
Controlling Virtual Try-on Pipeline Through Rendering Policies

Kedan Li
kedan@revery.ai

Jeffrey Zhang
jeff@revery.ai

Shao-Yu Chang
shaoyuc3@illinois.edu

David Forsyth
daf@illinois.edu

Abstract

This paper shows how to impose rendering policies on
a virtual try-on (VTON) pipeline. Our rendering policies
are lightweight procedural descriptions of how the pipeline
should render outfits or render particular types of garments.
Our policies are procedural expressions describing offsets
to the control points for each set of garment types. The
policies are easily authored and are generalizable to any
outfit composed of garments of similar types. We describe
a VTON pipeline that accepts our policies to modify gar-
ment drapes and produce high-quality try-on images with
garment attributes preserved.

Layered outfits are a particular challenge to VTON sys-
tems because learning to coordinate warps between multi-
ple garments so that nothing sticks out is difficult. Our ren-
dering policies offer a lightweight and effective procedure
to achieve this coordination, while also allowing precise
manipulation of drape. Drape describes the way in which
a garment is worn (for example, a shirt could be tucked or
untucked).

Quantitative and qualitative evaluations demonstrate
that our method allows effective manipulation of drape and
produces significant measurable improvements in rendering
quality for complicated layering interactions.

1. Introduction
This paper shows how to impose rendering policies on

a virtual try-on (VTON) pipeline. Our rendering policies
are lightweight procedural descriptions of how the pipeline
should render outfits or particular types of garment. They
are easily authored, and generalize very well. We demon-
strate two applications of such polices: changing the drape
of garment types, and polishing renderings of layered out-
fits.

Drape describes the way in which a garment is worn (for
example, a shirt could be tucked or untucked). While sys-
tems for editing fashion renderings exist [4, 7, 9, 20, 28, 33,
41], these systems modify both drape and garment. In con-
trast, our policies allow the same garment to be draped in
different ways. Each row of Figure 1 shows images of dif-

Figure 1. Our method produces high-quality images of people
wearing a provided outfit, while allowing the garments to be worn
in different ways. The figure shows our method draping the same
shirt untucked or tucked in many different styles. Each column
shows images of the same garment worn in different ways and
each row shows different outfits worn in the same style/drape. As
shown, the same kind of drape renders well on all shirts and the
identity of the garments is unaltered when worn in different ways.

ferent garments worn with the same drape and synthesized
by our system. The alternatives could be discrete (a jacket
could be worn open or closed) or continuous (a skirt worn
at different points on the waist or hips) and are often mixed
(tucked shirts largely look the same, but there are many
ways to wear a shirt untucked). It is straightforward for
vendors to author complicated policies that apply to types
or particular instances of garments, and draw on various

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5866

metadata (eg. “On Thursdays, red outerwear is worn open,
except when paired with skirts”).

Layered outfits are a particular challenge to VTON sys-
tems. VTON systems for commerce must accurately repre-
sent each specific garment (otherwise a purchaser might re-
turn their purchase) [5,6,8,12,13,15,18,20,21,25,27,30,34,
36, 37, 40, 41]. To preserve essential texture details, VTON
systems warp garments onto the target image, using warps
that are learned. But learning to coordinate warps between
multiple garments so that nothing sticks out is difficult (Fig-
ure 7). As that figure shows, our rendering policies offer
a lightweight and effective procedure to achieve this coor-
dination. Relatively straightforward rendering policies can
accurately synthesize outfits with complex layering while
prior work produces obvious artifacts (e.g., misalignments,
garment beneath sticking out, etc..) as shown in Figure 6.

We describe a VTON pipeline that accepts our policies
in Section 3. This pipeline is shaped by important con-
straints. Garment identity must be preserved, so garments
are warped onto a target image. Policies must be grounded
in garment semantics, so warper control points have a se-
mantic meaning. For some garments, there is more than one
type of warp possible (for example, a coat could be worn
open or closed), so the warper must accept discrete param-
eters to specify which is intended. Once all garments have
been warped onto the target image, an adversarially trained
renderer polishes it.

Our policies are procedural expressions describing off-
sets to the control points for each of a set of garment types,
possibly in terms of other control points on the same gar-
ment or other garments in the outfit. Because each of our
control points marks the location of an anchor that is mean-
ingful for the specific garment type (e.g., left shoulder, right
inner sleeve, etc..), the policies are meaningful for any outfit
composed of garments of the relevant types. For example,
one can apply a slightly tilted tuck to all shirts with a pol-
icy that moves the waistline control point slightly higher.
Rendering policies can be authored interactively: the exam-
ples in Figure 1 and 2 were obtained by editing the shirt in
one outfit interactively resulting in a policy, then applying
the rendering policy to the other shirts. The policies visibly
generalize. Policies naturally accept continuous parameters
(interpolation in Figure 5).

