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Figure 1. We propose an algorithm to generate diverse and unlimited long sequences without a driving source. The sequence is controlled
by the tokens produced by a high-level policy. It makes smooth transitions between states and has natural movement within a state.

Abstract

How to generate diverse, life-like, and unlimited long
head/body sequences without any driving source? We ar-
gue that this under-investigated research problem is non-
trivial at all, and has unique technical challenges behind it.
Without semantic constraints from the driving sources, us-
ing the standard autoregressive model to generate infinitely
long sequences would easily result in 1) out-of-distribution
(OOD) issue due to the accumulated error, 2) insufficient
diversity to produce natural and life-like motion sequences
and 3) undesired periodic patterns along the time. To tackle
the above challenges, we propose a systematic framework
that marries the benefits of VQ-VAE and a novel token-
level control policy trained with reinforcement learning us-
ing carefully designed reward functions. A high-level prior
model can be easily injected on top to generate unlimited
long and diverse sequences. Although we focus on no driv-
ing sources now, our framework can be generalized for
controlled synthesis with explicit driving sources. Through
comprehensive evaluations, we conclude that our proposed
framework can address all the above-mentioned challenges
and outperform other strong baselines very significantly.

1. Introduction

Recently, synthesizing the character motion (both head
and body, rigid or non-rigid) given a certain kind of driving
source emerges as a popular topic [29,38,46,52,53]. For ex-

ample, Learning2Listen [29] is able to predict both the head
pose and non-rigid facial expressions of the listener when
given both the audio and video sequence of the speaker. PC-
AVS [52] can generate a sequence of photo-realistic talking
heads when given a driving audio, a reference video for the
head pose, and a target face image. Similarly, Bailando [38]
can synthesize a dancing body motion sequence for a music
audio input. Those models all aim to build semantic cor-
respondence between the character motion and the external
driving sources, i.e., the lip motion has to be aligned with
the corresponding audio segment, and the body motion has
to be compatible and harmonized with the rhythm and beat
of the driving music. However, there are many scenarios
where the character still needs to be continuously animated
without an observable driving source, especially when con-
trolling and synthesizing long and versatile character mo-
tions that are life-like. For example, in the “idle” state of a
VTuber, when there is no interaction and hence not respond-
ing to any external signals, it’s indispensable to control the
motion behaviors to make it look natural. And perhaps the
demand for naturalism is even higher for live streaming of
a photo-realistic digital human avatar in order to cross the
uncanny valley. Therefore, how to model and control such
motion behaviors becomes an urgent yet important research
problem, while we move toward the era of the metaverse.

This is not a trivial problem compared to the scenario
when the driving source exists. There is one key difference
between these two tasks. When the driving source is avail-
able, the model is conditioned on the driving information
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at the same timestamp and thus trained to learn the corre-
spondence between the input and output. However, when
the driving source is absent, the only information that the
model can condition on is the past sequence, which is also
generated by the model itself. We argue that such autore-
gressive motion synthesis may bring multiple fatal conse-
quences, namely 1) the out-of-distribution issue, 2) the lack-
ing of diversity issue, and 3) the periodic repeating pattern
issue. These problems will be carefully analyzed in Sec. 3.

