text
prompts. These embeddings are then utilized to generate
pixel-text aware maps. we adapt the chain-of-thought pro-
cess to suit the specific requirements of our task, namely,
improving the interpretative capability of our model with
the help of corresponding textual information.

2.1. Overview

The CPSeg framework incorporates a dynamic calcula-
tion of the pixel-text match loss within the pixel-text aware
map, which is updated by the transformer’s parameters as
more prompts are provided. The resulting score maps are
then fed into a decoder that utilizes ground-truth labels for
supervision. Moreover, CPSeg capitalizes on the wealth of
pre-trained knowledge(CLIP) by leveraging contextual in-
formation present in images to guide the language model
prompts. This is achieved through the integration of a trans-
former module, enabling the framework to optimize its un-
derstanding of the image’s context and thereby improving
the quality of the segmentation results. The overall archi-
tecture of CPSeg establishes it as a robust and efficient tool
for image semantic segmentation.

The chain-of-thought process as show in Figure 3, a cru-
cial element of this framework, is rooted in the theoreti-
cal understanding of human cognition. The methodology of
CPSeg employs a pre-trained Vision Transformer, denoted
as V . It mandates various prerequisites including the total
number of tasks, T ; a comprehensive training set, denoted
as {(Iti , Lt

i)}
Nt,T
i=1,t=1; a collection of prompts, Q, and their

respective keys, K. Subsequent steps involve the determi-
nation of specifics like the number of training epochs for the
t-th task, Et, the learning rate η, and a balancing parameter
λ. The objective is to update and optimize the parameters
of V , Q, and K, using a hierarchical prompting mechanism.
For more details about prompting mechanism, refer to sup-
plement.

It breaks down complex tasks into a sequence of smaller,
more manageable decisions. This offers a practical ap-
proach for handling intricate data analysis tasks such as im-
age segmentation. Formally, given an image I with pixel

data P = p1, p2, . . . , pn, the chain-of-thought process han-
dles the segmentation task as a sequence of decisions con-
cerning each pixel pi. CPSeg enhances this process by in-
tegrating context-aware data guided by language. In partic-
ular, we construct a chain of thoughts C = c1, c2, . . . , cm,
where each thought ci corresponds to a sentence si in the
text accompanying the image. Each thought ci consists of a
text encoder T (ci) and a pixel-level segmentation function
fci(pi), generating a sequence of segmentation decisions
D = d1, d2, . . . , dm, with each decision di corresponding
to a thought ci.

To support this process, we employ a text encoder E
that generates encoded representations from diverse sen-
tence prompts. Formally, for a given sentence si, we de-
rive its encoded representation ei = E(si), where ei cap-
tures the semantic details in si. This encoding procedure
enables our framework to leverage the semantic context pro-
vided by the language data, enhancing the capability of the
chain-of-thought process. The encoded data subsequently
facilitates the downstream task of semantic segmentation.
Each segmentation function fci(pi) in the thought ci em-
ploys the corresponding encoded representation ei to make
better-informed decisions about pixel classification. Specif-
ically, for a given pixel pi, the segmentation decision di is
computed as di = fci(pi, ei). This allows our framework
to make use of both the spatial information from the pix-
els and the semantic information from the text, achieving
more accurate and context-aware segmentation outcomes
through chain-of-thought prompting. The Figure 3 illus-
trates the flow of the chain-of-thought prompting process in
the CPSeg framework.

2.2. Language Prompting.

The proposed framework begins with an initial pre-
trained segmentation network S. The system is designed
to handle T tasks, each consisting of its own set of epochs
denoted as Et. At each epoch, a mini-batch is randomly
sampled from the dataset, and suitable prompts and keys are
generated for each image within the mini-batch. The algo-
rithm incorporates a control mechanism that verifies the rel-
evance of the query questions and corresponding answers.
For instance, if the question relates to the number of flooded
buildings, the controller specifically seeks out this informa-
tion and retrieves the appropriate answer.

The framework supports various types of prompts, in-
cluding simple counting and condition recognition, as de-
picted Figure 3. These prompts and keys are applied to the
segmentation network, and the loss is calculated. Subse-
quently, the segmentation network is refined using gradi-
ent descent. This process is repeated for all images, mini-
batches, and tasks, resulting in an updated segmentation
network.

