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Abstract
Repetitive action counting aims to count the number of

repetitive actions in a video. The critical challenge of this
task is to uncover the periodic pattern between repetitive
actions by computing feature similarity between frames.
However, existing methods only rely on the RGB feature
of each frame to compute the feature similarity while ne-
glecting the background change of repetitive actions. The
abrupt background change may cause feature discrepancies
of the same action moment and lead to errors in counting.
To this end, we propose a two-branch framework, i.e., RGB
and motion branches, with the motion branch complement-
ing the RGB branch to enhance the foreground motion fea-
ture learning. Specifically, foreground motion features are
highlighted with flow-guided attention on frame features.
In addition, to alleviate the noise from moving background
distractors and reinforce the periodic pattern, we propose
a temporal self-similarity matrix reconstruction loss to im-
prove the temporal correspondence between the same mo-
tion feature from different frames. Lastly, to make the
motion feature effectively supplement the RGB feature, we
present a novel variance-prompted loss weights generation
technique to automatically generate dynamic loss weights
for two branches in collaborative training. Extensive ex-
periments are conducted on the RepCount and UCFRep
datasets to verify our proposed method with state-of-the-art
performance. Our method also achieves the best perfor-
mance on the cross-dataset generalization experiment.

1. Introduction
In recent years, significant advancements have been

achieved in the field of video understanding [2, 9, 21, 29].
Among the various tasks in video understanding, the repet-
itive action counting task has recently regained attention [6,
11, 42, 43]. This task entails the accurate counting of pe-
riodic activities in a video (Fig 1 (a)), with applications in
fitness planning, physical education exams, etc.

Capturing the underlying periodic pattern between repet-
itive actions is the main challenge in this task. Early ap-
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Figure 1. (a) Task Definition: Repetitive action counting requires
accurately counting repetitive actions in a video, such as counting
the number of sit-ups performed (e.g., 2 sit-ups). (b) &(c) Two
examples with abrupt background changes (red rectangle). De-
spite belonging to the same action moment, frames exhibit distinct
RGB features, highlighting the importance of capturing consistent
motion features (green rectangle). The illustration videos are from
RepCount dataset [11].

proaches [4, 23, 31] employ frequency analysis on com-
pressed video signals but have limitations with complex ac-
tions and backgrounds. Recent advancements in large-scale
benchmarks and deep learning methods have addressed
these limitations [6, 11, 42, 43]. Zhang et al. [42] propose
a context-aware framework to handle diverse cycle lengths.
RepNet [6] uses a temporal self-similarity matrix to rep-
resent the periodic pattern and addresses the cross-dataset
generalization. Hu et al. [11] introduce a transformer-based
network for videos with varying lengths or frequencies.
These developments enable the analysis of complex video
sequences with diverse actions and backgrounds.

Despite the effectiveness of the aforementioned meth-
ods, they primarily focus on learning RGB features at the
frame level, overlooking the diverse representation of each
repetitive action. This limitation poses a significant chal-
lenge in uncovering the periodic pattern, particularly when
frames indicating the same action moment exhibit signifi-
cant variations in feature representation. As illustrated by
the red rectangles in Fig.1 (b) and (c), frames can undergo
drastic changes due to abrupt background alterations. In
such scenarios, relying solely on RGB features of individ-
ual frames may not yield reliable results. Consequently, it
becomes crucial to enhance the discriminative features that
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contribute to determining the periodic pattern, namely the
motion features depicted by the green rectangles in Fig.1 (b)
and (c). By focusing on these motion features, we can im-
prove the discriminative power of the model and address the
challenges posed by varying backgrounds and visual varia-
tions within repetitive actions.

To address this challenge, we present a novel approach
for learning motion features in the repetitive action count-
ing task. Our method entails a two-branch framework, com-
prising an RGB branch and a dedicated motion branch, with
the primary focus on complementing the RGB branch with
motion-related information. To achieve this, we introduce
a motion attention module, which utilizes flow features as
queries, and RGB features as keys and values. This atten-
tion mechanism enables the integration of flow information,
resulting in improved motion feature learning and more ac-
curate counting of repetitive actions.

