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Abstract

We consider the problem of zero-shot anomaly detec-
tion in which a model is pre-trained to detect anomalies
in images belonging to seen classes, and expected to de-
tect anomalies from unseen classes at test time. State-of-
the-art anomaly detection (AD) methods can often achieve
exceptional results when training images are abundant, but
they catastrophically fail in zero-shot scenarios with a lack
of real examples. However, with the emergence of multi-
modal models such as CLIP, it is possible to use knowl-
edge from other modalities (e.g. text) to compensate for the
lack of visual information and improve AD performance.
In this work, we propose PromptAD, a dual-branch frame-
work which uses prior knowledge about both normal and
abnormal behaviours in the form of text prompts to de-
tect anomalies even in unseen classes. More specifically,
it uses CLIP as a backbone encoder network and an ad-
ditional dual-branch vision-language decoding network for
both normality and abnormality information. The normal-
ity branch establishes a profile of normality, while the ab-
normality branch models anomalous behaviors, guided by
natural language text prompts. As the two branches cap-
ture complementary information or ‘views’, we propose a
‘cross-view contrastive learning’ (CCL) component which
regularizes each view with additional reference information
from the other view. We further propose a cross-view mu-
tual interaction (CMI) strategy to promote the mutual ex-
ploration of useful knowledge from each branch. We show
that PromptAD outperforms existing baselines in zero-shot
anomaly detection on key benchmark datasets and analyse
the role of each component in ablation studies.

1. Introduction
Anomaly detection (AD) is important in a wide range

of applications, such as industrial product inspection, net-
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Figure 1. The ZSAD problem addressed in this work. The model
is trained to detect anomaly types like “crack” and “scratch” in the
set of known object classes “hazelnut” and “metal nut”. At test-
time, the model is tasked with detecting similar anomaly types in
previously unseen object classes “tile” and “capsule”.

work security and autonomous driving. Although exist-
ing anomaly detection techniques have achieved impres-
sive performance in many cases, they are only evaluated on
classes of data that the model has observed during train-
ing. In real-world scenarios, a model is often required to
evaluate samples in an open-world setting: that is, to de-
tect anomalies in previously unseen and novel classes. De-
spite its importance, this cross-category generalization has
been largely overlooked in existing literature. Thus, in this
work, we target this problem of zero-shot anomaly detec-
tion (ZSAD) (Fig. 1), where the model is trained to detect
anomalies in the “hazelnut” and “metal nut” classes and ex-
pected to generalise to detect anomalies in the previously
unseen “tile” and “capsule” classes without further training.

ZSAD is a difficult task in the absence of real data from
the unseen classes. However, prior information about the
expected behaviour of normal data, as well as the potential
behaviour of anomalies, is often known even without visual
examples [22, 23]. For example, quality control engineers
can describe how a manufactured product should and should
not appear in the form of natural language (text). With
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the emergence of vision-language models like CLIP [18],
which has demonstrated its capability for image-level zero-
shot classification, this natural language information can be
encoded to obtain semantic representations of both normal-
ity as well as abnormality, which can compensate the lack
of visual examples and help in the anomaly detection task.

To this end, we propose an effective and flexible frame-
work named PromptAD, which equips the model with both
a normality view and abnormality view that leverage rich
information from the language mode (text) to reduce de-
pendence on image data. Information sharing between the
two views further refines the representation learning and
improves generalization. PromptAD is built on the CLIP
model, which is used to encode data from both image and
text modalities. On top of this backbone, PromptAD de-
codes these representations into feature maps for anomaly
detection through both ‘intra-view’ and ‘cross-view’ mod-
eling. Intra-view modeling captures knowledge specific to
each view through two parallel vision-language decoding
networks (one each for normality and abnormality). Cross-
view modeling shares information between the two views
via a cross-view contrastive learning strategy (CCL), which
regularizes the intra-view training with additional refer-
ence information from the other complementary view, and
a cross-view mutual interaction (CMI) strategy is proposed
to facilitate the explicit knowledge transfer from each other.