Contributions: We describe the first outfit virtual try-
on method that allows reliable control of how a garment is
worn on a body without changing the identity of the gar-
ment. We demonstrate our method can synthesize images
of the same garment worn in different and natural ways.
Furthermore, our control is instance independent: one can
make edits on a specific garment and apply the same edit
to all the other garments of the same category successfully.
We show that our method also improves the rendering qual-
ity of outfits through better coordination between garments.

Figure 2. The figure shows a sequence of outfits with outerwear
styled differently. We could wear the same jacket as split (unzip
or unbuttoned) or non-split (zipped or buttoned) and render it with
different drapes. Note that we could produce the same kind of
drape for outerwear that are very different (some are knee length
while others are cropped). Also, our method is able to preserve
very complex patterns in some of the jackets.

2. Related Work

Image-based virtual try-on methods produce an image
of a person wearing a reference garment. The main chal-
lenge lies in producing high-quality images while faithfully
preserving the garment’s identity. Modern image generation
networks trained with adversaries can produce high-quality
images but have difficulty preserving the exact geometri-
cal patterns (such as logos, prints, etc..) on the garment.
Thus, most state-of-the-art VTON pipelines learn a differ-
entiable warper to align the garment onto the person, thus
preserving the geometrical patterns and details [2, 5, 6, 8,
10, 12, 13, 15, 18, 20, 21, 25–27, 29, 34, 36, 37, 40, 41]. The
warped garment images are provided to an image genera-
tor network trained with adversaries to synthesize an image
of a person wearing the garment. However, VTON meth-
ods generally do not provide a way to change how gar-
ments are worn. Yan et al. [24] proposed a method using
semantically associated landmarks to guide virtual try-on
to achieve better rendering quality. However, the type of
editing the method support modifies the garment attributes
(Figure 1 and 10) rather than how the garment is worn. In

5867

contrast, our pipeline can produce high-quality try-on with
garment detail preserved and, meanwhile, control the drape
of the garment. ze Image warping processes apply a spa-
tial transformation to an image and thus can preserve the 2D
patterns on a garment. The implementation of the warper
varies and recent methods have converged to learning a
network that predicts per-pixel appearance flow [6, 15, 18].
Prior warping methods do not provide a convenient way to
control the warp (that allows editing the drape of the gar-
ment). The warper is usually guided by semantic layouts
(pixel maps that define the region of the garment and the
body), body pose key points, DensePose (a body pose rep-
resentation with 3D priors [1,31]), or a combination of these
[6,13,15,18,26,27,29,36,37,40]. These representations are
either difficult to alter or do not directly impact the drape
of the garment. In contrast, our method enables intuitive
control of the garment drape using a set of control points
embedded with garment semantics. We use rendering poli-
cies to modify the control points and our rendering pipeline
drapes the garments according to the edits.

Multi-garment virtual try-on is more challenging than
the single garment version because the framework needs
to appropriately manage the layering between multiple gar-
ments and the body. O-VITON [30] first synthesizes a se-
mantic layout to outline the garment interactions and then
broadcasts the feature encoding vectors based on the lay-
out. This formulation can manage the interactions between
garments well. However, feature encoding vectors cannot
preserve structural patterns, resulting in loss of details dur-
ing rendering ([30] Figure 1, row 3, skirt prints wrong).
Meanwhile, OVNet [27] proposed an iterative method of
constructing the outfit, swapping one garment at each gener-
ation step. This framework is able to preserve the attributes
but does not have a solution to coordinate the garments in
an outfit. We show that mis-coordination can result in ugly
renderings in Figure 6. In contrast, our method applies pro-
cedural edits to predicted control points to obtain significant
improvement in rendering layered outfits.

Image editing with fashion context yields compelling
results in editing the garment drapes but tends to not accu-
rately preserve garment appearance. For instance, Swap-
Net [33] transfers the style of the garments from one person
to another without preserving the visual details ([33] Figure
10 last row logo blurred); Cui et al. [7] proposed a recurrent
generation pipeline to sequentially dress garments on a per-
son. The method is capable of modifying how garments is
worn (e.g., tuck vs. untuck), but lost garment details during
the process of encoding and decoding visual featured ([7]
Figure 8 row 2 and 3, prints altered); Chen et al. [4] and
Sukaret al. [35] synthesize try-on image of different view-
points controlled through body poses, but cannot specifi-
cally control the drape nor preserve garment identity ([4]
Figure 1, 4th outfit white stripes blurred); Liu et al. [11]

distort the length and shape of the garments through control
points to fit on underwear models. However, the method
cannot layer multiple garments to form an outfit. Other
methods manipulate the garment designs. Some allow edit-
ing the garment on a person image by providing simple text
description or a set of key words [22, 32, 39, 41]. Others
enable edits to the shape, appearance and color through in-
painting methods [9, 16, 38]. Fashion++ [20] proposed a
framework to perform minimal edit to a specific fashion
item to maximize the fashionability of an outfit. Baldrati et
al. [3] proposed a method to edit fashion image through dif-
fusion model. In contrast, our method can freely change
how garments are depicted without changing the garment
properties.