To fill the gap and address the above challenges, in this
paper, we officially define the problem of controlling char-
acter motions without a driving source. Our algorithm con-
sists of three parts: a quantizer that encodes the sequence to
a discrete token sequence, a low-level policy to decode the
token sequence and a high-level policy to generate the to-
ken sequence. Each part is responsible for a challenge men-
tioned above. To tackle the out-of-distribution issue, we
discretize the continuous feature space using quantization
algorithms like vector-quantization variational autoencoder
(VQ-VAE) [45] to a token sequence. Directly decoding the
token sequence back into the continuous feature space using
the VQ-VAE decoder (as in many previous works [29, 38])
will cause the lacking of diversity issue. Therefore, we in-
stead employ a reinforcement learning (RL) framework to
replace the VQ-VAE decoder. The policy network, which
we call the low-level policy, is responsible for continuously
generating the next frame based on the current token and
the past frames. In this sense, the token space of the VQ-
VAE can also be regarded as a task space for the low-level
policy. To ensure the policy network capable of generat-
ing diverse frames given the same input token, we also add
a randomly sampled Gaussian noise as input to the policy
network. Three types of rewards are designed for different
purposes: 1) the realistic reward forces the generated se-
quence to look natural; 2) the diversity reward is proposed
to encourage the policy to produce diverse outputs and 3)
the correspondence reward requires the produced result to
hit the input token. Finally, to avoid the periodic pattern is-
sue caused by the autoregressive generation procedure, we
instead design a random generation scheme, which we call a
high-level policy, to produce the token sequence. It should
be noted that, though designed for the scenario without a
driving source, such a framework can be generalized for
other driving tasks. The discrete token space serves as an
interface between the high-level policy and the low-level
policy. We only need to change the high-level policy when
the driving source exists without modifying the low-level
policy. To sum up, we make the following contributions:

• To our best knowledge, we are the first to define and study
the problem of controlling character motion without any
driving source. We unveil the problem’s importance and
its technical challenges.

• We design a framework consisting of a high-level policy,

a token/task space, and a low-level policy to solve this
problem. The token space can also be suited for other
high-level policies with driving sources. The low-level
policy with carefully designed reward functions can pro-
duce natural and diverse results.

• We conducted extensive experiments on two public body
skeleton datasets and a self-collected VTuber face dataset.
Empirical results show that our framework achieves better
performance than previous algorithms.

2. Related work
Face/head/body driving Prior works mainly focus on
driving the face/head/body motion with observable and se-
mantically meaningful sources, which includes speech au-
dio [41,46,52,53], music [6,21,25,38], video [5,18–20,44]
and even text [13, 17, 50]. Among them, the works that aim
to accurately control the lip motion to align with the speech
audio [22, 23, 33, 41, 43, 51] has received much attention.
To better control the results, PC-AVS [52] also depends on
a separate head pose driving source from a reference video.
StyleTalker [28] learns an audio-to-motion latent space to
produce the head motion. Different from the audio-driven
head sequence generation task, Learning2Listen [29] tries
to generate the head sequence of a listener given both the
video and the audio of the speaker. As for the body driving,
[3] drives the body and gesture given the speech audio. Bai-
lando [38] produces a sequence of dancing skeletons based
on the input music. Unlike all these tasks which require ei-
ther one or a few types of observable driving sources, our
method aims to generate life-like motion sequences without
such driving signals.

Reinforcement learning in character control Physics-
based character control task [16, 24] has a long history. Re-
cently, there are many works trying to solve this problem
using reinforcement learning [30–32,47]. MotionPrior [30]
regards the controlling problem as a Markov Decision Pro-
cess (MDP) and trains a policy net to generate the skeleton
sequence. It manually defines the state-similarity metric as
the reward function. AMP [32] replaces the similarity re-
ward function with an adversarial network [12] to get rid
of the cumbersome human-designed metric. ASE [31] fur-
ther improves diversity by introducing noise into the policy
network. Our method is inspired by this line of work. How-
ever, Instead of taking a pre-defined goal like location or
strike as input, our policy network takes the token as the
task. The reward function corresponding to the task/token
is also different. In the pre-defined task case, the reward
function is hand designed. However, in our case, we can
directly use the VQ-VAE encoder as the reward function.

Quantization + Prior Models. A two-stage quantization
+ prior learning model is first proposed in the image synthe-
sis task [9,36,45,49]. These algorithms first learn a discrete
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Figure 2. (a) A ground-truth trajectory in the feature space. (b) A trajectory generated by an autoregressive model may suffer from the
OOD issue. (c) The token sequence by applying the VQ-VAE encoder and quantizer to the ground-truth trajectory. (d) The trajectory is
decoded from the token sequence using the VQ-VAE decoder. (e) The trajectories are decoded from the token sequence using our low-level
policy. Our algorithm can produce diverse smooth trajectories.

representation of an image and then train a prior model on
this representation. Some works adapted this fashion into
text-to-image generation [1, 8, 34, 35]. In these works, a
prior condition on the text embedding is learned after ob-
taining the image discrete representations. This philosophy
is also applied to the driving tasks [17,29,38], where a con-
ditional probability distribution is learned on the image to-
kens conditioned on the driving source. Though our work
also uses a similar quantization algorithm as the first step,
we have a different purpose for such a design, where we
wish to use a discrete space to avoid the OOD issue.

