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Abstract

Arbitrary neural style transfer is an advanced AI tech-
nique that can effectively synthesize pictures with an artistic
style similar to a given source picture. However, if such
an AI technique is leveraged by unauthorized individuals, it
can significantly infringe upon the copyright of the source
picture’s owner. In this paper, we study how to protect the
artistic style of source images against unauthorized style
transfer by adding imperceptible perturbations to the orig-
inal source pictures. In particular, our goal is to disable
the neural style transfer models from producing high-quality
pictures with a similar style to the source pictures with slight
manipulating the source images. We introduce Neural Style
Protection (NSP), which provides protection for source im-
ages against various neural style transfer models. Through
extensive experiments, we demonstrate the effectiveness and
generalizability of the proposed style protection algorithm
across numerous style transfer models using varied metrics.

1. Introduction

Recently, neural style transfer techniques [10, 11, 15, 19,
20] have been developed to extract the artistic style from a
given source image and transfer it to generate a picture with
the content from a content image. Among these methods,
Arbitrary Neural Style Transfer (ANST) [5,12,15,17,25,49],
one of the most prevalent and flexible techniques, can eas-
ily transfer the style from any image to the content image
by a single model without the need of fine-tuning the style
transfer models. However, if these techniques are leveraged
by unauthorized people to synthesize artistic works without
permission, it will raise huge concerns in terms of artwork’s
copyright. For example, ANST can easily imitate any paint-
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ing of a specific style that would cost an artist several days or
even months. These will lead to a severe infringement on the
copyright of the original artwork. This scenario raises the
urgent need to protect the style of a piece of artwork from
being copied by neural style transfer techniques.

In this paper, we propose protecting the copyright of the
source images against neural style transfer techniques by
leveraging the concept of adversarial examples [27, 36, 41,
45]. As shown in Figure 1, we propose to protect the source
image style by introducing imperceptible perturbations to
the source image, based on which ANST could not generate
similar images of high quality. However, there is a major
challenge for us to directly adopting adversarial examples
and successfully prevent unauthorized neural style trans-
fer. Adversarial examples [2, 13] are usually calculated only
based on one specific fixed model. Thus, they lack gener-
alization ability. However, the style of a painting could be
copied by various ANST models. The painting is possibly
imitated by different ANST models, and the artists cannot
control what method others will use to imitate the style in
practice. It is possible that the generated perturbation against
one ANST model will totally lose its effectiveness if another
ANST is adopted for style transfer. Thus, the generaliza-
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tion of protection to different ANST models is desired. In
other words, the protection should be designed to reduce the
effectiveness of various ANST models.

In our work, we propose a novel method, Neural Style
Protection (NSP), to demonstrate the potential for success-
fully safeguarding source images against various ANST mod-
els. We mainly focus on the encoder-decoder based ANST,
which represents the mainstream category of ANST mod-
els [4, 7, 15, 23, 25, 31, 38, 49]. Specifically, we designed two
strategies for NSP to enhance the generalization and pro-
vide general protection. First, instead of directly targeting
the final transferred content images on a different style, we
alter the intermediate style representation. ANST models
extract the style representation from an encoder and transfer
it onto content images with a decoder. In general, decoders
of ANST are far more diverse than encoders among ANST
methods, therefore setting the intermediate style represen-
tation as a perturbation objective can mitigate the impact
of the diverse decoders on the generalization. Second, al-
though the encoders are similar, they have different configu-
rations like fine-tuned parameters [49], methods of feature
extraction [25, 31, 38] and so on. To further boost the gen-
eralization [8, 26, 39, 44], we use a momentum-based en-
semble method to accommodate different encoders adopted
by ASNT models. With these two strategies, we can sig-
nificantly improve the generalization of NSP across ANST
models. The main contributions of this paper are as follows:

• We propose a method named NSP to protect the style
of images against ANST. This approach addresses the
concerns of image generators that their novelty style in
the artworks can be readily replicated by neural style
transfer techniques.