3. A Controllable VTON Pipeline
A rendering policy in our pipeline is a procedural de-

scription of how an outfit should be worn. The policy can
be changed during inference to achieve different drapes of
the same garment and different interactions between gar-
ments. In this section, we describe an outfit virtual try-on
pipeline that is controllable through rendering policies.

A typical VTON pipeline starts with predicting the se-
mantic layout to determine where the garment and body
are positioned; then, a warp is predicted to align the gar-
ment onto the body; finally, an image generator takes in the
warped garment, the layout, and other features to synthesize
the final image. To control the output of this pipeline, we
need to be able to control how the warp.

To control a VTON pipeline, we use a set of garment
control points K, which are key positions that mark the
drapes of a garment on a person. The control points can be
easily manipulated by simple procedures (describing offsets
between points) and can be used to guide the warper. We
learn a Control Point Regressor Rc to predict the control
points K from neutral garment image features A and body
pose key points bp. Then, we train the warper W and the
semantic layout generator GL to make predictions condi-
tioned on the control points K, as outlined in Figure 4. We
show that the garments behave according to changes made
to the control points in Figure 5, which is important for our
rendering policies to function properly.

The advantage of this setup is that the rendering policy
can move these control points around during inference to al-
ter the garment accordingly. The way the information flows
in the pipeline makes it natural for the rest of the pipeline
to follow the control points. Some garments have ”modes”
(e.g. open vs. closed outerwear) that require a different set
of control points. We train Control Point Regressor Rc to
take different style variables Z to predict different ”modes”.

During inference, we first run the control points regres-
sor to produce a set of control points K for each and every
garment in the outfit (Figure 3). Then, we apply a rendering

5868

Predicting

Control Points

Apply

Rendering

Policies

Compute

warps

Using predicted partial semantic layout to occlude the

body and iteratively generate the outfit

Obtaining neutral garments

and a starting person.

Person Image

Garment Images

E.g. making the bottom
of the jacket open wider

Final Image

Figure 3. This figure shows an overview of our outfit generation pipeline. We first predict the control points of each garment based on a
neutral garment image and the body pose of the person. Then, we can modify the drape of each garment by applying a certain rendering
policy to adjust the control points. Subsequently, we predict each garment warp based on the edited control points. Finally, we generate
each garment on the person sequentially based on the layering (garments beneath are generated first). During the process, the predicted
semantic layout is used to occlude the specific image region we are generating for each garment.

policy to modify the control points of all garments. Having
all the garment control points available is advantageous be-
cause certain types of style edits require coordinating mul-
tiple items in an outfit. Then, we iteratively generate each
garment on the person by applying W , GL, and the im-
age generator GI . The inference pipeline after computing
the warp resembles the iterative inference process of Li et
al. [27]. Please find the complete set of notations and defi-
nitions in the Appendix.

3.1. The Control Points

K is a set of control points which are 2D coordinates on
the image of the person. Each control point has a specific se-
mantic meaning (e.g., left shoulder, right inner sleeve, etc..).
Using control points to guide the warp and the layout is de-
sirable because it is intuitive to understand how these ed-
its would change the garment. For example, increasing the
distance of the control points between two sides of a jacket
will widen the split of the jacket, as in Figure 5. It is also
important that the control points embed garment semantics.
Having such a property allows us to make edits on an in-
stance of garment and apply the edits to other garments of
the same category.

The DeepFashion dataset already contains garment se-
mantic key points annotation on the human body [14]. We
took their pre-trained network and predicted the key points
for every model image b in our training dataset. The original
key point annotation has redundancy (e.g., there are sepa-
rate sets of collar key points for t-shirt and shirt). We merge
the key points with identical semantic meaning and obtain a
list of 49 unique control points K (details in the Appendix).

3.2. Training Procedure

The system consists of the Control Points Regressor Rc,
the Semantic Layout Generator GL, the Warper W , and the
Image Generator GI , as shown in Figure 4.

The Control Points Regressor Rc takes in the body
pose representation bp, the neutral garment features A and
the style variables Z, and outputs the garment control points
K′ = Rc (A, bp, Z). The style variable Z = [z1, z2, ..., zn]
is a control parameter where each index is set to control a
discrete style (e.g., z1 is set to 0 for outerwear to be open
and 1 it to be closed). Because the styles to control by
Z have to be labeled in the training data, we recommend
only using style parameters Z to control styles that are com-
monly observed in the training data or require different sets
of control points (e.g. closed vs. open jacket). For this
paper, we learned two distinct styles through Z, tuck vs.
untuck and outerwear open versus closed.