Existing uni-modal AD methods rely exclusively on vi-
sual information, which hinders their generalization beyond
the base training classes. Moreover, uni-modal training of-
ten utilizes a considerable amount of training data, which
incurs extra data collection cost. In contrast, PromptAD
has two main advantages: strong transferability and high
data-efficiency. It utilizes semantic knowledge from text
prompts to learn representations that are more reliable and
more transferable to new classes. We further observe that
PromptAD requires much less training data to achieve com-
parable performance to methods trained on a large amount
of data. This is because a well-designed text prompt can
contain rich semantic information that effectively distills
the information contained in a large number of images. We
demonstrate these advantages of PromptAD through exten-
sive experiments. In summary, the contributions of this pa-
per are as follows:

1. We propose PromptAD which efficiently adapt the
pre-trained CLIP features aligned with language for
zero-shot anomaly detection. The proposed approach
enables training one unified and generalizable model
without any fine-tuning when adapting to new classes.

2. Our framework effectively aggregate the semantic
knowledge from both normality view and the ab-
normality view. A Cross-View Contrastive Learning
(CCL) strategy is proposed to readjust the optimiza-

tion difficulty of the intra-view modeling, and a Cross-
View Mutual Interaction (CMI) approach is proposed
to promote the explicit knowledge transfer between
two complementary branches.

3. We show that our approach significantly improves the
anomaly detection performance over existing methods
on widely used AD benchmarks.

2. Related Works

Existing methods can be divided into unsupervised and
supervised methods. Unsupervised methods model the nor-
mal sample distribution and exclude anomalies in training.
Reconstruction-based methods [2,6,19,26] generate recon-
structed images and then use reconstruction errors between
the input image and its reconstruction to detect anomalies.
GAN-based models detect anomalies based on the ability of
the generator to generate a given test sample [1, 20, 24]. In
contrast, supervised methods find a better decision bound-
ary between normal and anomalous samples by leveraging
synthetically generated anomalies [13] or a small number
of real anomalies. DevNet [17] encourages the anomaly
score of normal samples towards a common center, whereas
MLEP [14] maximises the pair-wise distances between nor-
mal and anomalous features. DRA [7] uses a multi-head
neural network to learn disentangled representations for dif-
ferent types of anomalies separately.

As mentioned, these methods rely on the availability of
training data from all classes and are ill-equipped to detect
anomalies from previously unseen classes at test time. On
the other hand, PromptAD can detect anomalous samples
from novel classes not observed during training; it achieves
this by incorporating additional domain knowledge from
natural language descriptions of normal and abnormal be-
haviour to compensate for the lack of real samples.

It worth to take note that WinCLIP [10] also uses CLIP
for zero-shot anomaly detection. However, it uses represen-
tations of query images directly from the fixed CLIP model
parameters without further training. This may be suitable
for domains which are closely related to the original data
used to train CLIP, however, as noted in its original pa-
per [18], CLIP under-performs when applied to domains
that are not well represented in this training distribution. In
contrast, PromptAD builds two trainable branches on top of
a frozen CLIP model, which combines CLIP’s multi-modal
capabilities with task-specific representation learning and
directly optimises the model for the anomaly detection task
at hand. Therefore, PromptAD can effectively ameliorate
the distribution shift issue and thus achieves better pixel-
level AD performance than WinCLIP (Table 2).
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Figure 2. An overview of our PromptAD framework. It uses a dual-branch network design, which aims to detect anomalies from both
normality (upper part of the figure) and abnormality (lower part of the figure) views. The normality branch learns to detect out-of-
distribution patterns by modeling the normal data conditioned on images and normality text prompts. The abnormal branch attempts to
directly identify anomalies by conditioning on images and abnormality text prompts. A cross-view contrastive learning (CCL, details in
Fig. 3 and Sec. 3.4) approach is proposed to incorporate complementary information from the opposite view for better anomaly targeting
in each branch. The two branches further explore knowledge from each other through cross-view mutual interaction (CMI, Sec. 3.5).