The construction of the entire chain-of-thought is hier-
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Figure 3. Our chain-of-thought prompting pipeline is intricately designed to elicit comprehensive responses. When relevant classes are
identified, the pipeline proceeds to inquire about the precise numbers involved. Furthermore, it thoroughly examines all the potential
questions within the context, ensuring a robust and detailed understanding.

archical in nature, starting with macro-level considerations
before delving into the specifics. In curating the prompts,
we’ve orchestrated the keys in a hierarchical manner, com-
mencing from overarching descriptors of the entire image
and subsequently delving into more granular details, such
as the presence of infrastructure elements like buildings
and roads. This structured approach ensures a systematic
progression from a macroscopic view to refined prompt-
ing. In the event of flood-related incidents, subsequent
prompts elucidate on the inundation of infrastructure ele-
ments, quantifying inundated buildings, and further delin-
eating the intricacies of the flooding scenario and its con-
comitant implications.

For instance, the initial query might be regarding the
presence of flooding, which then transitions into contem-
plation about the presence of buildings, and subsequently,
the number of buildings inundated.

2.3. Vision Backbone.

The CPSeg framework tackles the challenge of seman-
tic segmentation by adopting a Vision-and-Language (VL)
encoder-decoder model. The objective is to decode a cat-
egory word for each densely populated image region, con-
sidering M semantic categories of interest. However, a key
challenge arises when specific semantic category words are
tokenized into multiple subwords within the dictionary, in-
troducing complexity to the task.

To overcome this challenge, we employ a Vision Trans-

former (ViT) as the encoder, enabling the extraction of
highly detailed and efficient visual content representations.
During the inference process, the encoder and decoder in-
teract synergistically to generate the semantic segmentation
mask. The decoder plays a vital role in converting the dense
feature representation obtained from the encoder into cate-
gory predictions for each image region. It handles the com-
plexities arising from semantic relationships and potential
subword tokenization. This approach strikes a balance be-
tween theoretical complexity and practical efficiency, pro-
viding an effective methodology for semantic segmentation
tasks with reduced complications.

2.4. Loss fuction.

Pixel-Text Matching Loss. The alignment between the
image pixels and textual prompts can be quantified using
the Pixel-Text Matching Loss function, mathematically de-
noted as LPTM. Let us denote the set of image pixels as P =
pii = 1N and the set of textual prompts as T = tjj = 1M .
A similarity score s(pi, tj), computed using an appropri-
ate metric such as the cosine similarity or dot product, is
assigned to each pair of pixel pi and text prompt tj . The
Pixel-Text Matching Loss is then computed as the negation
of the accumulated similarity scores:

LPTM = −
N∑
i=1

M∑
j=1

s(pi, tj). (1)

This loss function is minimized during the model train-
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Figure 4. Visual Comparison of Segmentation Results: A comparative study of segmentation performance across DeepLab V3+, Dense-
CLIP, PSPNet, and our proposed CPSeg.

ing phase, with the aim of maximizing the overall similarity
between the pixels and prompts. By doing so, the model is
incentivized to learn representations that improve the corre-
spondence between similar pixels and prompts.

Semantic Segmentation Loss. Our method compute
score maps in segmentation. These score maps s ∈
RH4W4×K can be treated as smaller-scale segmentation re-
sults. We compute a segmentation loss on them:

Lseg = CrossEntropy(Softmax(s/τ),y), (2)

where τ = 0.07 is a temperature coefficient following
prior work [39], and y ∈ 1, . . . ,KH4W4 denotes the ground
truth labels.

3. Experiments
3.1. Dataset

To validate the efficacy of our proposed methodology,
we adapted FloodNet dataset [23] for FloodPrompt and uti-
lized FloodPrompt for our experiments. FloodPrompt is a
diverse and challenging dataset, containing a variety of re-
mote sensing images pertinent to flood scenarios. Given the
paucity of studies addressing image segmentation in such
scenarios, we propose FloodPrompt provides a relevant and
complex testing ground for our framework. The dataset en-
compasses numerous instances of flooding events captured
through remote sensing technology, all annotated with de-

tailed text descriptions, making it a suitable candidate for
evaluating our language-guided segmentation approach.