Rc consists of a ResNet32 [17] connected to a fully-
connected layer. Z is broadcasted to a 2D plane and con-
catenated with other inputs before feeding them into Rc.
The output of the fully-connected layer is reshaped into
N × n × 2 where N is the batch size and n is the num-
ber of control points. The network is trained using a L1 loss
and L2 loss computed between K and K′. In addition, we
compute a structural consistency loss Ls that penalized er-
rors in pair-wise distance between the control points. This
is important to prevent the structure of the garment from be-
ing misrepresented or distorted due to minor displacement
of each individual control point. We compute a matrix of

5869

Warper

Garment Image

Body Pose

Control Points

Garment Warp

Occluded

Model Image

Semantic Layout

Warping

Parameters

Apply Spatial

Transformation

Occlude certain

classes

Person Image

Image
Generator

Output Image

Warper and Image Generator

Control
Points

Regressor

Neutral Garment

Representation

Control Point Regressor

Neutral Garment

Representation

Body Pose

Garment

Control Points on

the Person

Semantic Layout Generator

Semantic
Layout

Generator

Body Pose

Semantic Layout

Occlude the

Garment from Mask

Semantic Layout

Partially Occluded

Semantic Layout

Semantic Layout

Neutral Garment

Representation

Control Points

Body Pose

Figure 4. The figure shows an overview of the training process. The Control Point Regressor Rc first is trained to predict the control points
based on body pose and neutral garment features. The Semantic Layout Generator GL is trained to reconstruct the partially occluded layout
using the control points and other features. The Warper W predicts a warp to align the neutral garment onto the body based on the control
points and the body pose. The predicted warp and other features are fed into the Image Generator GI to synthesize the output image. The
Warper is trained jointly with the Image Generator. The dashed lines indicate the path of backpropagation during training.

the distance between each pair of points

D =

d(k1, k1) d(k1, k2) . . . d(k1, kn)
d(k2, k1) d(k2, k2) . . . d(k2, kn)

...
...

...
...

d(kn, k1) d(kn, k2) . . . d(kn, kn)

where d(ki, kj) =

√
|xi − xj |2 + |yi − yj |2, and train the

network to minimize the structural consistency loss Ls =
||D −D′||. The total training loss for Rc can be written as
LRc

= λ1L1 + λ2L2 + λ3Ls where λ1, λ2 and λ3 are the
weights for each component.

Note that the network predicts a value for every control
point but not every control point is relevant for every type
of garment (e.g., tops don’t need trouser leg control points).
Thus, when computing the training loss, we mask out the
irrelevant control points based on the garment’s category.

The Semantic Completion Generator GL predicts the
human parsing indicating the pixel region of garments and
body parts on the generated try-on image. The formulation
of GL largely follows other VTON pipelines [6, 21, 27, 37],
except that it is conditioned on the control points. To train
GL, we obtain the neutral garment features A, the model’s
body pose bp, the garment control points K, and the par-
tially occluded semantic layout mask b̂m. K is plotted into a
2D map where each channel contains a single control point
and is then concatenated with the other inputs. GL’s train-
ing objective is to reconstruct the original semantic layout
bm from b̂m. The occluded mask b̂m is obtained by replac-
ing parts of bm by background class through an occlusion
function b̂m = fo (bm, at). The occlusion function fo op-
erates based on the garment category at. fo is different per
garment category and guided by the following rules: (1)
fo always replaces the region of the specified garment cate-
gory at; (2) fo also replaces the category of skin classes that
are directly connected with at. For example, when at is a
top, fo removes the arm layouts and the neckline layout,
but not the legs layout. GL is trained through pixel-wise

Figure 5. We perform an interpolation of the control points to
show that our rendering pipeline can effectively control how gar-
ment drapes. In this example, we move the control points by a
small offset every step to gradually open the outerwear and ob-
serve that the drape of the outerwear closely follows the control
point in every plot. Results demonstrate that the control points are
highly effective in controlling the garment drapes.

Cross-Entropy loss and adopts a U-Net architecture follow-
ing prior arts [27].

The Garment Warper W aligns A onto the person fol-
lowing the control points. The Image Generator Network
GI takes in the warped garment Aw, the partially occluded
semantic layout b̂m, and other features to produce the final
output image b‘. W takes in the the body pose bp, the neu-
tral garment features A and the control points K, and out-
puts the transformation parameters θ = W (bp, A,K). We
compute the spatial transformation through θ and obtain the
warped garment features Aw = aw, awm, awc , a

w
e (aw is the

warped garment image; awm is the warped garment mask;
awc is the warped garment cropped mask; awe is the warped
garment edge map.). More details about the warper training
are available in the Appendix.

The Image Generator GI produces the final try-on

5870

image b′ = GI(A
w, bp, bo, b

g
m) based on the warped gar-

ment features Aw, the body pose representation bp, the
occluded person image bo and the input semantic mask
bgm = bm ⊙ (1− bg) without the to try-garment’s layout bg .
See the Appendix for how bo is obtained. The Image Gen-
erator GI architecture is a U-Net as the skip connections
provide an easy way to copy the provided input image. The
learning objective is to produce an image that resembles the
ground truth model and appears realistic. We train GI with
an L1 loss and an Lperc perceptual loss [23] computed be-
tween b′ and b. In addition, we train GI with an adversarial
loss Ladv to encourage realism of the output image follow-
ing prior arts [5, 6, 12, 13, 13, 15, 18, 27, 36, 37].