Despite the potential benefits of utilizing flow infor-
mation for motion feature learning, it is crucial to ad-
dress the issue of unexpected noise introduced by moving
background distractors, as depicted by the red rectangle in
Fig.1 (b). To mitigate this challenge, we turn to tempo-
ral correspondence learning, as demonstrated in prior works
[15, 16, 19]. Temporal correspondence learning aims to es-
tablish connections between corresponding regions across
different frames. By enhancing the temporal correspon-
dence, we can effectively reduce the influence of moving
background distractors, which typically appear sporadically
in only a few frames. In contrast, the motion features as-
sociated with the repetitive actions persist across multiple
frames. Strengthening the temporal correspondence not
only helps alleviate the noise introduced by moving back-
ground distractors but also reinforces the connection be-
tween frames depicting the same action moment, thereby
facilitating the identification of the underlying periodic pat-
tern, as depicted in Fig. 2.

In this work, we propose a novel temporal self-similarity
matrix reconstruction loss to facilitate the learning of tem-
poral correspondence. Specifically, the temporal self-
similarity matrix captures the similarities between different
frames within a video. In the repetitive action counting task,
one frame should be able to be represented by other frames
with higher similarities, i.e., the frames belonging to the
same action moment. Thus, multiplying the frame features
with the temporal self-similarity matrix should be able to
output highly similar features, and our matrix reconstruc-
tion loss is designed to guarantee this effect by updating the
temporal self-similarity matrix, thereby increasing the sim-
ilarities between frames that exhibit periodic patterns.

To train the RGB and motion branches collaboratively,
we propose a novel method for generating dynamic loss
weights. Instead of manually assigning weights, our ap-
proach automatically determines the weights based on the

Cycle 1-2

Cycle 5-6

Cycle 3-4

Figure 2. Enhancing temporal correspondence helps the model
focus on consistent motion regions (green dot), disregarding back-
ground distractors (red rectangle). It also aids in uncovering the
periodic pattern for accurate counting (green line). The illustra-
tion video is from RepCount dataset [11].

variance of the video. When a video exhibits higher vari-
ance, indicating significant background changes, we assign
larger weights to the motion branch. This allows the model
to prioritize the motion branch in capturing the periodic pat-
tern. By adapting the loss weights to the specific charac-
teristics of each video, our method enhances the model’s
ability to learn discriminative features and accurately count
repetitive actions.

In summary, we present the following contributions in
our work:

• We introduce a novel approach to enhance motion
feature learning in the repetitive action counting task
by incorporating flow information into a two-branch
framework with a motion attention module.

• We propose a temporal self-similarity matrix recon-
struction loss to improve the temporal correspondence
between the same motion features across frames. This
helps to uncover the periodic pattern by strengthening
the connection between frames of the same action mo-
ment.

• We present a variance-integrated loss weights genera-
tion method to dynamically adjust loss weights based
on video variance, enabling adaptive prioritization of
the motion branch in the training process.

• Extensive experiments are conducted on the RepCount
dataset and UCFRep dataset to show the effectiveness
of our proposed method with state-of-the-art perfor-
mance.

2. Related Work
In this section, we review prior works on repetitive action

counting and temporal correspondence learning.

2.1. Repetitive Action Counting

Repetitive action counting has been a prominent focus
of video analysis research for numerous years [1,14,22,26,
27, 32, 33, 38–41]. Early approaches involve transforming
videos into one-dimensional signals, from which frequency
information used for counting is extracted through wave-
form analysis [23], singular value decomposition [4], or
peak detection [31]. However, these methods assume strict
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periodicity and a stationary context for the repetitive ac-
tions. To address non-stationary scenarios, Runia et al. [25]
employ wavelet transform on the flow representation, lead-
ing to the design of a novel inference pipeline for detecting
non-stationary repetitions. Nonetheless, hand-crafted fea-
tures are still utilized in their approach. In another contri-
bution, Levy and Wolf [17] introduce a CNN-based method,
training the model on synthetic data.