• We design two strategies: altering intermediate
style representation and a momentum-based ensemble
method, to enhance the generalization across ANST
models and consequently provide a full protection.

• We conduct experiments to demonstrate that our method
can protect the style of images from being copied by
various ANST models.

2. Related Work
Arbitrary Neural Style Transfer. Neural style trans-

fer [18] aims to model and extract style information from
a specific artwork and apply the style to a reconstructed
content image. Traditional style transfer methods include
optimization based style transfer methods [28–30]and non-
parametric neural model approaches [21]. However, these
methods require relatively high computational costs due to
the complex optimization process compared to later tech-
niques that based on neural networks. Those neural network
based technologies range from transferring a specific style
type from one model [20, 37] to multiple styles generated

from a single model [5, 12, 15, 17, 25, 49]. Arbitrary style
transfer [3, 9, 22, 47], which refers to using a single model
to generate all given types of style images, is a flexible and
efficient approach to achieve the style transfer in different
real world scenarios.

Many encoder-decoder based ANST models have been
proposed, which are the mainstream category. Adaptive
instance normalization [15] is one of the first methods to
achieve arbitrary style transfer. It extracts the feature of an
image by a pre-trained encoder, then simply aligns the mean
and variance of the content feature with those of the style fea-
ture so that the content feature shares the same distribution
with the target style feature. A learnable decoder is trained to
reconstruct the feature to style transfer image. Later on, fea-
ture statistic adaptation becomes a unified model to handle
arbitrary style transfer tasks. One line of work focuses on im-
proving the local transformation performance thus achieves
better balance of style transformation and less content dis-
tortion [25, 31, 34]. A representative solution is adopted the
widely used attention mechanism due to its ability to model
the correspondence among local features of the input content
image and target style image. Style-Attentional Network
(SANet) [31] is a learnable soft-attention-based network to
model the semantic correlations between the content fea-
tures and the style features, and match the style feature to
the content with closest semantic meaning. AdaAttN uses
both shallow layer feature and deep layer feature to get at-
tention score and calculate element-wise adjusted mean and
variance map based on the attention score compared to origi-
nally content feature simply conduct channel-wise shift and
re-scale to align the statistics of style feature [25]. CAST
fine-tuned the encoder to generate better style encoding [49]

Adversarial Examples. Adversarial Examples are pro-
posed to attack the deployed machine learning models in the
test phase [2, 13, 16, 27, 43]. It can be divided into white-box
attacks, which have full access to the target model, and block-
box attacks, which have no access to the target model [46].
In while-box attacks, PGD attack proposed by Madry et
al. [27] has been widely spread for its effectiveness and in-
visibility. It optimizes the perturbations on the data to reduce
the attack loss as follows,

min
δ

Lattack(f(x+ δ), y) s.t. ∥δ∥∞ ≤ ϵ, (1)

where δ is the changed perturbation added on the image
data x, ϵ constraints the change of the data to be invisible
and (x, y) is the input data and its label. PGD achieves the
minimization by updating the perturbation in an iterative
way,

δt+1 = clip(−ϵ,ϵ) {δt − α · sign (∇δt
Lattack(f(x+ δt), y))} ,

(2)

where sign(·) keeps the sign of each value of the gradi-
ent. The methods based on PGD attack have inspired other

3967



Style
Representation decoder

Source Image

Content Image

Content 
representation 

processing

encoder

Figure 2. A General Framework of ASNT

applications like Unlearnable Examples [14], poisoning at-
tack [32] and so on. The development of adversarial attack
has also aroused the research in adversarial defenses which
promoted the safety and robustness of DNNs [33, 42]. In
this work, we also use PGD as our optimization method to
perturb our image data for protection against ANST.

3. Method
In this section, we introduce the details of the proposed

NSP. We first show the process of ANST and define the
protection problem in Section 3.1. Then we discuss how
to enhance the generalization across models by altering the
intermediate style representation in Section 3.2 and how to
further assemble different encoders across different ANST
models in Section 3.3.