3. Anomaly Detection with Anomaly-Aware
Text Prompts

3.1. Problem Description

We focus on the ZSAD problem formulated as follows.
We train a model on the base data, consisting of N normal
samples and a few anomalous samples from a base (or seen)
class Cb. We then test the model on a set of novel classes,
Cu, without additional training to evaluate zero-shot perfor-
mance, where Cb ∩ Cu = ∅. Additionally, for each class in
C = Cb ∪ Cu, we define two types of semantic knowledge
in the form of text prompts, where the normality prompt
Pnor describes the visual appearance of normal patterns,
and the abnormality prompt Pabn describes typical anomaly
appearances (details on how to construct text prompts are
given in Sec. 4.1). Our goal is to train an anomaly detector
f : (X,Pnor, Pabn) → R from a single base class Cb to
detect anomalies on unseen classes Cu, by assigning larger
scores to anomalies than normal samples.

3.2. PromptAD Framework

Here we describe the PromptAD framework (Fig. 2),
giving an overview before detailing the individual compo-
nents. PromptAD has two complementary branches built
on top of a shared CLIP model. The abnormality branch

directly models the distribution of the available anomaly
samples (Sec. 3.3.1) while the normality branch models the
distribution of the normal samples, directly measuring the
conformity of a query image to the normality descriptions
(Sec. 3.3.2). To promote complementary knowledge trans-
fer between the two views, a cross-view contrastive learning
(CCL, Sec. 3.4) approach is proposed to regularize intra-
view training with additional reference information from
the complementary view. Furthermore, the two branches
also explicitly explore knowledge from each other through
cross-view mutual interaction (CMI, Sec. 3.5).

3.3. Intra-view Modeling

3.3.1 Abnormality Branch

The abnormality branch (lower part of Fig. 2) learns to de-
tect anomalies according to information provided by the
abnormality text prompts. In this branch, we obtain the
visual embedding of a given image x from the CLIP im-
age encoder and the semantic embedding of the abnormal-
ity prompt Pabn from the CLIP text encoder. We then fuse
these embeddings using FiLM [8] as in [15].

The fused feature embeddings are fed as input to
a transformer-based decoder to generate output features
qintraabn =

�
q1abn, q

2
abn, · · · , qLabn

	
, where each qiabn ∈ RD

corresponds to a local area of the input image and D is the
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Figure 3. (a). An illustration of the proposed Cross-view Contrastive Learning (CCL) pipeline. Using the normality branch as an example,
to generate the intra-view normality score, a linear classifier is applied on each spatial location of qintra

nor for point-wise normality score
predictions. To generate the cross-view abnormality score, the normality-aware features qintra

nor are then compared with the semantic
prototype of the abnormality view ϕabn with inner-product similarity. Finally, the two-view scores are fused together through element-
wise subtraction for unbiased anomaly detection sn. (b). An illustration of the proposed Cross-view Mutual Interaction (CMI).The
detection score map sn from the normality branch are then used as an auxiliary attention to discover those anomalies that are neglected by
the abnormality branch.

channel size of the output feature space. A linear classifier
(1x1 convolution) is then applied to each qiabn ∈ qintraabn to
output an anomaly score for each spatial location. We de-
note the obtained 2D score map as sintraabn , which is referred
as the Intra-view Abnormality Score. Regions that con-
tain anomalies recorded by the abnormality prompt Pabn

should produce higher responses than normal regions.

3.3.2 Normality Intra-view Modeling

The normality branch (upper part of Fig. 2) is a similar de-
coder network, but it is instead designed to directly mea-
sure the conformity of a query image to the normal profile
defined by the normality prompts, in an adjacent process to
the abnormality branch. As the abnormality prompts can-
not describe every possible type of anomaly (which could
be infinite), modeling normality is also important to detect
anomalies as those samples that do not conform with the
normal profile. Similarly, the produced prediction sintranor is
referred as Intra-view Normality Score.