Motion Prediction. Motion prediction [2, 4, 11, 27, 48]
aims to predict the human motions in the near future based
on the past motions. Both deterministic methods [11, 27]
and probabilistic models [2, 4, 48] are designed. The key
difference between our problem and motion prediction is
that we focus on generating unlimited long natural and di-
verse sequence rather than the near future motion.

3. Problem Definition and Analysis
Problem Definition. The existing driving problem as-
sumes there is a driving source ct at each timestep t. The
driving engine tries to model the probability distribution
p(xt|ct)1, where xt is the representation of the face/body.
In this paper, we define the driving problem from a differ-
ent perspective. Suppose the virtual human is placed in an
environment (i.e. live streaming). It should decide its fa-
cial expression and body pose at each timestep no matter
whether the driving source exists or what the driving source
is. Generally speaking, we should model p(xt|x<t, ct) for
each t. This procedure should continuously go on until the

1Sometimes there is also an identity input.

whole event ends. Unlike previous driving problems that
ignores x<t and only models p(xt|ct), we consider another
scenario when ct = ∅ and model p(xt|x<t). Such a setting
is even more common in practice since the underlying driv-
ing source is often not observable. We argue that this prob-
lem is both challenging and important for further building
more complicated decision models.

Challenges. The first challenge is the OOD issue. Our
model p(xt|x<t) is trained on the ground-truth dataset.
However, during the inference phase, we apply the model to
the dataset generated by the model itself. That being said,
the distributions of x<t in the training and inference phases
are different, making the output xt following an even more
different distribution. An illustration is shown in Fig. 2(a)-
(b). The groundtruth trajectory is shown in Fig. 2(a). The
trajectory generated by an autoregressive model is shown in
Fig. 2(b). These two trajectories look similar in the begin-
ning. However, as the number of steps increases, the path
becomes significantly different and the generated path may
go to the OOD region.

Using VQ-VAE to constrain the output space of the au-
toregressive model in a discrete inlier set can avoid the OOD
issue. Suppose we have trained a VQ-VAE to cluster the
dataset into 5 different clusters, each represented in dif-
ferent colors. Fig. 2(c) shows the corresponding token se-
quence of the gourndtruth trajectory. However, directly de-
coding the token sequence will produce a trajectory lacking
of diversity, as shown in Fig. 2(d), which is the second chal-
lenge of the problem. A good model should be able to pro-
duce diverse and smooth trajectories as shown in Fig. 2(e).

Lastly, there is also the periodic pattern or the fixed point
problem. Though the prior model is conditioned on all the
history x<t theoretically, we usually use a fixed length of
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Figure 3. Pipeline. (a) VQ-VAE discretizes the sequence. The token space serves as both the input of the low-level policy and the output of
the high-level policy. (b) The low-level policy takes the token, the past features, and a random noise as input and produces the next feature.
(c) The high-level policy generates the token sequence.

past window xt−∆T :t−1 in practice. Suppose we model
the distribution p(xt|xt−∆T :t−1) as Gaussian and use the
mean of the Gaussian distribution as xt during the infer-
ence time, as in many autoregressively regression tasks.
Then xt becomes completely determined by xt−∆T :t−1.
Further, xt+1 is then determined by xt−∆T+1:t, which is
again a deterministic function of xt−∆T :t−1. So we can
write xt:t+∆T−1 = f(xt−∆T :t−1), where f(·) is a function
correlated to the autoregressive model. The autoregressive
model is like applying the same function again and again.
Such a process will make the same sequence appear repeat-
edly. Though we usually add some noise during the sam-
pling procedure in practice, such an issue cannot be com-
pletely avoided, as will be presented in our experiments.