3.1. Problem Statement

In this subsection, we first provide the general framework
of the whole process of the widely used encoder-decoder
based ANST, which has both good performance and fast
inference, and then discuss the challenges we face on the
protection against the ANST models.

ANST. The game of ANST and its counteracting are
conducted between two roles, the artwork owner and the
style attacker. The artwork owner has to release its own
pieces of artwork, but does not want others to imitate the
novel style by ANST models. In contrast, the style attacker
is assumed to imitate and transfer the style onto a content
image by ANST models as shown in Figure 2, which is,
however, unauthorized by the artwork owner. We formulate
this process as

cs = g (Φ (f, s) , c) , (3)

where s is the source image, c is the content image, f is the
encoder, Φ is the function to extract style representation from
f , g is the decoder which transfers the style representation
to the content image, and cs is the transferred image by
ANST with the style of s and the content of c. Most of
the ANST models follow this encoder-decoder architecture

[4, 7, 15, 23, 25, 31, 38, 49]. The encoder f and Φ extract the
style representation, while the decoder transfers this style
representation onto the content images. In this work, for
convenience, we consider all the other components in the
ANST, except the encoder, as a part of the decoder. In this
work, we focus on this architecture since it covers a variety
of ANST models.

Protection against ANST and the challenge. In order
to protect the style from ANST models, before releasing the
images to the public, the artwork owner slightly changes the
images in an imperceptible way to get s + δ (∥δ∥∞ ≤ ϵ)
for releasing. It aims to decrease the performance but does
not make a difference to the images in human eyes. In other
words, the goal is to make cs have a different style from s by
adding δ on s. Obviously, the artwork owner cannot change
the data after releasing it and has no control which ANST
model the style attacker will use. Thus, this leads to the
challenge of generalization onto unknown ANST models as
we mentioned in Section 1. If we only design the protection
based on one ANST model, the images are still exposed
under the risk of being imitated by other methods. There-
fore, Neural Style Protection (NSP) is proposed to enhance
the ability in generalization, which is necessary to provide
comprehensive protection. In the following subsections, we
show that NSP solves the problem by removing the most
diverse decoders and assembling the inconsistent encoders
via two strategies.

3.2. Altering the Intermediate Style Representation

To enhance generalization, we try to find a way to pre-
vent NSP from being specific to a single ANST model and
its architecture. In this subsection, we propose to alter the
intermediate style representation to avoid overfitting on one
specific decoder within an ANST model. As introduced in
Section 3.1, most of the ANST models follow the encoder-
decoder architecture. For different ANST models, The en-
coders are often similar and many even share the same net-
work and parameters, like the pre-trained VGG-19 [35]. In
contrast, the decoders receive different input style representa-
tions, have different auxiliary networks and are usually exten-
sively trained for transferring the style in different manners,
which are more diverse than the encoders. Thus, different
from changing the final transferred image cs (which involves
the whole ANST process including both the encoder and de-
coder in an end-to-end manner), altering the intermediate
style representation Φ (f, s) can remove the interaction with
the decoder part, and thus prevent overfitting on one specific
decoder. In this subsection, we introduce two strategies of
altering the style representation to avoid the decoder part for
two cases according to the source style and source content
usage accordingly, and then in Section 3.3 we show how
to further improve the protection by assembling different
methods of extracting the style representations.
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For the first case where most of the ANST models whose
style representations are extracted independently on the con-
tent images like AdaIN [15] and CAST [49], NSP only
involves the part of style representation extraction. In other
words, instead of decreasing the performance of the whole
process g (Φ (f, s) , c), NSP alters the style representation
Φ (f, s) to be as different from the protected style as possi-
ble. We denote the distance between style representations as
D, and define the protection objective to be

argmax
δ

D(Φ (f, s+ δ) ,Φ (f, s)), s.t. ∥δ∥∞ ≤ ϵ. (4)