Recently, Zhang et al. [42] propose a context-aware re-
gression network with a coarse-to-fine refinement strategy
to handle the challenge of diverse cycle lengths in repeti-
tive action counting. Notably, they introduce the UCFRep
dataset, which serves as the first large-scale real-life bench-
mark for the task. Concurrently, RepNet [6] address the
cross-dataset generalization issue by incorporating a tempo-
ral self-similarity matrix into the repetitive action counting
process. Additionally, they introduce the Countix dataset,
which consists of real-world videos. Building upon the
Countix dataset, Zhang et al. [43] incorporate correspond-
ing soundtracks into the videos and proposed a two-stream
framework to tackle the repetitive action counting task.
More recently, Hu et al. [11] present a transformer-based
multi-scale temporal correlation mechanism to handle both
high-frequency and low-frequency actions in repetitive ac-
tion counting. Furthermore, they introduce another large-
scale benchmark called RepCount.

Although the aforementioned works have significantly
advanced research in repetitive action counting, they pri-
marily focus on learning RGB features for individual
frames, despite the fact that frames belonging to the same
action moment can exhibit dramatic changes. In contrast,
we are the first to address motion feature learning in the
repetitive action counting. To facilitate collaborative learn-
ing of motion and RGB features, we propose a variance-
integrated loss weights generation technique. Diverging
from traditional multi-task learning methods [3, 28], which
determine fixed loss weights for the entire training process,
our method dynamically generates loss weights in different
iterations, enabling more adaptive and effective training.

2.2. Temporal Correspondence Learning

Temporal correspondence learning plays a pivotal role in
various video tasks, such as video object segmentation [19,
20, 37], video temporal alignment [5, 10, 24], and video ob-
ject tracking [35, 37]. Recent research in self-supervised
learning has explored correspondence learning through two
main directions: reconstruction-based methods [15, 16, 19]
and cycle-consistency-based methods [13, 34, 35]. In the
reconstruction-based approach, leveraging colorization as a
pretext task, a query point is reconstructed from points in
neighboring frames based on the temporal correspondence
between frames. On the other hand, cycle-consistency-
based methods typically employ bidirectional patch track-

ing between adjacent frames to enhance temporal corre-
spondence by minimizing cycle consistency.

Motivated by the effectiveness of the aforementioned
methods, we propose to learn temporal correspondence
specifically in the context of repetitive action count-
ing, where strong correspondence exists due to the pe-
riodic nature of the actions. Drawing inspiration from
reconstruction-based methods, we introduce the idea of re-
constructing the temporal self-similarity matrix to enhance
the temporal correspondence between identical motion fea-
tures across frames. This method aims to capture the under-
lying temporal structure and promote consistent representa-
tion of the same action throughout the video sequence.

3. Method
In this section, we present the details of our proposed

motion feature learning method for the task of repetitive
action counting. We formulate the repetitive action count-
ing task as follows: the input video data is represented as
V ∈ RB×3×F×H×W , where B is the batch size, F denotes
the number of frames in each video, and H and W indicate
the height and width, respectively. The corresponding label
set is denoted as Yc ∈ RB×1, where each element in Yc

represents the repetitive action count for each video. Dur-
ing the training phase, with the annotations of the starting
and ending points of each repetitive action, we utilize the
ground truth density map Y ∈ RB×F .

The overall architecture of our model is depicted in
Fig.3. It consists of two branches: the motion branch and
the RGB branch, with the motion branch complementing
the RGB branch. On the RGB branch, we adopt the pipeline
proposed in a previous work [11] (Sec. 3.1). On the flow
branch, we introduce a motion attention module (MAM) to
enhance the learning of motion features by leveraging the
flow information (Sec. 3.2). In both branches, we propose
a matrix reconstruction loss to encourage temporal corre-
spondence between the same motion features across differ-
ent frames (Sec. 3.3). Additionally, we propose a variance-
integrated technique for generating loss weights to collabo-
ratively train the two branches (Sec. 3.4).

