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Abstract

Recently, dense latent variable models have shown
promising results, but their distributed and potentially re-
dundant codes make them less interpretable and less ro-
bust to noise. On the other hand, sparse representations
are more parsimonious, providing better explainability and
noise robustness, but it is difficult to enforce sparsity due to
the complexity and computational cost involved. In this pa-
per, we propose a novel unsupervised learning approach to
enforce sparsity on the latent space for the generator model,
utilizing a gradually sparsified spike and slab distribution
as our prior. Our model is composed of a top-down gener-
ator network that maps the latent variable to the observa-
tions. We use maximum likelihood sampling to infer latent
variables in the generator’s posterior direction, and spike
and slab regularization in the inference stage can induce
sparsity by pushing non-informative latent dimensions to-
ward zero. Our experiments show that the learned sparse
latent representations preserve the majority of the informa-
tion, and our model can learn disentangled semantics, in-
crease the explainability of the latent codes, and enhance
the robustness of the classification and denoising tasks.

1. Introduction
In recent years, several approaches have been developed

to study the mapping between high-dimensional observa-
tions and low-dimensional latent representations. Two of
the most influential works are Variational Auto-Encoders
(VAE) [13, 27, 28] and Generative Adversarial Networks
(GAN) [7, 11, 25]. While these methods have shown im-
pressive results, they tend to emphasize learning dense and
distributed latent representations rather than disentangled or
sparse ones. This makes it difficult to understand the indi-
vidual latent codes.

Furthermore, dense models are generally not robust to
noise as their redundant representations are sensitive to per-
turbations [1]. On the contrary, sparse representations are
more robust and offer other advantages such as increased

explainability in the latent space by encoding semantic in-
formation into a smaller subset of latent dimensions.

Many existing works have demonstrated great perfor-
mance in learning disentangled or explainable latent vari-
ables [3, 24, 26]. For example, [18] uses a desired struc-
ture to impose a decomposition on the vanilla VAE model
to learn disentangled latent representations, while [16] im-
proves latent space disentanglement by adding gradient-
based attention to the VAE model. Beta-VAE incorporates
an adjustable parameter β to obtain a more interpretable,
factorized latent representation by sacrificing reconstruction
ability [10]. However, these approaches mainly focus on
learning disentangled latent representations with isotropic
Gaussian as the prior distribution. Although these works
have demonstrated notable disentanglement results in their
experiments, their individual latent dimensions are not en-
tirely disentangled. A change in the latent code will typi-
cally influence and alter other features simultaneously. Ad-
ditionally, their learned latent representations are not par-
simonious and are not as robust as sparse representations.
Hence, we aim to develop a model that can learn both sparse
and disentangled latent semantics.

Currently, few works learn a sparse representation in the
latent space. One notable example is Variational Sparse
Coding (VSC) [29]. It employs variational inference to
learn the non-linear mapping between observation and la-
tent space. VSC approximates the Dirac Delta function us-
ing a scaled sigmoid step function. [5] proposes using a soft
thresholding operator to force a sparse latent representation.
They use a straight-through estimator to estimate the gradi-
ent of latent variables. However, such estimation can lead
to large bias and unreliable latent codes. Due to the nature
of variational models, these models require approximations
for the true posterior of the latent variable instead of exact
inference. A common limitation of these approaches is that
an extra inference network must be carefully designed to
learn the mapping from observation to latent space. Since
the inference step is an approximation of the true posterior,
the sparsified latent codes are not effective and accurate.

To address these limitations, we propose a new train-
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ing method for learning sparse latent representations us-
ing gradually sparsified spike and slab distribution as our
prior belief. We train the model using maximum likeli-
hood estimation and infer the latent variables using Monte
Carlo Markov Chain sampling (MCMC) [20] to solve the
intractable expectation. We use the maximum likelihood
sampling method to further improve semantics and patterns
learned by latent representations. We show theoretically
that the spike and slab prior regularization in the inference
step forces the latent codes that do not capture important in-
formation toward zero, and it leads to the learning of sparse
and disentangled semantics. With our proposed learning
scheme, we can perform exact inference in the generator
model without the need to design an extra encoder network
for approximated inference. The learned latent representa-
tions can be more accurate and effective.