We use Mean Square Error (MSE) as D in this work. By
maximizing MSE between the style representation of the
clean source image and the source image protected by δ,
NSP can make the extracted style representation by ANST
to be very different from the protected images and thus
provide protection for the style of source image. Although
in different ANST models, Φ and f have different outputs,
MSE is easy to adopt for different models. For example,
the statistics of feature maps, i.e. the mean and variance of
some layers of f , is widely used as the style representation
by many ANST models like AdaIN. Replacing D in Eq. 4
with the statistics, the objective for AdaIN is

argmax
δ

m∑
i=1

∥µ(fi(s))− µ(fi(s+ δ))∥2

+

m∑
i=1

∥σ(fi(s))− σ(fi(s+ δ))∥2,

s.t. ∥δ∥∞ ≤ ϵ,

(5)

where fi is one specified layer of encoder f , m is the number
of the layers used in style representation, µ(·) is the mean
function, and σ(·) is the variance function.

For the second case, not all the ANST models extract the
style representation independently on the content images.
A small group of ANST models including AdaAttN [25]
extract the style representation based on the pixel-level in-
formation of content images, which means Φ takes both the
source image s and the content image c as input. We denote
the Φ in this case as Φ′. For these models, NSP randomly
chooses n content images and calculates the average loss
of the distance between style representations to enhance the
generalization as follows,

argmax
δ

n∑
i=1

D(Φ′ (f, s+ δ, ci) ,Φ
′ (f, s, ci)), (6)

s.t. ∥δ∥∞ ≤ ϵ. (7)

Altering the style representation does not involve the decoder
part, which reduces the potential overfitting to the decoder.
Meanwhile, randomly selected content images can prevent δ
from overfitting on a specific content image.

Based on these two measures of alterning the intermediate
style representation, NSP can avoid changing the final cs
that is directly correlatesd with the decoder part. In such
way, our method can mitigate the overfitting on the diverse
decoders and advance the generalization across different
models. To further reduce the influence of the differences
among encoders which are less diverse than decoders, we
introduce an ensemble method in the next subsection.

3.3. Model Ensemble with Momentum-iterative

As mentioned above, although we mitigate the influence
of the diverse decoders, ANST’s encoders still generate
slightly different features. It means that it is still possible for
us to improve the generalization via considering the differ-
ence of encoders. Thus, to further boost the generalization,
we propose to assemble style representations from different
encoders in NSP.

We choose three ANST methods which use different rep-
resentative encoders to increase NSP’s ability of generaliza-
tion in different models. These models are AdaIN that uses
original pre-trained VGG-19 as encoder, CAST that uses
fine-tuned VGG-19 as encoder and AdaAttN that involves
content images when extracting the style representation. We
assemble these models by summing up the gradient of PGD
as follows,

argmax
δ

M∑
i=1

λiD (Φi (fi, s+ δ) ,Φi (fi, s)) ,

s.t. ∥δ∥∞ ≤ ϵ,

(8)

where fi represents the encoders from the ANST models
to assemble, Φi is the corresponding function to extract the
style representation and λi is the weight to balance between
different models. For convenient, we simplify the extraction
function of AdaAttN Φ′

i (fi, s+ δ, cj) into Φi (fi, s+ δ).
To solve this objective, we use PGD as follows,

δt+1 = clip(−ϵ,ϵ) {δt + α · sign (∇δtLensemble)} , (9)

where

∇δtLensemble =∇δt

M∑
i=1

λiD (Φi (fi, s+ δt) ,Φi (fi, s))

=

M∑
i=1

λi∇δtD (Φi (fi, s+ δt) ,Φi (fi, s)) .

(10)

By directly using Eq. 9, we will empirically find that because
of the sign(·) operation, in each step, the sign of every ele-
ment is dominant by only one ANST model and the influence
of other ANST models will be overlooked. During the PGD
updating process, the sign of different steps are unstable due

3969



to the change of the gradient from the dominant model in
each step. Thus, we adopt the momentum-based PGD in [8]
as:

δt+1 =clip(−ϵ,ϵ) {δt + α · sign (gt+1)} ,
gt+1 =η ∗ gt +∇δtLensemble.