3.1. Transformer-based Repetitive Action Counting

In our framework, the RGB branch serves as a funda-
mental component, employing a transformer-based pipeline
for repetitive action counting, as described in [11].

Firstly, we utilize a pre-trained RGB encoder, de-
noted as EncV , to extract features from the input videos
V ∈ RB×3×F×H×W . The output feature tensor X ∈
RB×C×F×H1×W1 , where C, H1, and W1 represent the
number of output channels, height, and width, respectively,
is obtained through the following operation:

X = EncV (V) (1)
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Figure 3. Overview of our Motion Feature Learning Framework. The framework consists of two branches: the RGB branch and the flow
branch. In the RGB branch (Sec. 3.1), we begin by employing a pre-trained RGB encoder and a series of operators to extract features
from the input data. Next, a Temporal Self-Similarity Module (TSM) is applied to generate the temporal self-similarity matrix. Finally,
a sequence of operators and a prediction module are used to make the final prediction based on the temporal self-similarity matrix. In
the flow branch (Sec. 3.2), we introduce motion information and fuse it with the RGB feature using a Motion Attention Module (MAM)
to enhance the learning of motion features. Both branches incorporate two novel Matrix Reconstruction Losses (Sec. 3.3) to improve
the temporal correspondence between the same motion features from different frames. These losses encourage better alignment and
consistency of motion features throughout the video. During the training stage, we propose a Variance-Integrated Loss Weights Generation
Technique (Sec. 3.4) to dynamically generate loss weights for the two branches. This technique allows the model to adaptively assign
higher importance to specific branches based on the variance of the training samples, leading to better performance. In the inference
stage, counting results are generated from the predicted density maps Ŷ and ŶF obtained from the RGB branch and the motion branch,
respectively. The final output is obtained by averaging the results from both branches, providing a more robust repetitive action count.

Next, we apply a sequence of operators, including
Conv3D, BN, ReLU, and Pooling layers, to reduce the di-
mension, height, and width of the features:

Z = Pooling (ReLU (BN (Conv3D (X)))) (2)

Here, Z ∈ RB×C1×F×1×1. Reshape and transpose oper-
ations are then applied to obtain the output feature Z1 ∈
RB×F×C1 , which is subsequently fed into the temporal
self-similarity module.

The temporal self-similarity module (TSM) employs
a multi-head self-attention layer, where the input Z1 ∈
RB×F×C1 is duplicated three times to create query QZ1 ,
key KZ1 , and value VZ1 . The TSM generates the temporal
self-similarity matrix S ∈ RB×D×F×F through the follow-
ing operation:

S = TSM(QZ1 ,KZ1 ,VZ1) (3)

Here, D represents the number of heads in the multi-head
self-attention layer. The temporal self-similarity matrix S
is then passed through a sequence of Conv3D, BN, and
ReLU layers to increase its dimension, resulting in O ∈
RB×C2×F×F :

O = ReLU (BN (Conv3D (S))) (4)

After applying transpose and reshape operations, we ob-
tain the output feature O1 ∈ RB×F×F×C2 .

Finally, the previous output feature O1 is fed into the
prediction model, which consists of a multi-head self-
attention layer and a sequence of linear layers, to obtain the
final predicted density map Ŷ ∈ RB×F :

Ŷ = Prediction(O1) (5)

For the prediction loss, the mean square error (MSE) is
utilized, given by:

LP = MSE(Ŷ,Y) (6)

In summary, the RGB branch employs an RGB encoder,
temporal self-similarity module, and prediction model to
extract features, capture temporal relationships, and make
predictions for the repetitive action counting task.

3.2. Flow-guided Motion Feature Learning

In this section, we present our proposed flow-guided mo-
tion feature learning scheme, which aims to capture the crit-
ical motion features in repetitive actions.