The combined training loss for W and GI becomes
LGf

= λ1L1 + λ2Lperc + λ3Ladv + λ4Lw where λ1, λ2,
λ3 and λ4 are the weights the loss.

4. Authoring Rendering Policies
A rendering policy consists of procedural expressions

describing offsets to the control points for each set of gar-
ment types, possibly in terms of other control points on the
same garment or other garments in the outfit. To create a
procedure, one starts with an outfit rendered using the pre-
dicted control points K ′. One edits K ′ to achieve a certain
drape and reproduces the render after each edit until one
is satisfied with the drape. Then, one looks at the manual
edits and comes up with a set of rules that modifies the con-
trol points’ coordinates to achieve the same effect on the
instance. The rules often come in the form of relative posi-
tion between control points on the same garment or different
garments in an outfit. For example, one could shift the ver-
tical coordinate of every control point on a skirt upward by
a constant to wear the skirt at a higher waistline position.
While authoring a procedure, one would test the building
procedure on a few different outfit examples. Once the pro-
cedure is finalized, it can be applied to any other garment of
the same category and render the outfit in the specified style.
A rendering policy that achieves certain drape may contain
many procedures. We show that the procedures generalize
well.

4.1. Performing Style Edits

Rendering policy can be used to simulate different styles
of wearing an outfit, In Figure 3, we create a style that opens
the lower part of the jacket wider – we first predict the con-
trol points of the jacket setting Z as ”open outerwear”; then
we apply a procedure that moves the control points on each
side of the split away from each other by a constant to sim-
ulate a wider split on the lower part. When computing the
warp for the jacket, we compute the warp for each side sep-
arately (see Appendix for more details). Other types of edits
require coordinating multiple garments in an outfit. For ex-
ample, to achieve the front tuck in Figure 1 row 4, we use

a procedure that sets the middle torso control point of the
shirt to be at the same height as the waistline control point
of the bottom. Every style in Figure 1 and 2 are created
using another variation of such procedures. For each style,
we constructed the policy by testing on less than 3 exam-
ples. Results in Figure 1 and 2 show examples of these
policies generalizing well to other outfits (not the ones we
tested on).

4.2. Coordinating Garments in Complex Outfits

Users sometimes will layer multiple garments in an
outfit that creates complicated garment interactions. This
presents a serious challenge to a VTON pipeline because
minor failures of coordination between garments can pro-
duce ugly results as in Figure 6. These errors occur because
the control points for individual garments are predicted sep-
arately. Our rendering policies are well-adapted to prevent
these minor failures and they generalize well.

A common type of error is that the garment beneath
sticks out. For example, skirts sometimes unnaturally stick
out of the coat as in Figure 7. An example correction pro-
cedure to address this type of error is as follows: (1) draw
a line using the two control points on each side of the coat;
(2) check if the skirt’s control points lie within the region
bounded by the two lines; (3) if some control points do not,
shift the horizontal coordinate of these control points such
that they are between the two lines; (4) rendering the skirt
with the corrected control points, and the skirt does not stick
out as in Figure 7. Other errors can be addressed by dif-
ferent procedures of a similar type. All the procedures are
stacked together, resulting in a rendering policy that coordi-
nates layered garments.

The steps for building a complete rendering policy for
garment coordination is as follows: (1) one starts testing
with random outfits and identifies failures; (2) one looks at
the common failures and creates correction procedures to
address them (like the jacket-skirt example above); (3) one
renders the outfit with the updated procedure applied and
keep iterating the rules until the error does not occur; (4)
one start building correction procedure for the next type of
failure. (5) All the correction procedures are stacked to-
gether to form the rendering policy. Experiments in Sec-
tion 5.1 show that a policy built through examining a few
examples can significantly improve the rendering quality of
general outfits.

5. Experiments

We train our network on the OVNet dataset [27], which
contains garments of different categories worn in different
styles. See the Appendix for details on data preparations.

5871

Figure 6. The figure compares outfits rendered with or without
using the rendering policies that coordinate the garments. When
each garment warp is predicted individually, we observe minor
errors that cause obvious artifacts (e.g., sleeves sticking out and
overlapping). Our method fixes the problem by applying a render-
ing policy that coordinates the relative positions of garments. Note
that the same rendering policy is used for both examples.

5.1. Quantitative Evaluations

Quantitative evaluation results in Table 1and 2 show that
our method can produce images with quality that match
the state-of-the-art outfit visualization methods while hav-
ing better control on garment drapes. Note that our base
rendering pipeline (without rendering policy) also outper-
forms the other baseline methods, suggesting that our pro-
posed pipeline is compelling (See Table 2).

Can our pipeline render different styles that people
recognize? To show that our method can generate dif-
ferent styles, we sample real model images wearing out-
fits of 8 different styles (10k each) and compute FID [19]
score against 10k generated images conditioned to exhibit
the same style. Table 1 shows the results for each style-
specific subset. Our method yields a smaller FID [19] score
than the baseline for every style, meaning that our method
produces images that better capture these individual styles.
Note that the baseline method does not describe a reliable
way to control tuck vs. untuck other than changing the or-
der of the top and bottom (as in [27] Fig 3). Thus, we adopt
such a procedure when running the baseline.