(11)

We remove the softmax function in [8] and directly sum up
the gradients from different models following Eq. 10. The
accumulated gradient gt can keep the influence of all the as-
sembled ANST models and make the sign of PGD updating
more stable. With the momentum-based ensemble, NSP can
have better generalization on different ANST models.

4. Experiment
In this subsection, we conduct experiments to illustrate

the effectiveness of protection. We describe the experiment
setting in Section 4.1 and results in Section 4.2 and 4.3.

4.1. Experimental Settings

Dataset. We randomly select a subset of places365
dataset [50] to be the content images. Style images are
collected from WikiArt [6]. In total, we create 10,000 style
transfer images based on 1000 different content images and
300 style images. To fairly evaluate our proposed algorithm,
we generate transferred images based on clean source style
images and corresponding protected style images along with
the same content. The comparison of these two transferred
images demonstrates the effectiveness of protection.

ASNT models used by style attacker. Since NSP only
assembles three ANST models, we also test the performance
on unknown models to evaluate the protection of unknown
models. We use AdaIN [15], AdaAttN [25] and CAST [49]
as the known models for generating NSP perturbations and
test the protection performance, and use SANet [31] and
ArtFlow [1] as unknown models for only testing the pro-
tection. All the models are trained with MS-COCO [24]
as the content images, except CAST which is trained with
Place365 [50] as content images. AdaIN [15] uses the first
few layers of a VGG-19 pretrained on ImageNet as the en-
coder. The feature outputs right after the ReLU4_1 layer
go through adaptive instance normalization and then feed
into the decoder. The decoder architecture almost mirrors
the encoder, with all pooling layers replaced by the nearest
up-sampling. AdaAttN [7] uses the same pretrained VGG-
19 encoder. It integrates the outputs of different layers of
the encoder after being normalized by an AdaAttN model.
Each layer’s output is concatenated with the former layers
before going through the AdaAttN module to further utilize
the features of shallow layers. CAST [49] adopts the same
architecture skeleton with AdaIN. The pretrained VGG-19
is further fine-tuned via contrastive learning. For the unseen
model we consider, SANet is also an element-wise attention-
based style transfer model. It adopts the last two layers as

the style representation. ArtFlow is built with a projection
flow network instead of the encoder-decoder pipeline. It
encodes the style and content images through the forward
flow and transforms the stylized feature to the stylized image
via reverse inference through the same network module with
the forward pass.

Implementation. We use 50-step PGD for optimization
on the NSP perturbations. We set the perturbation budget
of the perturbed style images to 8/255 for l∞ norm. In each
update step, the step size is set to 0.8/255. For the models that
require multiple contents, we set n = 5. For each optimization
process, we select 5 content images different from the 1000
content images that will be used in the evaluation.

Baseline methods. We use two kinds of baseline methods.
The first one is to perturb the clean style images with random
noise, including Gaussian noise and Uniform noise. For
Gaussian noise, we set the mean to 0 and variance to 1, and
to fit into the l-norm bound, we clip the noise by [-8/255,
8/255]. We sample uniform noise of the input sample shape
and each element is uniformly sampled from [-8/255, 8/255].
The second baseline is the end-to-end adversarial attack,
which tries to increase the l2 distance of the final image as
we compared in Section 3.2.

Evaluation Metrics. We quantify the average perceptual
similarity between protected transferred images and corre-
sponding unprotected transferred images of the 10000 image
pairs with two metrics, LPIPS [48] and SSIM [40]. Specifi-
cally, For LPIPS, we use VGG as the feature extractor.