In repetitive actions, the same action moment in different
periodicities can exhibit significant variations. Therefore,
relying solely on RGB features may not be reliable. To ad-
dress this, we introduce motion feature learning to the repet-
itive action counting task. Recognizing that motion features
are crucial in repetitive actions, we propose a motion atten-
tion module (MAM) that utilizes flow features to implicitly
locate motion features within RGB features.
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The Motion Attention Module (MAM) takes flow in-
puts VF ∈ RB×3×F×H×W and follows a similar process
as described in Eq.1 and Eq.2 to obtain the processed flow
feature ZF ∈ RB×C1×F×1×1. By reshaping and trans-
posing, we obtain ZF

1 ∈ RB×F×C1 , which is denoted as
the query QZF

1
. As shown in Fig. 3, the MAM takes the

RGB feature’s key KZ1 and value VZ1 as additional in-
puts. These inputs are passed through a multi-head cross-
attention layer, yielding the output ZF

2 ∈ RB×F×C1 . By
employing flow information as the query and RGB informa-
tion as the key and value, we enhance the feature learning
of constantly-moving motion features, which are crucial for
uncovering the periodic pattern.

Next, we duplicate the processed feature ZF
2 three times

to construct the query QZF
2

, key KZF
2

, and value VZF
2

.
Similarly to Eq. 3, 4, and 5, we obtain the temporal self-
similarity matrix SF ∈ RB×H×F×F and the final predicted
density map ŶF ∈ RB×F . The loss function is calculated
using the mean square error (MSE) as follows:

LF
P = MSE(ŶF,Y) (7)

In summary, the proposed flow-guided motion feature
learning scheme incorporates a motion attention module to
capture motion features within repetitive actions. By lever-
aging flow features, the scheme improves the ability to un-
cover the periodic pattern and provides a complementary
aspect to the RGB branch for accurate action counting.

3.3. Matrix Reconstruction for Temporal Corre-
spondence

In Section 3.2, we present a straightforward yet ef-
fective approach to augment the learning of motion fea-
tures. However, it is important to note that not all mo-
tion features contribute to repetitive actions, such as un-
expected moving background distractors. To mitigate the
influence of undesired moving background distractors, it
is necessary to enhance the temporal correspondence be-
tween identical motion features extracted from different
frames. This is because not all frames contain randomly-
occurring moving background distractors, but they all en-
compass consistently-moving motion features. Further-
more, improving temporal correspondence can also rein-
force the detection of periodic patterns and yield advantages
for the final counting task, as demonstrated in Fig. 2.

Motivated by recent advancements in correspondence
learning [15, 16, 19], we propose a novel loss function,
termed temporal self-similarity matrix reconstruction loss,
to boost the temporal correspondence among identical mo-
tion features from diverse frames. Specifically, our loss
function relies on the fundamental observation that a single
frame shares a high degree of similarity with other frames
belonging to the same action moment and can be effectively
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Figure 4. A simple illustration of our proposed matrix recon-
struction process. SN is normalized from SB. On the right
(Updated SB) is our expected temporal self-similarity matrix
after update. (Batch size B = 1, frame quantity F = 4, and
counting number is 2 in this illustration example.)

represented by these frames. Consequently, our primary ob-
jective is to update the temporal self-similarity matrix to
amplify the similarities between periodic frames, thereby
enhancing the temporal correspondence.

Fig. 3 illustrates the architecture of our method. In the
RGB branch, the matrix reconstruction module takes as in-
puts the RGB feature Z1 and the temporal self-similarity
matrix S. Similarly, in the flow branch, the inputs are ZF

2

and SF. For the sake of brevity, we describe the details us-
ing the RGB branch as an example, and provide a concise
depiction in Fig. 4.

To elaborate on the matrix reconstruction process, we
outline the steps involved:

Firstly, we compute the mean value of the RGB fea-
ture tensor Z1 ∈ RB×F×C1 across the channel dimen-
sion, resulting in the reconstruction target ZT ∈ RB×F .
Additionally, we calculate the mean value of the tempo-
ral self-similarity matrix S ∈ RB×H×F×F along the sec-
ond dimension, which gives us the reconstruction basis
SB ∈ RB×F×F . Notably, each row of the F × F ma-
trix within SB captures the similarities between the frame
in that row and the other frames.