Our contributions are summarized below:

• We present a new learning method to learn sparse la-
tent representations via gradually sparsified spike and
slab prior to avoid dead latent codes.

• We propose to use maximum likelihood sampling and
spike-and-slab regularization on Langevin Dynamics
to learn informative sparse latent variables.

• We conduct extensive experiments to demonstrate our
sparse model can capture essential information of the
original observation and lead to interpretable as well
as robust representation.

2. Related Works
2.1. Learning Linear Sparse Representations

There have been many applications and algorithms that
involve the learning of sparse representations [30, 32, 33].
One of the most fundamental methods to learn a sparse rep-
resentation is sparse coding [15, 23]. It is an approximation
strategy that is developed to solve the optimization prob-
lem of finding optimal weighted linear combinations of the
basis matrix and coefficient matrix from an over-complete
dictionary.

The goal of sparse coding aims to learn a meaning-
ful sparse representation without losing many details while
keeping only a small set of latent codes to have strong ac-
tivation. [34] proposes Convolutional Sparse Coding (CSC)
to learn rich features and it is based on a convolutional de-
composition of images under sparsity constraint. [2] pro-
duces a fast convolutional sparse coding algorithm with
superlinear convergence. [4] proposes using an iterative
shrinkage-thresholding algorithm to directly regularize the
latent variables and learn sparse coding. These works have
focused on learning linear mapping of sparse coding but do
not have the flexibility to learn complex mapping. Espe-

cially in the era of neural networks, non-linear relationships
are more expressive and preferred nowadays.

2.2. Learning Non-Linear Latent Representations

There has been increasing popularity recently in learning
the mapping between observation and latent space [7, 13].
The Alternating Back-Propagation (ABP) algorithm uses a
unified probabilistic framework to train the generator net-
work [8]. The generator employs a deep generative net-
work to establish a complex non-linear mapping from la-
tent to observation. Throughout the training, ABP uses a
persistent chain for MCMC sampling [20] which involves
warm start sampling to obtain posterior latent samples. [22]
suggests the use of a short-run non-persistent chain for pos-
terior sampling. However, these models have dense latent
representations and do not aim to learn a sparse represen-
tation under their training procedure. The entangled latent
variables lack interpretability and are not robust to noisy
data. To address this issue, [9] extends the vanilla ABP for
disentangled latent representations learning, but the learned
latent variables remain non-sparse. [31] proposes a hierar-
chical AND-OR generator model to learn meaningful inter-
pretations of the latent variables.

3. Proposed Method
3.1. Spike and Slab Prior

We present a new learning method to learn sparse rep-
resentations using spike and slab distribution as our prior
belief for the latent variables on the generator model. The
distribution consists of spike variable and continuous slab
variable [6,19]. The spike variable has a probability α1 that
determines whether the latent variables take values from the
standard Gaussian or the slab variable distribution where
it can be either a Dirac delta function or another Gaussian
distribution. Since the Dirac delta function is not differen-
tiable, we instead adopt a Gaussian distribution centered at
0 with a small variance to approximate the behavior of the
Dirac delta function. The prior distribution can still be re-
garded as spike and slab but now it can also be viewed as
a Gaussian mixture model with weights α1 + α2 = 1 as
shown in Equation 1.

z ∼ pss(z) = α1N(0, σ2
1) + α2N(0, σ2

2) (1)

where σ2
1 is fixed to be 1 as the variance of standard Gaus-

sian distribution and σ2
2 is the variance of slab Gaussian dis-

tribution. With this prior, the sparsity of our latent variable
z can be determined by changing the value of α1. Theoret-
ically, we should have a small α1 and σ2

2 to induce sparsity.
With a small α1, α2 will be large and it’s more likely to
sample points from the slab variable distribution. When we
have a small σ2

2 simultaneously, most points sampled from
this distribution pss(z) will be small and close to 0. Thus
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we can induce a sparse representation of the latent space in
this setting.
Sparsified Latent Codes: During training, when we en-
force a highly sparse latent power (e.g. α1 = 0.01) at the
start of the iteration, some of the latent codes will not have
the opportunity to learn anything before getting pushed to-
wards zero. We demonstrate by slowly decreasing the value
of α1 in the course of training, individual latent variables
can gradually capture semantic knowledge. This can help
alleviate the problem of dead latent codes.