4. Method
Our method consists of three parts: 1) a discrete token

space yielded from a VQ-VAE model, 2) a low-level pol-
icy network that decodes the token sequence to the contin-
uous feature space, and 3) a high-level policy that produces
the token sequence. The overview pipeline is illustrated in
Fig. 3. We then introduce more details for each part.

4.1. Token Space Derived from VQ-VAE

The token space serves as both the output space of the
high-level policy and the input space of the low-level policy.
Once the token space is determined, the high-level policy
and the low-level policy can be disentangled and separately
developed. The low-level policy only needs to focus on how
to generate a natural and diverse sequence based on the pro-
vided token sequence, while the high-level policy only cares

about how to produce the token sequence based on the en-
vironment. In this paper, we use the quantized latent space
of a VQ-VAE model as the token space, which can effec-
tively avoid the out-of-distribution issue since it constrains
the output of the high-level policy into a discrete inlier set.

Technically, either a clip-level VQ-VAE or a frame-level
VQ-VAE can be adopted. In our current implementation,
we adopt a frame-level VQ-VAE. For each frame, the fea-
ture xt ∈ Rd is encoded into a continuous latent vector
zt ∈ Rκ via an encoder E(·), i.e. zt = E(xt), where d
is the feature space dimension while κ is the latent space
dimension. The latent vector zt is then assigned to the near-
est code in a learnable codebook {ck}Kk=1, where K is the
codebook size. Let Q(·) be the quantizer and qt stand for
the code index, then

qt := Q(zt) = argmin
k

||zt − ck||2. (1)

Denote zqt as the qt-th entry in the codebook {ck}Kk=1. It
is also known as the quantized version of the latent vector
zt. The quantized zqt is then decoded to the original feature
space via a decoder D(·), i.e. x̂t = D(zqt ).

The VQ-VAE, including the encoder, decoder, and code-
book, is optimized using the objective

LV Q = ||xt− x̂t||+ ||sg[zt]−zqt ||2+β||zt−sg[zqt ]||2, (2)

where sg[·] means stop gradient and β is a hyperparameter.
Following [45], we use β = 0.25 in all our experiments.

4.2. Low-Level Policy

Most prior works [29, 38] directly use the VQ-VAE de-
coder to generate the output given the discrete token se-
quence. Such a design at least has two drawbacks. Firstly,

6197



it may produce unnatural (i.e., flicking) sequences lacking
diversity, as shown in Fig. 2(d). Secondly, it only consid-
ers the token at/around the current timestamp when decod-
ing. No long-term dependency of the generated sequence is
considered, degrading the generation quality when the se-
quence becomes infinitely long.

To tackle the issues of the VQ-VAE decoder, we use a
reinforcement learning framework, which we call a low-
level policy, to decode the token sequence. The state at the
current step t includes not only the current token zqt , but
also the past frames xt−∆T :t−1 for smoothness, and a ran-
dom sample ϵt for diversity. The policy network P(·) takes
the state st = [zqt , xt−∆T :t−1, ϵt] as input and outputs a d-
dimensional deviation vector δxt as action. The next frame
feature then becomes xt = δxt + xt−1. An illustration is
shown in Fig. 3(b).

We design three rewards regarding different constraints
on the future frame xt. The realistic reward corresponds to
whether the sequence (xt−∆T :t−1, xt) looks natural or not.
A discriminator is adapted to produce a realistic score. It is
an MLP that takes (xt−∆T :t−1, xt) as input. The realistic
reward at step t then becomes

rt,real = D(xt−∆T :t−1, xt). (3)

The reward is normalized to the range (0, 1) using a sigmoid
activation layer. The discriminator is trained in an adversar-
ial manner [12]. The loss for the discriminator is

Lgan = CE
(
D(xr

t′−∆T :t′), 1
)
+CE (D(xt−∆T :t), 0) , (4)

where CE(·, ·) stands for the cross entropy function, xr is a
random sequence from the training dataset and t′ is a ran-
dom start frame index.