Secondly, we set the diagonal elements of each F × F
matrix in SB to zero, as they represent the self-similarity
(which is equal to 1) of the frame in each corresponding
row. Preserving these elements in the matrix would render
the reconstruction process meaningless. Subsequently, we
normalize the remaining elements in each matrix by ensur-
ing that the sum of each row equals 1. This normalization
step yields the normalized temporal self-similarity matrix
SN ∈ RB×F×F .

Thirdly, we perform the reconstruction of the target fea-
ture ZT based on the normalized temporal self-similarity
matrix SN:

Z′
T = ZT × SN (8)

Here, Z′
T ∈ RB×F . Since representing all frames could be
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computationally challenging, we selectively process a sub-
set of frames. To achieve this, we randomly generate a mask
M ∈ RB×F , where each element m is a shuffled list which
contains i zeros and j ones , and i+ j = F .

Finally, we calculate the reconstruction source ZS ∈
RB×F as follows:

ZS = M× ZT + (1−M)× Z′
T (9)

The mean square error (MSE) loss is employed as the re-
construction loss:

LR = MSE(ZS,ZT) (10)

The same procedure applies to the flow branch, yielding the
flow reconstruction loss:

LF
R = MSE(ZF

S ,Z
F
T) (11)

Through the training of the two matrix reconstruction
processes, the temporal self-similarity matrices S and SF

are updated. Consequently, the similarities between peri-
odic frames, indicating the occurrence of the same action
moment, are increased, thereby enhancing the detection of
periodic patterns. Simultaneously, the influence of moving
background distractors is diminished, as higher similarities
consistently arise from the same constantly-moving motion
features rather than randomly-appearing background ele-
ments. It is important to note that during the training of
this process, we freeze the modules preceding the Tempo-
ral Self-Similarity Matrix (TSM) modules in Fig. 3. This
is necessary as the matrix reconstruction requires fixed tar-
get features ZT and ZF

T as templates. Without fixed tar-
gets, the reconstruction process would yield random results
and detrimentally affect the temporal self-similarity matri-
ces SB and SF

B.

3.4. Variance-Integrated Loss Weights Generation

When considering the importance of the two predictions,
Ŷ and ŶF , a common approach is to manually assign dif-
ferent loss weights to LP and LF

P. However, this man-
ual assignment of loss weights can be time-consuming and
often leads to sub-optimal results. Moreover, in our task,
the significance of the motion branch varies depending on
the characteristics of the video, specifically, the presence of
drastic background changes or high variance.

To address this issue, we propose a variance-integrated
method for generating dynamic loss weights for the two
branches. The dynamic loss weights capture the importance
of each branch, with a higher weight assigned to the mo-
tion branch when the video exhibits higher variance. Our
approach automatically adjusts the loss weights based on
the video characteristics, making it more adaptable and bet-
ter suited for our task compared to using fixed loss weights
throughout the training process.

The process for generating dynamic loss weights is as
follows:

Firstly, we calculate the variance var of each video v:
we first transform the video v ∈ R3×F×H×W to v ∈
RF×3HW . Then, we calculate the variance value along the
second dimension, i.e., the variance of F different features.

Next, we concatenate the batched variance VAR ∈
RB×1 with the prediction ŶF obtained from the motion
feature, and concatenate 1−VAR with the prediction Ŷ
derived from the RGB feature. Subsequently, we pass the
concatenated tensors through separate linear layers, fol-
lowed by sigmoid layers, to generate the two loss weights:

For the motion branch:

WF = Sig(Linear(Concat(VAR, ŶF ))) (12)

For the RGB branch:

W = Sig(Linear(Concat(1−VAR, Ŷ))) (13)

By applying this method, we can dynamically assign loss
weights during different iterations of training. This design
allows for automatic adaptation to varying video character-
istics, making it more generalizable and better suited for our
specific task compared to fixed loss weights throughout the
entire training process.