3.2. Latent Inference and Model Learning

For each given observation x, we assume there is a cor-
responding latent variable z. The generator model G that
maps the latent variables into observations can be repre-
sented as:

x = Gθ(z) + ϵ; ϵ ∼ N(0, σ2ID) (2)

where x ∈ Rd, σ is the pre-specified standard deviation of
the noise vector ϵ and the generator G is parameterized by
a top-down neural network with weights θ. Equation 2 im-
plies that the conditional distribution pθ(x|z) is also a Gaus-
sian distribution with pθ(x|z) ∼ N(Gθ(z), σ

2ID). Given
these two distributions pss(z) and pθ(x|z) , our complete-
data log-likelihood between observation x and latent vari-
able z can be formulated as follows:

log pθ(x, z) = log[pss(z)pθ(x|z)]

= −|x−Gθ(z)|2

2σ2
+ log pss(z) + log

1√
2πσ

(3)
The log of joint distribution consists of the reconstruction
error and log prior penalty term. This model can be trained
using maximum likelihood estimation. The observed-data
log-likelihood L(θ) given observations {x1, x2, ..., xn} can
be written as:

L(θ) =

n∑
i=1

log pθ(x) =

n∑
i=1

log

∫
z

pθ(xi, zi)dz (4)

Differentiate with respect to model weights θ, the gradient
of log-likelihood can be derived as:

∂

∂θ
L(θ) =

n∑
i=1

Epθ(zi|xi)[
∂

∂θ
log pθ(xi, zi)] (5)

However this posterior inside the expectation can be in-
tractable to sample from, therefore, we consider using non-
persistent short-run Langevin Dynamics with spike and slab
prior to obtaining a sparse latent representation. Then the
generator posterior distribution of z in Equation 5 can be
updated via:

zτ+1 = zτ − s2

2

∂

∂z
[
|x−Gθ(z)|2

2σ2
− log pss(z)] + sϵLD,τ

(6)

where s denotes the learning step size, ϵLD denotes the
noise diffusion term sampled from a standard Gaussian dis-
tribution and τ is the time step of Langevin Dynamics.
Zero Initialization: Theoretically, for small step size s,
the marginal distribution of z can asymptotically coverage
to the target posterior distribution pθ(z|x) as τ → ∞.This
enables us to initialize z0 from any fixed distribution p0.
The starting distribution can be either Gaussian, spike-and-
slab, or zero initialization. In our experiments, we opt for
zero initialization as it aligns better with our objective of
achieving sparsity and it leads to improved performance
compared to initializing from other distributions.

In Equation 6, the derivative of the log of spike-and slab
prior regularization term with respect to the latent variable
z can be represented as:

∂

∂z
log pss(z) = − z

σ2
1

+
R1R2z

e−R2 z2

2 +R1

(7)

where we denote R1 = (1−α1)σ1

α1σ2
and R2 =

σ2
2−σ2

1

σ2
1σ

2
2

. See
Appendix for detailed derivation. This regularization term
can push the latent codes towards zero by giving it a larger
gradient if it does not capture meaningful information about
the observation which allows us to achieve sparsity in the
latent space.
Maximum Likelihood Sampling: In Equation 5, the ex-
pectation term can be estimated using multiple samples to
ensure accurate approximation. However, many MCMC-
based approaches [8, 22] only obtain one sample from the
Markov chain because running m separate chains can be
computationally expensive. Even though it is sub-optimal,
it can still be more accurate than the approximation from
variational inference. Alternatively, we can obtain m differ-
ent samples along a single MCMC trajectory by skipping K
steps in between. As K increases, the samples can become
less dependent. Specifically, assuming the first sample is
obtained at time-step τ + K, for each observation xi, we
can select m samples from Langevin Dynamics:

zi,1,...,m = [zτ+K , zτ+2K , ..., zτ+mK ] (8)

After we have obtained a list of samples for the expec-
tation term in Equation 5, we can average over all samples
to calculate the expectation. However, in the case of sparse
representations, it can lead to learning repeated features [5].
Instead, we can choose the latent representation from mul-
tiple samples that can lead to maximum likelihood. At the
same time, the inferred zi,max can be used to approximate
the expectation.

zi,max = argmax
zi,m

log[pθ(xi|zi,m)] (9)

With this approach, reconstructed images with the best
combination of current sparse latent codes can be used to
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update the model. Therefore, developed features can be
reused and learned latent codes can be more informative.