3.4. Cross-view Contrastive Learning

As an anomaly usually refers an irregularity or deviation
from the standard pattern, the single-view approach (intra-
view modeling) may not be optimal for detecting certain
anomalies that do not exhibit obvious irregularities. For ex-
ample, in the popular MVTec dataset [3], the “transistor”
class has a type of anomalies named “misplaced”, where a
transistor in good condition is shifted away from the right
location. Such anomalies can only be effectively detected
given a reference standard, e.g.,“a normal transistor should
be placed vertically in the middle line of the circuit board”.

To better recognize such anomalies, we propose a cross-
view contrastive learning (CCL) approach (illustrated in
Fig. 3) which enhances the intra-view modeling with addi-
tional reference information from the opposing view. In par-
ticular, CCL learns anomaly scores based on the residuals
between the two complementary views in a learned feature
space. This process will now be detailed for each branch.

3.4.1 Abnormality Branch

The abnormality branch is regularized with complementary
information from the normality view. After extracting the
semantic embedding of the normality prompt from the CLIP
text encoder, we first reduce its channel dimension with a
1x1 convolution layer to match with the output-space di-
mension. The obtained semantic feature is regarded as the
normality prototype ϕnor. Given the intra-view abnormality
features qintraabn extracted from a query image, we also com-
pute a Cross-view Normality Score scrossnor to measure the
closeness between the normality prototype ϕnor and qintraabn .
In particular, scrossnor is a 2D score map with the same size as
the intra-view abnormality score sintraabn , which is obtained
by measuring inner-product similarity between ϕnor and
the feature vector of each spatial location in qintraabn , where
scrossnor = ϕnor · qintraabn (· denotes inner product).

Oppositely from sintraabn , images with high responses in
scrossnor are those that have higher possibilities of being nor-
mal. The final prediction sa of the abnormality branch is
given by an element-wise subtraction of the two scores:

sa = sintraabn − scrossnor . (1)

In doing so, our model learns generalized and anomaly-

1096



aware representations rather than over-fitting to the limited
anomaly modes described in abnormality prompts.

3.4.2 Normality Branch

Anomalies often share many compositional patterns with
normal samples and their anomalousness may be very sub-
tle, for example “an anomaly glass bottle with small crack”
vs. “a normal sample with small scratch within acceptable
limits” is difficult to distinguish. As the intra-view learning
of the normality branch focuses on the normality reference,
it struggles to detect such anomalies; carefully-defined ab-
normality prompts are useful for defining this boundary.

For this reason, we similarly obtain the abnormality se-
mantic prototype ϕabn to highlight those hard anomalies.
Formally, given the extracted intra-view features qintranor , we
compute its inner-product similarity with ϕabn to obtain the
Cross-view Abnormality Score scrossabn , where scrossabn =
ϕabn ·qintranor . Higher values in scrossabn indicate that the corre-
sponding locations in qintranor are more similar to the abnor-
mality prototype ϕabn, and are more likely to be anomalous.
On the other hand, the normal regions in the query features
qintranor can hardly match the abnormality features in ϕabn

with high similarity, leading to lower values in scrossabn . To
this end, the final anomaly score map of normality branch
is obtained by:

sn = scrossabn − sintranor . (2)

3.5. Cross-view Mutual Interaction

The two branches capture complementary information:
the abnormality branch is more effective for anomalies that
are well defined by the abnormality prompts while the nor-
mality branch is effective for more general anomalies that
are missed by the abnormality prompts; we believe that the
attention maps1 learned by one branch are helpful in discov-
ering overlooked anomalies by the other [27]. Therefore,
rather than separate training, the two branches can each ben-
efit through mutual interaction [16, 28]. In particular, atten-
tion maps from the intermediate layers can highlight those
regions in the image that were important for the network’s
decisions [11,12]. Hence, we propose to utilize the interme-
diate attentions of one branch to extend possible anomalous
regions for the other branch, so that the other branch can
better detect anomalies from regions that it has missed.