Table 1. Protection on known models in the ensemble

Protection method AdaIN CAST AdaAttN AVG WORST

LPIPS

Uniform 0.064 0.011 0.036 0.037 0.011
Gaussian 0.096 0.286 0.106 0.163 0.096

End (AdaIN) 0.301 0.130 0.142 0.191 0.130
End (CAST) 0.068 0.722↑ 0.079 0.290 0.079

End (AdaAttN) 0.146 0.150 0.455↑ 0.250 0.146
NSP (ours) 0.360↑ 0.308 0.327 0.332↑ 0.308↑

SSIM

Uniform 0.901 0.972 0.917 0.930 0.973
Gaussian 0.867 0.658 0.806 0.777 0.867

End (AdaIN) 0.512 0.816 0.745 0.691 0.816
End (CAST) 0.898 0.149↓ 0.845 0.631 0.845

End (AdaAttN) 0.788 0.796 0.387↓ 0.657 0.796
NSP (ours) 0.504↓ 0.639 0.561 0.568↓ 0.639↓

Table 2. Generalization on unknown models. (AVG and WORST
results contain the results of known models.)

Protection method SANet ArtFlow AVG WORST

LPIPS

End (AdaIN) 0.224 0.093 0.178 0.093
End (CAST) 0.106 0.103 0.216 0.103

End (AdaAttN) 0.253 0.065 0.214 0.065
NSP (ours) 0.307↑ 0.135↑ 0.282↑ 0.135↑

SSIM

End (AdaIN) 0.439 0.835 0.669 0.867
End (CAST) 0.696 0.790 0.676 0.898

End (AdaAttN) 0.412 0.862 0.649 0.862
NSP (ours) 0.349↓ 0.778↓ 0.566↓ 0.778↓
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Figure 3. Examples of Style Protection against AdaIN, CAST, and AdaAttN by NSP and baseline methods. We observe that NSP can change
the transferred style by all the ANST models apparently, while end-to-end baseline methods have only influence on one ANST model, while
random noise baseline has almost no protection. More examples can be found in the supplementary materials.
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4.2. Protection against ANST Models

In this subsection, we demonstrate that our method can
not only protect the styles against known ANST models that
are used in the ensemble but also protect against unknown
ANST models to some extent. In Table 1 and Table 2, we
report both the protection on known and unknown models,
respectively. We first use ANST models to transfer the style
from the unprotected source images onto content images
and use the same model to transfer the style from the pro-
tected source images onto the same content images. Then
LPIPS and SSIM are calculated to compare the difference
between the style of transferred images from unprotected
source images and protected images.

Protection on known models. As shown in Table 1, NSP
provides remarkably better protection than random noise
and better generalization than end-to-end baselines. We
denote the end-to-end method as “End (model name)” in
the table. In detail, 1) after protection by Gaussian noise
and uniform noise, LPIPS is nearly 0, which means the ƒ
difference of visual appearance between transferred images
from unprotected and protected source images is quite small.
The worst case of uniform noise is 0.011, which can be
interpreted as random noise providing almost no protection.
The only exception is that CAST is sensitive to Gaussian
noise. In contrast, our method can increase LPIPS to 0.332
on average, which makes the protected style clearly different.
Similarly, the SSIM of random noise is close to 1, which
means the similarity between transferred images is high and
the unprotected images do not change the transferred style.
2) Although the end-to-end method can protect against the
model that is used to generate the adversarial perturbation,
it is hard to generalize onto other methods. Instead, our
method can perform much better when generalizing on all
the models. For example, end (CAST) can protect CAST
well, but it provides almost no protection on AdaIN, which
gets 0.068 in LPIPS and 0.898 in SSIM. Thus, protection
by AVG and WORST of end-to-end is also reduced because
of the bad generalization performance, while our proposed
NSP can have a much better LPIPS which is around 0.1
higher than others, and SSIM which is around 0.1 better than
others, which indicates the best protection against all models.
This suggests that our NSP can provide better protection
on ANST models that are based on the pre-trained VGG19
encoder (because this is used by two of the three methods in
the ensemble model). This can be an advantage since most
ANST models use VGG19 as the encoder for extracting the
style representation. Figure 3 presents visualizations of the
style transferred images and protected transferred images of
baseline algorithms and our NSP. Starting from row 2, each
column represents a style-transferred image generated by a
model. As we can see, the last row shows the NSP protected
style transfer images, which are clearly different from the
images from the second row. A local detail illustration can