The second reward regards the correspondence between
the output feature xt and the input token qt. We leverage
the trained VQ-VAE encoder E and quantizer Q for this
reward. It is designed as

rt,corr = I(qt, Q(E(xt))), (5)

where I(·, ·) is an identical function that equals to 1 when
the two arguments are equal and 0 otherwise. It requires
that xt should be assigned to qt by the VQ-VAE encoder
and quantizer. However, only using this term will make the
training procedure problematic because all the possible xt

are equally bad as long as it does not hit qt. To tackle this
issue, we also calculate the change of the ℓ1 distance be-
tween xt and zt. This change is further clipped into range
[−1, 0.8]. If qt ̸= Q(E(xt)), we use the clipped change as
the reward, which encourages xt to move towards zt when
it is assigned to a different token.

The last reward encourages the policy to produce diverse
outputs given different noise ϵt. Though the policy network
takes ϵt as input, it is very likely to completely ignore the
noise input without such a diversity reward. To enforce the

Algorithm 1 Algorithm of Low-Level Policy

Input: VQ-VAE encoder E, VQ-VAE quantizer Q, VQ-
VAE codebook, dataset.

Output: Low-level policy network.
while Not converge do

Update D using loss function 4.
Update E using loss function 6.
Update low-level policy network P using PPO.

end while

policy network to encode the information of ϵt, we train an-
other noise encoder to reconstruct ϵt given (xt−∆T :t−1, xt).
The noise encoder is trained using the L2-Loss

Ldiverse =
1

2
||ϵt − E(xt−∆T :t−1, xt)||22, (6)

where E is the noise encoder. In practice, the noise en-
coder and the discriminator share the same architecture and
weights. The diversity reward then becomes

rt,diversity = −||ϵt − E(xt−∆T :t−1, xt)||22. (7)

The final reward function can be written as

rt = wr · rt,real + wc · rt,corr + wd · rt,diversity, (8)

where wr, wc and wd are the weights of each reward. The
value at step t is then defined as

Vt = rt +

+∞∑
dt=1

γdtrt+dt, (9)

where γ is the discount factor (set as 0.98).
The low-level policy network is trained using proximal

policy optimization (PPO) [42]. We use GAE(λ) [37] to
compute the advantage function and TD(λ) [40] to update
the approximate value function. The algorithm for training
the low-level policy is shown in Algorithm 1. The discrim-
inator D and the noise encoder E are optimized during the
training of the policy network.

Note that our low-level policy can also be trained using
supervised learning, regarding the reward function (8) as
the loss function. However, using supervised learning will
degrade the performance since it ignores the long term de-
pendency. We will empirically demonstrate that using RL
will produce better results than supervised learning.

It is interesting to notice that our low-level policy has a
connection with the popular diffusion models [15, 39]. We
also have a random noise input, and two condition inputs
(the token and the past feature sequence). The advantage of
our method is that we only need a single iteration, which is
more efficient. Moreover, with the RL training strategy, it
is able to achieve better long term dependency.
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4.3. High-Level Policy

Generally speaking, the high-level policy, denoted as H,
takes both the driving source ct and the past feature x<t as
input and outputs the token for the next step zqt . So we can
write the general form as zqt = H(x<t, ct). In this paper,
we focus on the scenario when ct = ∅ and leave the the
other types of high-level policies for future work.

A straightforward way to design the high-level policy is
to use an autoregressive model that takes the past tokens
zq<t as input and continuously generate the next token, i.e.
zqt = H(zq<t). However, as discussed in Section 3, using
such a model will have the periodic pattern issue. Many
previous works manually add some randomness in the sam-
pling procedure to avoid the issue. For example, instead of
selecting the token with the highest probability, we can uni-
formly sample from the top K tokens [45]. Considering that
our low-level policy can add more diversity to the decoded
sequence, we adopt this scheme as one of our high-level
policies, denoted as Ours-A(utoregressive).