Do rendering policies generalize? We designed our
rendering policies to be generalizable – meaning one can
author the policy through testing on a few examples and the
policy applies to any other outfits containing the same type
of garments. To validate, we went through 20 outfit exam-

Figure 7. An example procedure that coordinates the control
points between jackets and skirts to avoid the skirt sticking out.
In the first row, the skirt sticks out of the long jacket, as they were
predicted separately. On the second row, a correction procedure
is applied and the jackets cover the skirts naturally. The correc-
tion procedure moves the skirt’s control points to align with those
of the outerwear. The bottom row illustrates how the correction
procedure works. This procedure is easy to come up with and gen-
eralizes to any outerwear-skirt pair. See details in section 4.2.

ples and come up with a correction policy (Section 4.2) that
contains 27 correction procedures. Then, we apply this pol-
icy to randomly sampled outfits (from 2 to 7 garments per
outfit; 10k for each set). We compute the FID against a set
of 10k real photographs of models wearing outfits. Results
in Table 2 show that applying the rendering policy yields a
consistently better outcome than without policy. This shows
that the rendering policy created through our procedure gen-
eralized well. In fact, the rendering policy is able to process
complex outfits like the ones in Figure 6 and the small ad-
justments to control points remove the original artifacts.

Note that the FID score increases as the number of gar-
ments in the outfit increases because all rendering pipelines
tend to make more errors with more complex outfits.

5.2. Qualitative Evaluation

In Figure 1 and 2, we demonstrate a variety of style edits
that our system can support. Example edits include untuck-
ing or tucking the top in different ways, wearing the outer-
wear closed or open with different kinds of drapes, wear-
ing bottoms at different waistline heights, etc. In addition,

5872

Table 1. This table compares the FID Score [19] between our
method and state-of-the-art outfit visualization. Method 1 (M1)
is the original implementation of OVNet [27]. Method 2 (M2) is
the OVNet framework combined with the Flow Warper from [6].
In each row, the FID scores are computed against real outfits worn
in each individual style. (t is top; b is bottom; o is outerwear) Re-
sults show that our method outperforms prior work on all styles.

Gender Style M1 ↓ M2 ↓ Ours ↓
Female dress 15.6 16.2 14.2
Female t+b untuck 26.4 21.3 19.5
Female t+b tuck 22.4 22.6 20.2
Female t+b+o closed 21.2 21.7 19.4
Female t+b+o open 23.9 20.8 19.0
Male t+b 20.3 20.9 18.8
Male t+b+o closed 21.5 19.5 19.1
Male t+b+o open 22.1 18.0 17.3

Table 2. We build outfits that consist of a different number of
garments and compute FID Score [19] against a dataset of real
outfits. The rendering pipeline is more likely to make mistakes as
the number of garments in the outfit increases. Results show that
our rendering policies largely improve the multi-garment genera-
tion performance, especially as the outfits increase in complexity.
No. of items indicates the number of garments in the outfits; we
increase this number to simulate more complex outfits; Ours(w/o
p) is our method without applying the rendering policies.

No. of items M1 ↓ M2 ↓ Ours(w/o p) ↓ Ours ↓
2 16.5 13.7 13.1 12.6
3 19.3 18.7 17.6 15.9
4 22.6 21.4 20.1 17.1
5 25.2 23.4 22.3 18.9
6 29.6 25.9 23.8 19.7
7 31.0 26.8 24.1 20.1

we show that each of the style edits applies consistently to
many garments in the same category and appears consistent
even when the garments have different properties (e.g., the
length and shape of the outerwear differ). This is made pos-
sible by using garment control points that capture category-
level garment semantics.

The qualitative examples also show the properties of the
garments are preserved after the style edits and are not im-
pacted by the way garments are worn. Pay attention to the
red blocks (column 6), the colored hearts (column 7), the
street painting (column 8), and the leopard prints (column
9) in Figure 2. These distinct features are preserved when
the outerwear is open or altered in different ways.

Figure 6 shows that using control points to coordinate
outfits can largely avoid artifacts caused by a lack of coor-

dination between garments in an outfit.
To evaluate how the control points affect the results, we

perform interpolation by moving the control points slightly
after each step and comparing the differences. As shown in
Figure 5, the silhouette of the outerwear exactly follows the
control point. The results show that the control points are
very effective at controlling the garment drapes.

In addition, qualitative examples show our method can
control a specific garment without affecting other garments
in the outfit. As shown in Figure 2, the method only intends
to edit the outerwear and preserves the look of the other
garments. The visible parts of the top and the bottoms re-
main identical, besides the addition of some shading that is
necessary to produce a realistic look.

5.3. User Studies

User studies support the idea that (a) our drape edits do
not change the identity of a garment and (b) that they do
change the way the garment is worn.