The textual descriptions associated with each image
were preprocessed, tokenized, and encoded using the text
encoder component of our framework. To ensure a fair com-
parison, the proposed method was compared with state-of-
the-art segmentation methods, under identical conditions.
The evaluation metrics employed for comparison included
Intersection over Union (IoU), pixel accuracy, and mean ac-
curacy, amongst others.

3.2. Results

We base the mmsegmentation [9] to implement CPSeg.
The results of our experiment were encouraging and pro-
vided substantial evidence in favor of our proposed method.
From a quantitative perspective, our method consistently
outperformed the state-of-the-art segmentation methods on
all the evaluation metrics. For instance, the average IoU
score for our method was significantly higher than that of
other methods as shown in Figure 4, and the segmented im-
ages showed that our method was able to accurately seg-
ment the various regions in the flood images, such as water
bodies, vegetation, and urban areas.

A detailed qualitative analysis, as presented in Table 1,
further attests to the efficacy of our proposed methodology.
DeepLab V3+ and PSPNet primarily use image-based seg-
mentation, whereas DenseCLIP combines standard CLIP
prompts with image segmentation masks. Our observa-
tions underscore the value of incorporating textual descrip-
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Method Building
Flooded

Building
Non-
Flooded

Road
Flooded

Road
Non-
Flooded

Water Tree Vehicle Pool Grass mIoU

ENet [21] 6.94 47.35 12.49 48.43 48.95 68.36 32.26 42.49 76.23 42.61
DeepLabV3+ [8] 32.7 72.8 52.00 70.2 75.2 77.00 42.5 47.1 84.3 61.53
SegFormer-B0 [30] 70.81 79.04 69.09 85.27 80.86 86.06 56.02 66.13 91.06 76.20
PSPNet [38] 68.93 89.75 82.16 91.18 92.00 89.55 46.15 64.19 93.29 79.69
DenseCLIP [24] 72.98 79.55 65.94 84.48 78.97 85.74 55.01 63.74 90.92 75.14
CPSeg 75.54 92.12 83.46 91.24 92.01 93.21 48.01 64.15 94.21 82.43

Table 1. Per-class results with IOU and mIoU on FloodPrompt testing set.

Figure 5. The performance with random prompting vs chain-of-
thought prompting.

tions into segmentation, leading to richer context-aware out-
comes. For example, when a text description highlighted a
flooded street, our method adeptly identified and segmented
this specific region in the image, a task at which traditional
segmentation methods often faltered. This success high-
lights the utility and impact of the chain-of-thought process
and language-guided context in enhancing image segmen-
tation performance.

In conclusion, our experimental results unequivocally
demonstrated the superiority of our proposed chain-
of-thought, language-guided context-aware segmentation
method over traditional image segmentation methods. By
leveraging the power of language data, we were able to en-
hance the performance of image segmentation, particularly
in the challenging and relatively unexplored domain of re-
mote sensing imagery in flood scenarios.

4. Ablation Study
Firstly, we evaluated the impact of the chain-of-thought

process. To do this, we compared the performance of our
full model with a version that excluded the chain-of-thought
process. We experiment different prompts, which standard
prompt, random prompt, two prompts, and chain-of-thought
prompt, with the mIoU. The objective was to quantify the
effect of sequentially injecting textual information into the

Prompts mIoU ↑
Standard prompt 75.26
Two prompts 75.98
Random prompt 76.23
Chain-of-thought prompt 82.43

Table 2. Ablation study with various prompting learning.

image segmentation process. Our results in Table 2 showed
a substantial decrease in segmentation performance when
the chain-of-thought process was omitted. The associated
standard and random prompts provide only a macro-level
cue, with the latter randomly selecting one of the available
prompts.

Specifically, the IoU score is higher indicating that the
chain-of-thought process indeed plays a vital role in im-
proving segmentation precision. This affirmed our hypoth-
esis that a continual information stream could enhance the
understanding of the scene, leading to improved segmenta-
tion outcomes.

Our FloodPrompt data is finer-grained classes segmen-
tation tasks, we also set experiments for our network for
the finer-grained semantic segmentation. We combine the
non-flooded building and flooded building for a building
class and non-flooded road and flooded road for the road
classes. Table 4 indicate if we combine the flooded and
non-flooded building and road for the same classes, build-
ing, and road. Our CPSeg still work for the combined labels
with the chain-of-thought prompting with implicit learning.