For example, the detection score map sn output by the
normality branch can serve as a soft attention map Msoft

for guiding the abnormality branch to discover hard anoma-
lies that are neglected by itself. In particular, the interme-
diate feature map qintraabn of the abnormality branch is re-
fined through spatial-wise multiplication with the attention

1Attention maps here refer to the generated anomaly score maps [21].
We will use these two terms interchangeably.

map Msoft. Such auxiliary attention then serves as feature
selectors to highlight anomalous regions on query features
during the forward pass, as well as gradient selectors to cor-
rect such false-negative errors during the backward pass.

To ensure that the attention maps generated from middle
layers can cover most of the anomalous regions, we addi-
tionally train the intermediate layers with supervision sig-
nal, i.e., the symmetric deviation loss detailed in Sec 3.6.
However, the obtained raw score map sn could be noisy
due to its unbounded prediction values and diverse back-
grounds. To highlight the true anomaly regions, regions
with activation values less than σ in sn will all be treated
as the background zone and masked out, such that sn is tai-
lored towards the real anomalies. Therefore, we define the
remodeled foreground attention map Mfg as:

Mfg = ReLU(sn − σ). (3)

Here we use σ = 0.5 for all experiments. The ReLU
function ensures that only highly scoring regions (greater
than a threshold σ) are activated. We observed that the re-
sulting candidate regions cover most of the real anomalous
regions for the vast majority of inputs. Then Mfg is then
used to generate a soft mask via a sigmoid function:

Msoft = sigmoid(Mfg). (4)

Next, Msoft obtained from the normality branch is used
as an attention map to re-weight the intra-view features
qintraabn of the abnormality branch, so that the neglected
anomalies can be highlighted (Fig. 3). This drives the two
branches into a mutual-guidance state so that anomalies
missed by one branch can be effectively captured through
the complementary attentions from the other branch.

3.6. Training and Inference

Symmetric Deviation Loss The goal of training is to en-
force statistically significant deviations between the scores
of anomalies from those of normal samples. Inspired by
the success of the deviation loss in [17], we use a pre-
defined Gaussian distribution to generate a set of reference
scores R, which serves as an anchor to guide the learning
of anomaly scores: dev(x) = S−µR

δR
, where µR is the mean

and δR the standard deviation of scores in R. We then intro-
duce a symmetric deviation loss to enlarge the gap between
intra-view and cross-view scores:

L(x) = (1− y) ·max(0,α+ dev(x))

+y ·max(0,α− dev(x)),
(5)

where y = 1 if x is an anomaly and y = 0 if x is nor-
mal. α is a hyper-parameter defining the margin between
the scores of normal and anomalous samples. The mean
value of the reference score set serves as the classification
boundary. The proposed loss enforces a positive deviation
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of at least α between the classification boundary µ and the
anomaly scores of anomalies in the upper tail, while enforc-
ing a negative deviation of at least −α between the clas-
sification boundary µ and the anomaly scores of normal
samples in the lower tail. In our experiments, we follow
previous works and set µR = 0, δR = 1 and α = 5. Im-
portantly, the symmetric deviation loss is applied and back-
propagated through multiple layers for the anomaly scores
calculated from the abnormality branch in Eq. 1 and the nor-
mality branch in Eq. 2 separately.
Inference To perform unbiased anomaly classification, we
combine the scores from the normality branch sn and abnor-
mality branch sa as they contain complementary informa-
tion. The first learns normality representation that enables
the universal anomaly detection on unseen categories. The
latter incorporates more specific knowledge of abnormal-
ity retrieved via language, which helps learn discriminative
features for the detection of hard anomalies (e.g., anoma-
lies similar to normal samples). We thus compute the final
anomaly score as s = sn + sa.