In the first study, we show subjects pairs of outfits ren-
dered from our method and ask the subjects if a garment in
the pair of outfits is identical. The questions contain ren-
dered pairs of the same garment worn in different ways and
rendered pairs of different garments that were chosen to
look visually similar. We asked 44 respondents to answer
22 questions, where 15 were pairs of the same garment and
7 were pairs of different garments. The respondents had
an overall accuracy of 85.0%, suggesting the subjects per-
ceived that most style edits did not alter garment identity.

In the second study, we show the subjects a rendered
outfit and ask the person to choose the style that best de-
scribes the look from a set of options. For example, a sub-
ject may be asked to choose whether a top+bottoms outfit
is either untucked, fully-tucked, front-tucked, side-tucked,
or half-tucked. Subjects are shown examples of each style
option. We asked 44 respondents to answer 22 styling ques-
tions. The respondents had an overall accuracy of 80.1%,
indicating that subjects are able to identify the style in most
cases. Details of the study are included in the Appendix.

6. Conclusion & Discussion

We propose the first outfit try-on system that allows gar-
ments to be worn in different ways while producing try-on
images that preserve state-of-the-art quality. Because our
control layer embeds garment semantics, our method al-
lows style edits made on an example garment to be applied
to style other garments of the same category. Evaluation
results show that the control mechanism can effectively al-
ter the way a garment drapes while preserving its identity.
The system provides a powerful tool for users to experi-
ment with outfit drapes and for professionals to style differ-
ent garments appropriately.

5873

References
[1] Rıza Alp Guler, Natalia Neverova, and Iasonas Kokkinos.

Densepose: Dense human pose estimation in the wild. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018. 3

[2] Shuai Bai, Huiling Zhou, Zhikang Li, Chang Zhou, and
Hongxia Yang. Single stage virtual try-on via deformable
attention flows. In Proceedings of the European Conference
on Computer Vision, 2022. 2

[3] Alberto Baldrati, Davide Morelli, Giuseppe Cartella, Mar-
cella Cornia, Marco Bertini, and Rita Cucchiara. Multimodal
garment designer: Human-centric latent diffusion models for
fashion image editing. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, 2023. 3

[4] Chieh-Yun Chen, Ling Lo, Pin-Jui Huang, Hong-Han Shuai,
and Wen-Huang Cheng. Fashionmirror: Co-attention
feature-remapping virtual try-on with sequential template
poses. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2021. 1, 3

[5] Seunghwan Choi, Sunghyun Park, Minsoo Lee, and Jaegul
Choo. Viton-hd: High-resolution virtual try-on via
misalignment-aware normalization. In CVPR, 2021. 2, 6

[6] Ayush Chopra, Rishabh Jain, Mayur Hemani, and Balaji Kr-
ishnamurthy. Zflow: Gated appearance flow-based virtual
try-on with 3d priors. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), 2021.
2, 3, 5, 6, 8

[7] Aiyu Cui, Daniel McKee, and Svetlana Lazebnik. Dress-
ing in order: Recurrent person image generation for pose
transfer, virtual try-on and outfit editing. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. 1, 3

[8] Haoye Dong, Xiaodan Liang, Ke Gong, Hanjiang Lai, Jia
Zhu, and Jian Yin. Soft-gated warping-gan for pose-guided
person image synthesis. In NeurIPS, 2018. 2

[9] Haoye Dong, Xiaodan Liang, Yixuan Zhang, Xujie Zhang,
Xiaohui Shen, Zhenyu Xie, Bowen Wu, and Jian Yin. Fash-
ion editing with adversarial parsing learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2020. 1, 3

[10] Benjamin Fele, Ajda Lampe, Peter Peer, and Vitomir Struc.
C-vton: Context-driven image-based virtual try-on network.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV), January 2022. 2

[11] Xin Gao, Zhenjiang Liu, Zunlei Feng, Chengji Shen, Kairi
Ou, Haihong Tang, and Mingli Song. Shape controllable
virtual try-on for underwear models. 2021. 3

[12] Chongjian Ge, Yibing Song, Yuying Ge, Han Yang, Wei Liu,
and Ping Luo. Disentangled cycle consistency for highly-
realistic virtual try-on. In CVPR, 2021. 2, 6

[13] Yuying Ge, Yibing Song, Ruimao Zhang, Chongjian Ge, Wei
Liu, and Ping Luo. Parser-free virtual try-on via distilling
appearance flows. In CVPR, 2021. 2, 3, 6

[14] Yuying Ge, Ruimao Zhang, Lingyun Wu, Xiaogang Wang,
Xiaoou Tang, and Ping Luo. A versatile benchmark for de-
tection, pose estimation, segmentation and re-identification
of clothing images. CVPR, 2019. 4

[15] Xintong Han, Xiaojun Hu, Weilin Huang, and Matthew R.
Scott. Clothflow: A flow-based model for clothed person
generation. In ICCV, 2019. 2, 3, 6

[16] Xintong Han, Zuxuan Wu, Weilin Huang, Matthew R. Scott,
and Larry S. Davis. Compatible and diverse fashion image
inpainting. 2019. 3