After latent codes have been inferred, they can be
plugged into Equation 3 to form the complete-data log-
likelihood, and the generator model can be learned using
stochastic gradient descent:

θt+1 = θt + η
1

n

n∑
i=1

Epθ(zi|xi)[
∂

∂θ
log pθ(xi, zi)] (10)

where η is the learning rate and selected zi,max from multi-
ple samples will be used to learn the generator model.

3.3. Theoretical Understanding

From Equation 1, we observe that the spike and slab dis-
tribution is essentially a Gaussian mixture model with two
Gaussian components when the spike variable uses Gaus-
sian distribution to approximate the Dirac Delta function.
We denote p(Ci) = αi as the prior probability of compo-
nent i. The posterior probability of the component p(Ci|z)
given latent variable is bounded between 0 and 1, and can
be represented as follows:

p(Ci|z) =
αiN(0, σ2

i )

αiN(0, σ2
i ) + αjN(0, σ2

j )

=
αi

σi

αi

σi
+

αj

σj
e
z2( 1

2σ2
i

− 1

2σ2
j

)
; i, j ∈ {1, 2}; i ̸= j

(11)
See Appendix for detailed derivation. Theoretically, one of
the component’s variance must be small to induce sparsity,
so we let σ2

2 < σ2
1 = 1 and 1

2σ2
1
− 1

2σ2
2

will always be
negative. With these premises, we can derive and rewrite
the gradient of the logarithm of the spike and slab prior from
Equation 7 in terms of the posterior probability p(Ci|z) as
below:

∂

∂z
log pss(z) = −p(C1|z)

z

σ2
1

− p(C2|z)
z

σ2
2

(12)

See Appendix for detailed derivation. Since we want to
have more points sampled from the Gaussian distribution
with small variance, we set α1 < α2 and then p(C2) >
p(C1).

When latent variable z tends to be large, p(C1|z) will ap-
proach 1 while p(C2|z) ∗ z will approach 0, so the gradient
term will become − z

σ2
1

since it is more likely to be sampled
from standard Gaussian component. But when z is rela-
tively small, p(C1|z) will approach to 0 while p(C2|z) will
approach to 1, and the gradient will become − z

σ2
2

. Since σ2
2

is a very small number, we will have a larger gradient for
a small value of z which means a stronger power to push it

towards 0. This indicates that the value of z for this dimen-
sion must contain important information to overcome this
power. Otherwise, if z holds inconsequential information,
the prior term will penalize it and thus enforce sparsity to a
certain degree.

Algorithm 1 Sparse Latent Representations Learning

Input: observations xi, number of epochs T , learning
rate η, current sparsity level αC , sparsity decay constant
γ, sparsity threshold αT , number of samples m.
Let t = 0;
repeat

Sparsify Latent: If αC > αT , then αC = αC − γ.
Latent Initialization: For each xi, initialize a new zi
from fixed prior distribution zi ∼ p0(z).
Latent Update: Infer m samples zi,1, ..., zi,m from
posterior distribution with Equation 6 and 7.
Latent Selection: Choose zi,max from m samples that
can maximize the likelihood using Equation 9.
Model Update: Fix the inferred zi,max and observa-
tion xi, update the model parameters with learning rate
η according to Equation 10.
Let t = t+ 1;

until t = T

4. Experiments
Datasets: We test our model on MNIST [14], Fashion-
MNIST [17], CelebA [17] and SVHN [21] datasets.
MNIST and Fashion-MNIST are grey-scaled images while
CelebA and SVHN are color images. CelebA images are
cropped and resized to dimensions of 64 by 64.
Experimental Settings: All training and testing images are
scaled to [0, 1]. Since sparse coding usually requires an
overcomplete basis set [23], we use 200 latent dimensions
for MNIST and Fashion-MNIST, 400 for SVHN, and 800
for CelebA. We fix batch size = 100, σ = 0.3, langevin step
size = 0.1, langevin steps = 30, slab variable variance = 0.1,
and α1 = 0.01. Initial sparsity is set to 1 and the decay
constant γ is 0.033. We choose m = 5 and K = 5 for maxi-
mum likelihood sampling to balance between the efficiency
and performance. The noise diffusion term in Langevin Dy-
namics has a weight of 0.0001. We utilize cold start to train
the model with zero initialization at the start of every epoch.
Adam optimizer [12] is used with a learning rate of 0.0001.
For a fair comparison with the VSC model [29], we adopt
their model structure for our experiments.