We also consider using a random prior. Specifically, for
each 20-frame clip, we randomly choose a token from the
codebook. Interestingly, such a simple random strategy can
produce the best results in most cases. This scheme is de-
noted as Ours-R(andom).

5. Experiments
We evaluate our algorithm on two public body datasets,

namely the Trinity Gesture dataset [10] and the AIST++
dataset [26], and a self-collected face dataset. The Trin-
ity Gesture dataset includes 224 minutes of body motion
and the corresponding audio. The AIST++ dataset contains
1,408 sequences of 3D human dance motion along with the
music. In our experiments, we assume that the audio/music
is unavailable and only use the body motion data. We also
collect 46.4 hours of live-streaming data of a female VTu-
ber. In most of the time, there is indeed no observable driv-
ing source but the anchor still have some natural expres-
sion and movements. This dataset is split into a training
set with 37.4 hours and a test set with 9 hours. Then we
detect the face region of the anchor and extract the expres-
sion and pose features using EMOCA [7]. This dataset is
named VTuber-EMOCA. The implementation including the
network architectures and the training details are described
in the supplemental material.

5.1. Quantitative Evaluation

We first quantitatively compare our algorithm with many
previous works that can also be adapted to generate an in-
finitely long sequence. These baseline methods include

• Random-T : Randomly select a sequence of length T
from the training set at each step and combine all the se-
quences together as a single long sequence. Though it

looks trivial, this is actually a strong baseline because ev-
ery clip is from the real dataset.

• SRandom-T : A stronger baseline than Random-T . We
linearly interpolate between every two randomly selected
clips in Random-T to further improve the smoothness.

• Autoregressive: An autoregressive transformer is di-
rectly trained on the continuous data using the L2 loss.
Compared to Random-T , it does not need to maintain a
huge memory pool for the data clips.

• VQ-VAE [45]: Following the quantization + prior model
fashion, a VQ-VAE model is first trained on the se-
quences. Then an autoregressive prior model is further
learned on the token sequences. We use both frame-level
VQ-VAE as our algorithm does and a clip-level VQ-VAE
as Learning2Listen [29] does, which are respectively de-
noted as VQ-VAE-F(rame) and VQ-VAE-C(lip).

• AMP [32]: Adversarial motion prior (AMP) is also an
autoregressive model. It learns a discriminator to distin-
guish the ground-truth and the generated sequences. The
output of the discriminator is used as a reward in the re-
inforcement learning framework.

• ASE [31]: Adversarial skill embedding (ASE) further
adds noise as input to improve the diversity compared to
AMP. Neither AMP nor ASE can use the token sequence
to control the output sequence.

We evaluate the quality of the generated sequence using
the commonly adopted Frechet distance [14] (FD) between
the test dataset and the generated sequences. We first gen-
erate a set of sequences with 2000 frames, which we con-
sider as infinitely long2. These sequences are then randomly
sliced into T -frame clips. The mean and variance are com-
puted on the (T × d)-dimensional space. We use FD-T to
stand for the FD between the generated sequence and the
test sequence with clip length T . In our evaluation, we use
T = 5 and 10.

The performance of different algorithms are shown in
Tab. 1. The best performance is shown in boldface while the
second-best method is underlined. Besides comparing base-
lines, we also provide the ground-truth (GT) performance as
a reference by dividing the test set into two groups and cal-
culating the FD between them. We find that the FD distance
becomes relatively large in the raw space since the dimen-
sion of the raw space is high. To achieve a better sense of
these quantitative numbers, we extract the principal compo-
nents using PCA3 and calculate the FD in the PCA space.
For Trinity Gesture dataset, we present FD score in both

2We observe similar results with longer sequences. So we can regard
2000 frames as infinitely long.