4. Experiments

4.1. Experiment Settings

We experiment on two challenging real-world bench-
mark datasets for industrial anomaly detection which are
MVTec AD and AITEX. MVTec AD consists of 4096 nor-
mal and 1258 anomalous images split across 15 object cat-
egories, while AITEX contains 7 types of fabric defects.
Experiments were conducted using the leave-one-category-
out setting [9], i.e., a target category was chosen to be
tested, while other categories in the dataset are used for
training. As labelled anomalies are difficult to obtain, we
use only one or ten labelled anomaly from a randomly cho-
sen anomaly type of each seen class during model training.
In contrast to the previous work [7] which samples labelled
anomalies from every anomaly type, our method achieves
better data efficiency. The Area Under ROC Curve is used
as the performance criteria and the reported experimental
results are averaged over 10 trial runs.
Text Prompts Formulation We use the Oxford English
Dictionary definition to construct the normality prompt for
each object class. For example, for “screw” class, the nor-
mality prompt is “a short metal pin with a helical thread run-
ning round it and a slotted head”. Oppositely, abnormality
prompts describe our prior knowledge of the visual appear-
ance of potential anomalies from that same class. Our ab-
normality prompt is constructed as: “abnormality of {class
label} is [anomaly description]”. Using our earlier example
of “screw”, example anomaly descriptions include “scratch,
tear, crack, cut, defect”, which are provided as anomaly type
labels in the dataset [4]. Patches that align closely with
such an abnormality prompt are likely to contain some type

of anomaly, meaning the sample from which the patches
come is likely to be anomalous.
Implementation Details We use the pre-trained CLIP (ViT-
B/16) model for the image and text encoders, and the two
branches consist of three transformer blocks. The parame-
ters of two branches are initialized from scratch. The top-K
setting is the same as in [7], which is set to be 10 percent of
the number of last-layer output tokens. We do not use any
image augmentation techniques nor pseudo anomaly sam-
ples. For model training, we learn our PromptAD in the
support-query manner. To simulate the real-world ZSAD
scenario, we sample a few query images with ground-truth
labels in each training episode and utilize the two views of
text prompts as support information. Training is performed
on each transformer layer with the proposed symmetric de-
viation loss. To prevent the vast number of normal samples
from overwhelming the training loss, we up-sample the pos-
itive samples (anomalies) by 10 times for balanced model
training. After training, the model can be directly applied
to novel classes without further updating.

4.2. Results

We compare PromptAD against the following baseline
methods: DevNet [17], MLEP [14], DRA [7] , WinCLIP
[10] and the original CLIP model [18].
Classification Table 1 shows the performance of Promp-
tAD compared with other methods. Our method outper-
forms all its competitors on of all the unseen classes, and
this is especially significant in the 1-shot setting, demon-
strating that our method can effectively exploit rich seman-
tic information in the two-branch learning framework to
boost the anomaly detection performance. Furthermore,
in more difficult object classes, such as the transistor im-
ages which contain many components and a complex back-
ground, the advantages of our proposed method become
more significant. This may be attributed to the incorpora-
tion of text prompts, which provide important semantic in-
formation for generalization to unseen classes. In compari-
son, MLEP [14], DevNet [17] and DRA [7] rely on images
solely and therefore do not generalise as successfully. The
CLIP [18] baseline focuses more on semantic classification
by aligning the relevant textual information with the image,
failing to preserve the necessary spatial information to pro-
duce fine-grained and position-sensitive anomaly detection,
which is resolved by the two-branch learning mechanism
used in our model. In addition, we further
Localization We also show the pixel-wise AUC perfor-
mance for anomaly localization in Table 2. We can see
that PromptAD works well on anomaly localization and
performs better than the state-of-the-art method WinCLIP
[10]. This is because that PromptAD are explicitly designed
for learning domain-specific features and thus ensures the
vision-language correspondence on AD tasks. In contrast,
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Table 1. Average AUC performance under the zero-shot anomaly detection setting for the MVTec dataset and the AITEX dataset. The best
score is highlighted in red.