4.1. Sparsity Control

We begin by verifying that our training can enforce spar-
sity on the latent codes. In this experiment, we demonstrate
that our model can effectively learn a sparse representation
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Figure 1. Latent Representations with Different Levels of sparsity
level α1. Top: Learned Latent Representations. Bottom: Corre-
sponding Reconstructed Images.

of the latent codes by simply changing the prior probability
α1. We obtain the learned latent representations of the cur-
rent observation using Langevin Dynamics, and we set the
value of α1 to be [1, 0.5, 0.01] for comparison and illustra-
tion.

Our results, shown in Fig 1, reveal that when the prior
probability for the standard Gaussian component (α1) is set
to 1, the learned latent representation is dense, and nearly
all the latent codes are activated. However, as we gradu-
ally decrease the value of α1 to 0.01, we observe fewer la-
tent codes with stronger activation, and the rest of the latent
codes are pushed towards 0. This demonstrates the effec-
tiveness of our algorithm in learning sparse representations.
We also note that the reconstructed images using sparse la-
tent codes do not lose much information compared to those
using dense latent codes on a given observation.

4.2. Reconstruction of Sparse Representations

One important factor in measuring whether learned la-
tent codes can capture essential information from observa-
tions is their ability to reconstruct. We demonstrate that our
model can reconstruct testing images well with only a small
number of activated latent variables across various datasets.
We compare our results with VSC using the same value of α
(α = 0.01) [29], VAE [13], Beta-VAE (β = 4) [10], short-
run inference model [22], and thresholding model [5]. We
assess reconstruction performance by comparing the qual-
ity of reconstruction and evaluating the peak signal-to-noise
ratio (PSNR) in Table 1.

Our model outperforms other sparse and disentangled
models while remaining competitive with the dense VAE
model in terms of the PSNR metric. Although our model
obtained a lower PSNR than the short-run model, we used
very few activated latent codes (α = 1). As demonstrated in
Fig 2, the reconstructed images using learned sparse latent
representations visually preserve the majority of informa-
tion from the observations.

Figure 2. Reconstructed Images on various datasets. Top: Origi-
nal Images. Bottom: Reconstructed Images.

Model MNIST Fashion CelebA SVHN

VAE [13] 19.63 19.59 23.87 23.77
Beta-VAE [10] 16.84 17.01 20.53 19.82
TC-VAE [3] 16.19 16.82 20.37 18.44
Short-run [22] 21.06 21.81 26.78 29.21
VSC [29] 16.37 17.23 20.06 20.66
Threshold Gaussian [5] 12.91 12.13 16.57 17.08
Threshold Laplacian [5] 12.63 11.64 16.11 16.88
Ours (α = 0.01) 19.77 19.95 24.71 26.57

Table 1. Peak Signal-to-Noise Ratio (dB). Higher PSNR metric
means better reconstruction quality.

4.3. Latent Code Classifier

We investigate whether our learned sparse representa-
tions can retain important information and increase the ro-
bustness of the classifier. We hypothesize that our learned
representations should generalize well with smaller train-
ing datasets. We test the model using a varying number of
latent dimensions, ranging from 10 to 250 and randomly
select 500 images from the MNIST training dataset. We
encode the training observations to the latent codes and use
them as input to train a one hidden linear layer classifier. We
then encode the testing dataset to the latent space and test
the accuracy of the encoded latent codes using the trained
classifier.

As shown in Fig 3, our model can encode key class in-
formation into the latent variables without losing accuracy
using a small amount of training data and can outperform
other models at different latent dimensions. When the di-
mension of the latent space is increased, sparse models can
fill in more details to further aid in distinguishing digits. In
contrast, dense models saturate, and the accuracy plateaus.
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Figure 3. Classification Accuracy on MNIST using encoded latent
variables. The accuracy results are averaged over 5 trials. Our
model obtains higher accuracy with increased latent dimensions.
Dense models will saturate and lose accuracy over time.