3For Trinity Gesture and VTuber-EMOCA expression, we use 20 com-
ponets. For the simpler VTuber-EMOCA pose, we use 5 components. For
the more complicated AIST++, we use 40 components.
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dataset Trinity Gesture AIST++ VTuber EMOCA

Method Raw space PCA space PCA space Expr.-PCA Pose-PCA
FD-5 FD-10 FD-5 FD-10 FD-5 FD-10 FD-5 FD-10 FD-5 FD-10

GT 62.86 134.1 2.25 2.18 8.42 7.75 1.68 1.68 0.51 0.55
Random-5 99.84 278.8 6.64 8.01 46.76 30.83 11.28 8.38 5.19 5.03

SRandom-5 76.55 185.8 2.91 2.51 19.52 10.18 5.86 6.24 1.02 0.84
Autoregressive 1503 3019 43.96 44.86 85.37 47.97 59.19 53.36 10.32 10.13

VQ-VAE-F [45] 136.1 280.2 8.92 7.61 22.75 21.74 4.81 3.89 2.37 2.71
VQ-VAE-C [29] 130.1 262.8 9.19 7.99 32.25 33.17 16.95 16.79 2.47 2.56

AMP [32] 143.4 294.0 8.65 7.51 22.97 19.64 9.71 8.28 3.85 3.92
ASE [31] 81.14 171.0 3.44 3.30 13.58 12.70 1.82 2.47 0.42 0.70

Ours R (No RL) 71.63 155.3 4.33 5.43 12.15 11.69 3.21 4.37 0.79 0.80
Ours A 47.70 101.8 3.25 3.03 10.68 11.07 1.64 1.64 0.53 0.69
Ours R 41.54 92.00 2.15 2.25 9.22 8.89 1.50 2.15 0.50 0.58

Table 1. Quantitative Evaluation on Trinity Gesture, AIST++ and VTuber-Emoca Datasets.

Figure 4. Visualization on Trinity Gesture dataset.

spaces to show consistency. Ours-R achieves the best per-
formace among all the algorithms in both the raw and the
PCA spaces. The autoregressive algorithm completely fails
since it drops into a fixed point very quickly as we will see
in Sec. 5.2. Both VQ-VAE-F and VQ-VAE-C suffer from
poor performance since they cannot produce diverse trajec-
tories as demonstrated in Fig. 2. Replacing the reinforce-
ment learning framework with supervised learning also de-
grades the performance, though it still outperforms most of
the comparing methods. One may observe that the FD for
the generated sequence is sometimes lower than that of the
groundtruth in the raw space. This is caused by the unstable
covariance matrix of the data. Using the PCA space clearly
mitigate the issue.

Considering that the FD score in the PCA space is more
meaningful, we only report the FD in the PCA space on
AIST++ dataset. Ours-R again produces the best results
among all the algorithms. We further validate the perfor-
mance on our VTuer-EMOCA dataset. Following Learn-
ing2Listen [29], we divide the 56-dimensional EMOCA
feature into a 53-dimensional expression part and a 3-

dimensional pose part, the results of which are reported sep-
arately. Only ASE produces similar results to our methods.
Note that ASE does not have a simple interface for high-
level policies, yet our algorithm still produces better results
on the expression part, which contains most of the dimen-
sions of EMOCA.

5.2. Qualitative Evaluation

Generation Comparison. Fig. 4(a) shows the sequence
generated by Autoregressive (top), VQ-VAE-C (middle)
and Ours-R (bottom) on the Trinity Gesture dataset. The
Autoregressive model produces a reasonable sequence in
the beginning. However, it gradually moves to the OOD
region and stucks in a completely still state. VQ-VAE-
C clearly suffers from the lacking of diversity issue. The
hands always keep in front of the hip, though every small
segment looks natural. We observe that VQ-VAE results
sometimes produces flickering results. This may be caused
by the trade-off between the window size and the codebook
size. Ours-R produces natural and diverse results. We also
plot the evolution of the 1st dimension in Fig. 4(b). Ours-
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Figure 5. (left) Distribution and (right) evolution of the first di-
mension of the generated VTuber-EMOCA sequences.

R (green curve) has the similar pattern as the groundtruth
(red). Autoregressive (blue) soon degenerates to a com-
pletely still state while VQ-VAE-C (orange) has relatively
small amplitude.