Dataset One Anomaly Example Ten Anomaly Examples
CLIP [18] DevNet [17] MLEP [14] DRA [7] Ours CLIP [18] DevNet [17] MLEP [14] DRA [7] Ours

MVTec AD
Carpet 0.785 0.827 0.875 0.897 0.992 0.812 0.879 0.901 0.927 0.997
Grid 0.624 0.794 0.832 0.841 0.955 0.681 0.819 0.860 0.854 0.978
Leather 0.702 0.797 0.860 0.959 1.000 0.743 0.856 0.889 0.981 1.000
Tile 0.689 0.767 0.852 0.869 0.990 0.697 0.738 0.891 0.891 0.995
Wood 0.713 0.889 0.904 0.927 0.991 0.730 0.904 0.893 0.956 1.000
Bottle 0.602 0.807 0.913 0.864 0.979 0.661 0.824 0.865 0.897 0.992
Capsule 0.609 0.725 0.756 0.816 0.916 0.638 0.751 0.775 0.824 0.935
Pill 0.542 0.765 0.773 0.798 0.853 0.596 0.758 0.802 0.817 0.872
Transistor 0.565 0.586 0.691 0.727 0.812 0.599 0.612 0.751 0.743 0.831
Zipper 0.573 0.734 0.808 0.869 0.947 0.597 0.778 0.853 0.889 0.958
Cable 0.612 0.670 0.653 0.707 0.847 0.615 0.693 0.612 0.724 0.867
Hazelnut 0.839 0.906 0.931 0.949 0.985 0.861 0.938 0.950 0.973 1.000
Metal nut 0.521 0.605 0.645 0.689 0.824 0.583 0.627 0.665 0.716 0.845
Screw 0.551 0.523 0.576 0.619 0.698 0.567 0.619 0.609 0.642 0.712
Toothbrush 0.526 0.663 0.690 0.703 0.807 0.577 0.690 0.728 0.753 0.815
Average 0.630 0.737 0.784 0.815 0.908 0.663 0.765 0.802 0.839 0.912
AITEX 0.763 0.825 0.808 0.864 0.927 0.804 0.861 0.879 0.893 0.931

Table 2. Pixel-level AUC performance on MVTec AD dataset.

Methods pAUROC PRO F1-max

Trans-MM [5] 0.575 0.219 0.121
MaskCLIP [25] 0.637 0.405 0.185
DRA [7] 0.792 0.553 0.269
WinCLIP [10] 0.851 0.646 0.317
PromptAD 0.921 0.728 0.362

WinCLIP relies on features generated by the frozen CLIP
model, which may not be optimal for anomaly localization.
Some qualitative results are shown in Fig. 5.

Fig. 4 visualizes the representations learned by Promp-
tAD in comparison to those by DRA [7]. We see that nor-
mal samples and anomalies exhibit greater separability in
the latent space obtained through our dual-branch frame-
work with semantic knowledge injected.
Few-shot AD We also evaluate our method under the gen-
eral few-shot AD setting used by RegAD [9]. This set-
ting assumes that a few normal examples of a new class
are available for model testing. Therefore, we replace the
normality prototype ϕnor with the visual embeddings of the
available normal examples. The evaluation results are pre-
sented in Table 3. The sampled examples are then removed
from the test set during evaluation. Under the case of K =
2, the performance gains observed in our proposed method
over the other baselines of CLIP, RegAD [9] and DRA [7]
are 18.0, 5.5, 12.0 points, respectively, demonstrating that
our method can exploit the rich semantic information effec-
tively to boost the overall detection performance. When the

Figure 4. Visualizations of features learned by DRA and our pro-
posed PromptAD on the unseen test classes of MVTec dataset.
Green indicates anomalies while red indicates normal samples.
Features learned by PromptAD show better separability.

number of available visual samples increases, the gap be-
tween our method and the other methods become smaller.
This may be because visual modal might be richer and more
discriminative than text ones for AD task when more visual
examples are available.