Therefore, we demonstrate that our learned sparse represen-
tations can lead to a more robust classifier, as the classifier
learned with sparse codes will not overfit as the dimension
increases.

To verify our classifier results, we also present t-SNE
plots using the learned latent codes with 200 latent dimen-
sions for the MNIST dataset. As shown in Fig 4, the sparse
latent representations learned by our model can be well sep-
arated into different clusters compared to existing models.
The ability to separate the clusters implies that our model
has captured pivotal knowledge of each class, leading to a
more robust classifier.

Figure 4. T-SNE plots of different models. Top left: Beta VAE;
Top Right: VSC; Bottom Left: Short-run model; Bottom Right:
Proposed Model.

Model σ = 0.1 σ = 0.3 σ = 0.5

Short-run [22] 0.337 0.182 0.119
TC-VAE [3] 0.278 0.144 0.099
VSC [29] 0.293 0.146 0.078
Threshold Gaussian [5] 0.134 0.074 0.041
Threshold Laplacian [5] 0.179 0.093 0.058
Ours 0.355 0.201 0.132

Table 2. Performance on Structural Similarity Index (SSIM).
Higher SSIM implies better image quality. Our model can produce
the best reconstructions from noisy images in terms of Luminance,
Contrast, and Structure.

4.4. Robust Latent Representations

Sparse latent representations should also be robust to
noisy images semantically and visually as they can encode
important structural information from the observation to a
small subset of activated latent codes. We apply zero mean
Gaussian noise with different variances on testing images to
evaluate the model’s performance of denoising. In our case,
we first try out the ability to reconstruct from noisy images.
The latent variables are obtained from the inference step to
recover clean images from these noisy ones.

In Fig 5, we can observe that for the short-run and VSC
models, they will restore wrong digits when the noise vari-
ance is high. Their dense latent variables are sensitive to
small changes in the latent space and they are not robust to
the added noise. At the same time, our model can faithfully
recover from the Gaussian noise and obtain the correct digit.
This is because the sparse model can learn key structure in-
formation of each class while pushing non-informative la-
tent towards zero so they are not easily affected by the noise.

In addition, we also calculate their Structural Similarity
Index (SSIM) between noisy and denoised images to com-
pare the perceptual changes and reconstructed image qual-
ity. We add various Gaussian noise where σ = [0.1, 0.3, 0.5]
into Fashion testing data. Our model can outperform both
the sparse VSC model and the dense short-run model in Ta-
ble 2. It implies the learned sparse latent representations
using our algorithm are more robust to noises.

Moreover, we use training MNIST data to train a sim-
ple one-layer classifier to test the model’s generalization on
noisy images. By adding Gaussian noise with different vari-
ances to the testing data, we can obtain the latent represen-
tations from the inference step and feed the reconstructed
images into the classifier to compute classification accuracy.
The classification accuracy is averaged over 5 runs.

In Table 3, our model achieves the highest accuracy
among other sparse and dense models. It shows our model
is resistant to the perturbations from the Gaussian noise.
The model has learned to encode important semantics into
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Figure 5. Denoising on MNIST Dataset. First Row: Noisy Im-
ages; Second Row: Short-run dense model; Third Row: VSC;
Last Row: Proposed model. Noisy images are obtained from
zero-mean Gaussian with standard deviation σ = 0.3.

Model σ = 0.3 σ = 0.5 σ = 0.7

Beta-VAE [10] 72.31 62.13 59.49
ABP [8] 74.16 47.74 55.39
Short-run [22] 78.78 74.23 68.17
VSC [29] 72.41 57.94 53.54
Threshold Gaussian [5] 68.15 52.74 43.52
Threshold Laplacian [5] 67.29 56.51 51.07
Ours 81.16 75.30 71.79

Table 3. Model classification accuracy on noisy images. Higher
accuracy means the model can better capture structure information
of the observations and be robust to the added noise.

the sparse latent space while discarding latent codes with
trivial contributions. So when there is noise added to the
image, small perturbations will not have a large impact on
the inference latent codes.