Controllable Generation. Fig. 1 shows how we can con-
trol the generation by specifying the token sequence. The
top row is the high-level token sequenceWe visualize the
direct decoding of the first four tokens via the VQ-VAE
decoder. The middle row shows the frames generated by
our low-level policy based on the provided token sequence.
Each token corresponds to 20 frames and we display one of
every 4 frames. Fig. 1(c) shows the details from the 21st to
25th frames. Our algorithm produces smooth transitions be-
tween different tokens. Fig. 1(d) plots the evolution of the
first two dimensions from the 48th to 59th frames. These
frames are all similar to the direct decoding. However, they
do not keep completely still. Rather, they have a natural tiny
movement around the specified token. More visualization
results on both Trinity Gesture dataset and VTube-EMOCA
dataset are included in the supplementary materials.

Addressing Challenges. In Sec. 3, we analyzed three
challenges in this problem. We then empirically address
all the challenges. We visualize the distribution of the first
dimension of the generated sequences on VTuber-EMOCA
dataset in Fig. 5(a). Autoregressive clearly has the OOD
issue. Using a discrete space can effectively avoid this is-
sue. Both VQ-VAE-C and our algorithm range in the region
where the groundtruth has high density. However, the dis-
tribution of VQ-VAE-C is more concentrated, meaning that
it suffers from the lacking of diversity issue. We also plot
the evolution of the first dimension in Fig. 5(b). The au-
toregressive algorithm generates a periodic pattern though
the pattern in each period is slightly different. The periodic
pattern issue is not that obvious in the VQ-VAE-C algo-
rithm because there are also some additional randomness
during sampling. However, we do observe that some pat-
terns repeatedly appear in the token sequence. In addition,
we apply a user study to evaluate the quality of the gener-
ated sequences in the supplementary file.

Dis. Cor. Noi. FD-5↓ FD-10↓ Hit↑ Div↑
✓ 8.65 7.51 – 2.67

✓ 6.88 5.78 0.16 4.14
✓ ✓ 5.31 5.11 0.05 4.27
✓ ✓ 3.44 3.30 – 5.20

✓ ✓ 8.15 6.36 0.19 4.27
✓ ✓ ✓ 2.15 2.25 0.14 5.01
✓ 9.71 8.28 – 2.10

✓ 12.54 11.24 0.19 4.11
✓ ✓ 2.26 2.78 0.15 5.76
✓ ✓ 1.82 2.47 – 6.10

✓ ✓ 9.36 7.85 0.18 5.42
✓ ✓ ✓ 1.50 2.15 0.19 5.99

Table 2. Ablation Study on Trinity Gesture (first section) and
VTuber-EMOCA-expr (second section).

5.3. Ablation Study

We designed three different rewards for different pur-
poses in the low-level policy framework. In this subsection,
we apply an ablation study to demonstrate how each reward
contributes to the whole framework. Besides the quality
metrics FD-5 and FD-10, we use another two metrics re-
garding correspondence and diversity. We use the hit rate
to evaluate the correspondence between the generated se-
quence and the controlling task token. It counts how many
percentages of the generated frames actually hits the task
token. To evaluate the diversity, we first cluster the frames
in the training data into 100 clusters. During generation,
we generate multiple sequences for each initialization. The
entropy of the cluster-ID histogram is calculated for each
initialization. We report the average entropy over different
initialization as Div.

As shown in tab. 2, using all the three rewards produces
the best FD score. Removing the discriminator significantly
degrades the performance. Comparing the Div between
the first part and the second part in each sections indicates
that rdiversity indeed benefits improving the diversity of the
generated sequence. Lastly, we will not be able to control
the low-level policy if we remove the rcorr.

6. Conclusion

We define the problem of generating diverse, life-like,
and unlimited long head/body sequences without any driv-
ing source. The challenges of the problem are analyzed
and a pipeline is proposed to solve this problem. Empir-
ical results show that our algorithm produces significantly
better results than previous methods. Moreover, our task
space and low-level policy can be re-used for further build-
ing more complicated decision modules with multiple driv-
ing sources, which will be future work.
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