Figure 4. Example Comparison. Local details of clean trans-
ferred images(Figure 3 Row 2, Left 1) and protected transferred
images(Row 7, Left 1) generated by AdaAttN.

be found in Figure 4
Protection on unknown models. Table 2 shows the gener-

alization ability on unknown ANST models. Compared with
end-to-end baselines, our performance is much better on
both LPIPS and SSIM, no matter in single models, AVG and
WORST scores. The AVG LPIPS is around 0.1 higher than
baseline methods and AVG SSIM is around 0.1 lower than
baseline methods. This implies that our model can also gen-
eralize well on unknown models. Comparing the protection
against SANet and ArtFlow, NSP can prevent SANet better,
because SANet uses the pre-trained VGG19 as the extraction
encoder, while ArtFlow uses Projection Flow Network to
replace the VGG19 network.

4.3. Ablation Studies

In this subsection, we discuss how the two proposed strate-
gies in NSP influence the protection effect.

1) Altering style representations. As discussed in Sec-
tion 3.2, altering the style representations can increase the
generalization ability across different ANST models because
this can remove the interaction with the diverse decoder and
thus prevent overfitting on decoders. We compare altering
the style representation (without ensemble) and end-to-end
adversarial perturbations in Table 3. The results show that al-
tering intermediate style representation demonstrates greater
transferability than end-to-end perturbation. Even though
the models are not assembled, altering intermediate style
representation also has better WORST performance in all
cases and better AVG for some cases among all the ANST
models. For instance, LPIPS of s.r. (AdaAttN) with end-to-
end adversarial perturbation increases the LPIPS from 0.146
to 0.195 for AdaIN and 0.150 to 0.179 for CAST. Similar
increases can be observed in the altering style representation
protection on the other two models.

2) Model Ensemble based on Momentum-iterative. In
this subsection, we demonstrate that the ensemble can reduce
the influence of the gap between different encoders and in-
crease the ability of the generalization, while the momentum-
iterative method can reduce the unstable of gradient direc-
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Table 3. End-to-end vs. altering style representations

Metric Model AdaIN CAST AdaAttN AVG WORST

LPIPS

AdaIN End 0.301 0.130 0.142 0.191 0.130
s.r. 0.443↑ 0.182↑ 0.248↑ 0.291↑ 0.182↑

CAST End 0.068 0.722 0.079 0.290 0.079
s.r. 0.105↑ 0.543↑ 0.098↑ 0.249↓ 0.098↑

AdaAttN End 0.146 0.150 0.455 0.250 0.150
s.r. 0.195↑ 0.179↑ 0.304↓ 0.226↓ 0.179↑

SSIM

AdaIN End 0.512 0.816 0.745 0.691 0.816
s.r. 0.403↓ 0.759↓ 0.657↓ 0.606↓ 0.759↓

CAST End 0.898 0.149 0.845 0.631 0.845
s.r. 0.857↓ 0.354↑ 0.827↓ 0.679↑ 0.827↓

AdaAttN End 0.788 0.796 0.387 0.657 0.796
s.r. 0.735↓ 0.763↓ 0.589↑ 0.696↑ 0.763↓

Table 4. Single ANST model vs. ensemble

Metric Defense AdaIN CAST AdaAttN AVG WORST

LPIPS

s.r. (AdaIN) 0.443↑ 0.182 0.248 0.291 0.182
s.r. (CAST) 0.105 0.543↑ 0.098 0.249 0.098

s.r. (AdaAttN) 0.195 0.179 0.304 0.226 0.179
Ensemble 0.341 0.322 0.319 0.327 0.319↑