For color images in Fig 6, we use σ = [0.1, 0.2, 0.3] as
the standard deviation for zero mean Gaussian noise. The
noise is added to each image channel. We observe that our
model can also reconstruct the corrupted face and digit im-
ages without changing too much of the observations. This
implies the learned sparse latent representations can be ro-
bust to the Gaussian perturbation. The added distortion
from noise does not have much impact on well-learned la-
tent codes. The sparse representation can capture meaning-
ful and structural information about the observed images.

4.5. Latent Code Exploration

A well-trained model can capture a meaningful sparse
latent representation. In this experiment, we demonstrate
that our model can learn semantic meanings from images
and encode them into individual latent codes. By altering a
single activated dimension in the latent space, we observe
disentangled changes in the reconstructed image, making
the latent codes more explainable. In Fig 7, we demon-
strate how changes in disentangled factors, such as facial

Figure 6. Denoising on CelebA and SVHN Images with various
Gaussian noise. Odd rows: Given noisy images. Even rows:
Reconstructed Images.

Figure 7. Latent Traversal using CelebA. First Column: Recon-
structed image given observation. Second to Last Columns: Re-
constructed Images after incrementally altering single activated la-
tent code.

features (beard or without beard) and expressions (smile or
non-smile), can be observed while keeping other features
unaffected. The learned latent codes have shown their abil-
ity to discover disentangled factors from the training dataset
in an unsupervised manner.

Furthermore, we trained our model on Fashion-MNIST
with 30 latent dimensions to examine the features learned
by the model. Since Fashion-MNIST contains 10 classes
with shared structures between classes (e.g., Top and
Pullover), explainable models should be able to extract this
information and encode it into corresponding latent rep-
resentations. For all testing data, we separated them by
their class label, obtained their latent representations using
Langevin Dynamics, and set an activation threshold of 0.3.
We set activated latent codes to 1 and non-activated codes
to 0, then averaged all latent codes by class and plotted a
heatmap to examine the features learned from the dataset.

In Fig 8, we can clearly visualize the learned latent struc-
ture for each Fashion class. Each category forms an ap-
parent pattern with only a few activated codes, while most
latent dimensions remain inactive. These activated codes
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have strong activation, and some other latent codes do not
activate for certain categories. This makes the learned latent
variables more interpretable when altering their latent code.

4.6. Ablation Study

In this section, we investigate the effect of the sparsified
latent code and the maximum likelihood sampling method.
We aim to evaluate the accuracy of reconstruction with
learned latent codes and their performance in recovering
structural knowledge from noisy images. SSIM is calcu-
lated from noisy testing datasets using zero mean Gaussian
noise with σ = 0.1 for color images and σ = 0.5 for grey-
scale images.
Gradually Sparsified Latent vs. Constant Sparsity:
From Fig 9, we observe that the model can learn some struc-
tural information from the images with constant sparsity.
However, it mixes some of the structural information into
the same latent code for different categories. Although this
method can lead to slightly better performance for certain
datasets, its learned latent codes are not as disentangled as
the model with sparsity decay while some of them are al-
ways kept activated. A possible explanation for this phe-
nomenon is that some of the latent codes are pushed toward
zero at the start of the training when we have a small spar-
sity level. Starting with a dense model can give us the ben-
efit of letting each latent code has the ability to learn from
images, and then non-informative codes will be forced to-
ward zero as we gradually increase the sparsity value.

Model MNIST Fashion SVHN CelebA
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Constant Sparsity 19.54 0.33 19.34 0.37 25.38 0.41 22.51 0.67
Average Sampling 19.89 0.36 20.13 0.39 25.47 0.44 25.96 0.65
Proposed Model 19.77 0.38 19.95 0.36 24.71 0.44 26.57 0.69

Table 4. PSNR and SSIM metric on ablation models.

Average Sampling vs. Maximum Sampling: From Table
4, we observe that average sampling performs well in terms
of reconstruction and similar performance for SSIM metric.
However, from the right side of Fig 9, we notice that it does
not learn a clear pattern as shown in Fig 8, which shows
that there are more activated dimensions than the maximum
sampling method. When averaging with M different sam-
ples for the expectation, each of them can lead to different
combinations of bases, resulting in the development of dif-
ferent sparse features along the latent dimensions.