4.3. Ablation Study

Importance of Each Component After validating the over-
all effectiveness of our approach, we further investigate the
importance of each component. The results are presented
in Table 4, where we denote the abnormality branch cou-
pled with abnormality prompts as ABN and the normal-
ity branch coupled with normality prompts as NOR. Sim-

1099



Table 3. Average AUC performance under the general anomaly
detection setting on the MVTec AD dataset. “K-shot” denotes the
number of normal samples used for training.

K-shot CLIP [18] RegAD [9] DRA [7] PromptAD

8 0.760 0.912 0.853 0.931
4 0.758 0.882 0.821 0.927
2 0.732 0.857 0.792 0.912

Figure 5. Qualitative anomaly localization results on MVTec AD
dataset. For each example, the images from left to right are the
anomaly image, the ground-truth mask, the anomaly score map
produced by the abnormality branch and normality branch, and
the fused score map.

Table 4. Ablation study for PromptAD. ABN and NOR are the
abnormality and normality branches respectively.

Components 1-shot 10-shot

ABN 0.741 0.765
NOR 0.735 0.763
ABN + NOR 0.746 0.789
ABN + NOR + CCL 0.838 0.866
ABN + NOR + CCL + CMI 0.908 0.912

ply adopting the single-view training without any constraint
leads to poor generalization performance due to seman-
tic confusion. In contrast, the proposed CCL alleviates
this issue, outperforming the naive single-view training ap-
proach up to 10.2 percentage points in the 10-shot scenario.
We then compare the performances of the single-branch
and double-branch frameworks. The results show that the
double-branch framework outperforms the single branch by
a significant margin since it takes into account both normal

and anomaly data distribution. This is also validated by the
visualizations in Sec. 4.3.

CMI contributes to forming a virtuous feedback cycle
between the two branches via exchanging complementary
information, and is thus able to improve the detection ac-
curacy. As a result, one branch is able to learn better ab-
stract representations by referring to the other branch’s pre-
dictions. In contrast to the baselines where this feedback
cycle is absent, either branch tends to overfit to its own view
and suffers from significant performance degradation.
Visualizing Detection Maps of Each Branch To gain
deeper insights into the anomaly detection capabilities
of the abnormality branch (ABN Branch) and normality
branch (NOR Branch) in PromptAD, we visualize the AD
score maps from each branch in Fig. 5 for the unseen
classes of “wood,” “metal nut,” “zipper,” and “grid”. We
see the abnormality branch focuses on the most discrimi-
native anomaly regions but does not identify all potential
anomaly areas. In contrast, the normality Branch presents a
more comprehensive segmentation mask, localizing most of
the anomaly regions. This can be attributed to the guidance
by normality semantic information, which allows it to iden-
tify visual patterns that deviate from the expected normality
profile as anomalies. Moreover, we observe that score fu-
sion effectively enhances the AD performance and mitigates
the impact of incorrect detections (false positives). This
validates that the discriminative capabilities of the abnor-
mality and normality branches complement each other and
both contribute to improved ZSAD performance through
the dual-branch mechanism.

5. Conclusion

The closed-set nature of existing anomaly detection
methods limit their generalization capabilities to new distri-
butions, such as for previously unseen classes. To address
this, we study the ZSAD problem where a model is trained
to detect anomalies from seen classes and tested on its abil-
ity to detect anomalies in unseen classes without additional
training. We propose PromptAD: a dual branch framework
that incorporates rich semantic knowledge from both abnor-
mality and normality views in the form of natural language
text prompts. PromptAD refines the representations from
a fixed CLIP encoder backbone for the anomaly detection
task using the a dual-branch framework, each making use of
abnormality and normality information in synergy. Impor-
tantly, information from one view is used to help and com-
plement the learning of the other view, through cross-view
contrastive learning and cross-view mutual interaction. Ex-
tensive experiments show that PromptAD improves zero-
shot anomaly detection over existing baselines on key in-
dustrial benchmark datasets and can also maintain its strong
performance in few-shot settings.
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