[17] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016. 4

[18] Sen He, Yi-Zhe Song, and Tao Xiang. Style-based global
appearance flow for virtual try-on. In CVPR, 2022. 2, 3, 6

[19] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NIPS, 2017. 7, 8

[20] Wei-Lin Hsiao, Isay Katsman, Chao-Yuan Wu, Devi Parikh,
and Kristen Grauman. Fashion++: Minimal edits for outfit
improvement. In ICCV, 2019. 1, 2, 3

[21] Thibaut Issenhuth, J. Mary, and Clément Calauzènes. Do
not mask what you do not need to mask: a parser-free virtual
try-on. ECCV, 2020. 2, 5

[22] Yuming Jiang, Shuai Yang, Haonan Qiu, Wayne Wu,
Chen Change Loy, and Ziwei Liu. Text2human: Text-driven
controllable human image generation. ACM Transactions on
Graphics (TOG), 2022. 3

[23] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European Conference on Computer Vision, 2016. 6

[24] Hui Zhang Keyu Yan, Tingwei Gao and Chengjun Xie. Link-
ing garment with person via semantically associated land-
marks for virtual try-on. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2023. 2

[25] Christoph Lassner, Gerard Pons-Moll, and Peter V. Gehler.
A generative model for people in clothing. In ICCV, 2017. 2

[26] Sangyun Lee, Gyojung Gu, Sunghyun Park, Seunghwan
Choi, and Jaegul Choo. High-resolution virtual try-on with
misalignment and occlusion-handled conditions. In Proceed-
ings of the European Conference on Computer Vision, 2022.
2, 3

[27] Kedan Li, Min Jin Chong, Jeffrey Zhang, and Jingen Liu.
Toward accurate and realistic outfits visualization with atten-
tion to details. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.
2, 3, 4, 5, 6, 7, 8

[28] Yifang Men, Yiming Mao, Yuning Jiang, Wei-Ying Ma, and
Zhouhui Lian. Controllable person image synthesis with
attribute-decomposed gan. In Computer Vision and Pattern
Recognition (CVPR), 2020 IEEE Conference on, 2020. 1

[29] Davide Morelli, Matteo Fincato, Marcella Cornia, Federico
Landi, Fabio Cesari, and Rita Cucchiara. Dress Code: High-
Resolution Multi-Category Virtual Try-On. In Proceedings
of the European Conference on Computer Vision, 2022. 2, 3

[30] Assaf Neuberger, Eran Borenstein, Bar Hilleli, Eduard Oks,
and Sharon Alpert. Image based virtual try-on network from
unpaired data. In CVPR, 2020. 2, 3

[31] Natalia Neverova, Riza Alp Güler, and Iasonas Kokkinos.
Dense pose transfer. In ECCV, 2018. 3

5874

[32] Martin Pernuš, Clinton Fookes, Vitomir Štruc, and Simon
Dobrišek. Fice: Text-conditioned fashion image editing with
guided gan inversion, 2023. 3

[33] Amit Raj, Patsorn Sangkloy, Huiwen Chang, James Hays,
Duygu Ceylan, and Jingwan Lu. Swapnet: Image based gar-
ment transfer. In ECCV, 2018. 1, 3

[34] I. Rocco, R. Arandjelović, and J. Sivic. Convolutional neu-
ral network architecture for geometric matching. In CVPR,
2017. 2

[35] Kripasindhu Sarkar, Vladislav Golyanik, Lingjie Liu, and
Christian Theobalt. Style and pose control for image synthe-
sis of humans from a single monocular view. ArXiv, 2021.
3

[36] Bochao Wang, Huabin Zheng, Xiaodan Liang, Yimin Chen,
and Liang Lin. Toward characteristic-preserving image-
based virtual try-on network. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2018. 2, 3,
6

[37] Han Yang, Ruimao Zhang, Xiaobao Guo, Wei Liu, Wang-
meng Zuo, and Ping Luo. Towards photo-realistic virtual
try-on by adaptively generating↔preserving image content.
In CVPR, 2020. 2, 3, 5, 6

[38] Li Yu, Yueqi Zhong, and Xin Wang. Inpainting-based virtual
try-on network for selective garment transfer. IEEE Access,
2019. 3

[39] Kaiduo Zhang, Muyi Sun, Jianxin Sun, Binghao Zhao,
Kunbo Zhang, Zhenan Sun, and Tieniu Tan. Humandif-
fusion: a coarse-to-fine alignment diffusion framework for
controllable text-driven person image generation, 2022. 3

[40] Xie Zhenyu, Huang Zaiyu, Dong Xin, Zhao Fuwei, Dong
Haoye, Zhang Xijin, Zhu Feida, and Liang Xiaodan. Gp-
vton: Towards general purpose virtual try-on via collabora-
tive local-flow global-parsing learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2023. 2, 3

[41] Shizhan Zhu, Sanja Fidler, Raquel Urtasun, Dahua Lin, and
Change Loy Chen. Be your own prada: Fashion synthesis
with structural coherence. In CVPR, 2017. 1, 2, 3

5875