5. Limitations
While our method only needs the generator to infer the

sparse latent variables, the use of MCMC can still be time-
consuming. For each iteration, variational models will cost
about 3 seconds for the MNIST dataset while our method

Figure 8. Heatmap of activated latent codes. Different categories
are separated by a horizontal line. The first five rows contain upper
wear, the middle three rows consist of footwear and the last two
rows are bottom and hand-wear. Objects with the same category
should have similar activated latent maps with small variations.

Figure 9. Latent heatmap for ablation models. Left: Model with-
out sparsity decay. Right: Model with Average Sampling.

will cost 6.6 seconds. But at the same time, without an en-
coder, we could reduce about 50% of the number of total
parameters. The other limitation is that since we are using a
Gaussian mixture model to approximate the spike-and-slab
distribution, the inactivated codes are close to zero but not
exactly zero.

6. Conclusions

In this work, we present a new learning method to learn
a sparse latent representation with a gradually sparsified
spike and slab as our prior distribution. The model uses
only one top-down generator to map from the latent space
to observed images. The latent variable is inferred from
zero initialization with Langevin Dynamics and selected us-
ing maximum likelihood sampling. Our model shows com-
petitive reconstruction capability with only a few activated
latent codes while preserving important information about
the given observation. We also performed extensive exper-
iments to demonstrate the sparse latent representation has
improved explainability and boosted robustness in the task
of denoising and latent classification.
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lot. Controlling generative models with continuous factors
of variations. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. 1

[25] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gen-

5290



erative adversarial networks. In Yoshua Bengio and Yann
LeCun, editors, 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016. 1

[26] Scott E. Reed, Kihyuk Sohn, Yuting Zhang, and Honglak
Lee. Learning to disentangle factors of variation with
manifold interaction. In Proceedings of the 31th Interna-
tional Conference on Machine Learning, ICML 2014, Bei-
jing, China, 21-26 June 2014, volume 32 of JMLR Workshop
and Conference Proceedings, pages 1431–1439. JMLR.org,
2014. 1

[27] Danilo Jimenez Rezende and Shakir Mohamed. Variational
inference with normalizing flows. In Francis R. Bach and
David M. Blei, editors, Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, volume 37 of JMLR Workshop
and Conference Proceedings, pages 1530–1538. JMLR.org,
2015. 1

[28] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra. Stochastic backpropagation and approximate inference
in deep generative models. In Proceedings of the 31th Inter-
national Conference on Machine Learning, ICML 2014, Bei-
jing, China, 21-26 June 2014, volume 32 of JMLR Workshop
and Conference Proceedings, pages 1278–1286. JMLR.org,
2014. 1

[29] Francesco Tonolini, Bjørn Sand Jensen, and Roderick
Murray-Smith. Variational sparse coding. In Amir Glober-
son and Ricardo Silva, editors, Proceedings of the Thirty-
Fifth Conference on Uncertainty in Artificial Intelligence,
UAI 2019, Tel Aviv, Israel, July 22-25, 2019, volume 115 of
Proceedings of Machine Learning Research, pages 690–700.
AUAI Press, 2019. 1, 4, 5, 6, 7

[30] John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sas-
try, and Yi Ma. Robust face recognition via sparse represen-
tation. IEEE Trans. Pattern Anal. Mach. Intell., 31(2):210–
227, 2009. 2

[31] Xianglei Xing, Tianfu Wu, Song-Chun Zhu, and Ying Nian
Wu. Inducing hierarchical compositional model by sparsi-
fying generator network. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, pages 14284–14293.
Computer Vision Foundation / IEEE, 2020. 2

[32] Jianchao Yang, John Wright, Thomas S. Huang, and Yi
Ma. Image super-resolution via sparse representation. IEEE
Trans. Image Process., 19(11):2861–2873, 2010. 2

[33] Meng Yang, Lei Zhang, Jian Yang, and David Zhang. Robust
sparse coding for face recognition. In The 24th IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2011, Colorado Springs, CO, USA, 20-25 June 2011, pages
625–632. IEEE Computer Society, 2011. 2

[34] Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and
Robert Fergus. Deconvolutional networks. In The Twenty-
Third IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2010, San Francisco, CA, USA, 13-18
June 2010, pages 2528–2535. IEEE Computer Society, 2010.
2

5291