In addition to performance comparisons, we analyzed
the computational efficiency of our method relative to
the baseline DenseCLIP, which also employs a Vision-
Language model. Experiments were conducted on an
NVIDIA A100 GPU, processing images of size 1024 ×
1024. Our model, CPSeg, exhibits lower computational
complexity in terms of both parameters and floating point
operations per second (FLOPs), as shown in the Table 5.
The recorded inference time for CPSeg is 42.85 FPS. These
findings underscore the advantage of our chain-of-thought
approach in handling finer-grained semantic segmentation
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Object Class Images (Flooded/Non-Flooded) Images (Total) Instances (Total)
Building 275/1272 (275+1272) (3573+5373)
Road 335/1725 (335+1725) (649+3135)
Vehicle -/1105 1105 6058
Pool -/676 676 1421
Tree -/2507 2507 25889
Water -/1262 1262 1784

Table 3. For experimental purposes in our CPSeg pipeline, we have compared the number of finer-grained segmentation classes and
consolidated number within the same class.

Data Type mIoU ↑
Original Data 82.43
Combined Data 87.89

Table 4. Segmentation analysis with different type data.

Method FLOPs(G) Params(G) Inf time (fps)
DenseCLIP 1043.1 105.3 44.56
CPSeg 1037.4 100.8 42.85

Table 5. Performance with baseline for segmentation analysis.

tasks, offering not only superior performance but also in-
creased efficiency compared to existing methods.

In conclusion, our ablation study provided valuable in-
sights into the functioning of our proposed method. The re-
sults clearly showed that both the chain-of-thought process
and the text encoder are crucial for our method’s superior
performance, thus justifying their inclusion in the frame-
work. Furthermore, our study served to emphasize the sig-
nificance of a detailed component-wise analysis in under-
standing and refining complex methodologies.

5. Discussion
While our research yields promising results, it is criti-

cal to recognize its constraints. Our experiments are pred-
icated on a specialized dataset, targeting a specific disaster
scenario - floods. Therefore, the efficacy of the proposed
CPSeg method might differ with varying dataset and dis-
aster contexts, warranting exploration in diverse scenarios
like forest fires or earthquakes. Additionally, our current
chain-of-thought process predominantly relies on textual
cues. Hence, integrating other forms of context-sensitive
data, including spatial or temporal aspects, might enhance
the model’s performance.

Strategically mapping these components, from an over-
arching view down to nuanced intricacies, is of paramount
importance in this domain. As we progress, the pursuit of
integrating multi-modal facets via the ’chain of thought’
framework holds substantial promise. Refinement of the
chain-of-thought process could potentially yield significant

improvements in segmentation performance. Further, the
incorporation of diverse forms of contextual data could aug-
ment the versatility and robustness of our framework. There
also lies the intriguing possibility of exploring zero-shot
learning in conjunction with chain-of-thought prompts from
pre-trained Vision-and-Language models. Contrary to the
conventional CLIP-based methodologies for image segmen-
tation, our approach underscores the profound learning of
image representation, which is achieved through the sys-
tematic provision of progressively granular prompts. Lastly,
investigating the application of CPSeg other various scenar-
ios could not only validate its effectiveness across contexts
but also highlight areas requiring further improvement.

6. Conclusion

In conclusion, this study introduces CPSeg, a pioneer-
ing approach that employs a novel ”Chain-of-Thought”
process, leveraging language prompting to achieve finer-
grained semantic segmentation in the field of remote sens-
ing imagery. The work target particular applicability in
flood disaster scenarios, capitalizes on the textual descrip-
tions associated with images to enhance semantic under-
standing and improve segmentation performance. Through
comprehensive validation, CPSeg demonstrates remarkable
efficacy, pushing the boundaries of large-scale, context-
aware data utilization and opening up new avenues for ad-
vancements in this domain. The results of this study offer
valuable insights and contribute to the growing body of re-
search on vision-language integration and its applications in
remote sensing. The generalized methodology is amenable
to application in alternative image scenarios, provided that
comprehensive contextual details are available. We believe
the approach based on chain-of-thought ideas can greatly
enhance high-level tasks such as segmentation, detection,
and regression.
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