NSP (ours) 0.360 0.309 0.327↑ 0.332↑ 0.309

SSIM

s.r. (AdaIN) 0.403↓ 0.759 0.657 0.606 0.759
s.r. (CAST) 0.857 0.354↓ 0.827 0.679 0.827

s.r. (AdaAttN) 0.735 0.763 0.589 0.696 0.763
Ensemble 0.528 0.626 0.576 0.577 0.626↓

NSP (ours) 0.504 0.639 0.561↓ 0.568↓ 0.639

tions and further improve the sweet-point in the trade-off be-
tween all the models. In Table 4, we compare the protection
performance of single models without assembling, ensemble
without momentum and momentum-iterative version, NSP.
As we can see, a benign ensemble without momentum can
increase the generalization significantly, especially in AVG
score. NSP with momentum can further improve the AVG
by 0.005 in LPIPS and 0.009 in SSIM. To understand the
improvement made by momentum, we count the number of
the elements which have a changed sign compared with last
step in the protection perturbation for each updating step of
the PGD process, as shown in Figure 5. This value reflects
the instability of the updating process. We can see that in
each updating step, our NSP can reduce the change rate by
at least 3%. Helped from this, all the models in the ensemble
can have an effect in each updating step, instead of only the
dominant model, which further increases the generalization
performance.

4.4. Robustness

Robustness against noise and image processing is impor-
tant since the protected images are under risk of distortion,
compression, and deliberate preprocessing during storage
and distribution. Thus, we tested the protection performance
of our method under different image corruptions including
Gaussian Noise (GN), Gaussian Filter (GF), JPEG Compres-
sion, Crop, and Rotation. As shown in Table 5, although
most of the image corruption can slightly reduce the pro-
tection, the performance under the corruptions is still better
than the baseline methods in Table 1 in AVG and WORST

Figure 5. Sign change rate in the optimization process of NSP vs.
ensemble without momentum.

Table 5. Style Image Preprocessing as Defenses

Metric Defense AdaIN CAST AdaAttN AVG WORST

LPIPS

Original 0.360 0.309 0.327 0.332 0.309
GN 0.339 0.349 0.297 0.328 0.297

GF(3×3) 0.353 0.247 0.271 0.290 0.247
GF(5×5) 0.355 0.245 0.274 0.291 0.245

JPEG 0.353 0.237 0.269 0.286 0.237
Crop 0.378 0.268 0.363 0.337 0.268

Rotation 0.354 0.243 0.270 0.289 0.243

SSIM

Original 0.504 0.639 0.561 0.568 0.639
GN 0.549 0.594 0.591 0.578 0.594

GF(3×3) 0.517 0.690 0.602 0.603 0.690
GF(5×5) 0.518 0.693 0.603 0.605 0.693

JPEG 0.517 0.703 0.602 0.607 0.703
Crop 0.580 0.641 0.616 0.612 0.641

Rotation 0.518 0.694 0.604 0.605 0.694

score. The Gaussian noise has even improved the LPIPS
for CAST and also the average AVG LPIPPS. This result is
consistent with the results in Table 1 that Gaussian noise also
can prevent the style transferring in some extent. For other
image processing, NSP still achieves a protection effect only
with a drop on LPIPS around 0.02.

5. Conclusions
In this paper, we propose NSP to protect the style of im-

ages from being imitated by Arbitrary Style Neural Transfer,
which alleviates the concerns of artists. To address the chal-
lenge that artworks might be imitated by unknown ANST,
NSP uses style representation as the objective to prevent ad-
versarial perturbations from overfitting the diverse decoder
part in ANST. Additionally, a momentum-based model en-
semble is employed to further align differences in encoders
of different ANST models. These two strategies enhance
ANST’s ability to generalize across various ASNT models.
Our experiments have shown that NSP can provide effective
protection for both seen and unseen ANST models. In future
work, we will focus on enhancing protection performance
and extending the protection to other Neural Style Transfer
methods.
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