3.5. Optimization

During the training stage, the loss function is defined as
follows:

L = W × LP +WF × LF
P + LR + LF

R (14)

In the inference period, the predictions Ŷ and ŶF are
combined to generate the final prediction density map Ȳ:

Ȳ = (Ŷ + ŶF )/2 (15)

Finally, the final counting number Ȳc is obtained by
summing the elements of the density map:

Ȳc = Sum(Ȳ) (16)

This process allows us to generate an aggregated predic-
tion that combines the outputs of both the RGB and mo-
tion branches. The final counting number is then derived
by summing the elements of the density map, providing an
estimation of the total count.

4. Experiments
4.1. Datasets

To train and evaluate our proposed method, we utilize
two widely adopted large-scale benchmarks, following the
approach of prior work [11]. The RepCount dataset [11]
consists of two parts: Part A, which is collected from

6504



YouTube, and Part B, recorded from a local school environ-
ment. Part A encompasses a diverse range of action types,
including workout events, athletic activities, and more. On
the other hand, Part B focuses on students’ daily exercises
such as pulling up. Part A comprises a total of 1041 videos,
with 757 videos allocated for training, 130 videos for vali-
dation, and 151 videos for testing. It’s worth noting that in
our experiments, we only utilize Part A, as Part B is not pub-
licly available. The UCFRep dataset introduced by Zhang
et al. [42] is derived from the UCF101 dataset [29]. This
dataset consists of 526 videos covering 23 different repeti-
tion action classes. Among these, 421 videos are assigned
to the training set, while the remaining 105 videos form
the test set. In addition to the standard training and test-
ing pipeline, we also employ this dataset for cross-dataset
generalization evaluation, following [11].

4.2. Experimental Settings

Implementation Details. We employ the Adam opti-
mizer with a multi-step decay scheduler to train our model.
The training is conducted for 200 epochs using a batch
size of 128. The training process is accelerated using four
NVIDIA RTX A5000 GPUs with automatic mixed preci-
sion enabled. Optical flow maps are generated using the
RAFT algorithm [30]. In all our experiments, we consider
video sequences of 64 frames as input, following the ap-
proach of TransRAC [11]. To ensure a fair comparison, we
adopt multi-scale video sequences as input data. The num-
ber of heads in the multi-head self-attention layers is set
to 4, while the number of heads in the multi-head cross-
attention layer is set to 16. For the encoder and input
data size, in the experiments conducted on the RepCount
dataset [11], we utilize the Video Swin Transformer Tiny
model [21] pre-trained on the Kinetics dataset [2]. The in-
put size for this experiment is set to 224×224. In the experi-
ments performed on the UCFRep dataset [42], we adopt the
3D-ResNext101 model [9, 36] pre-trained on the Kinetics
dataset as our encoder. The input size for this experiment
is set to 112 × 112 to ensure a fair comparison with pre-
vious methods [42, 43]. It is important to note that we re-
implement the previous methods [42, 43] on the UCFRep
dataset using the same amount of input data and the same
encoder to facilitate a meaningful comparison.

Evaluation Metrics. Following previous works [6, 11,
42, 43], we adopt the Mean Absolute Error (MAE) and
the Off-By-One (OBO) accuracy as our evaluation metrics,
which are defined as follows:

MAE =
1

N

N∑
i=1

|c̃i − ci|
c̃i

(17)

OBO =
1

N

N∑
i=1

[|c̃i − ci| ≤ 1] (18)

Method MAE↓ OBO ↑
RepNet [6] 0.9950 0.0134
X3D [8] 0.9105 0.1059
Context [42] 0.8786 0.1554
TANet [7] 0.6624 0.0993
Video SwinT [21] 0.5756 0.1324
Huang et al. [12] 0.5267 0.1589
TransRAC [11] 0.4431 0.2913
Full [18] 0.4103 0.3267
Ours 0.3841 0.3860

Table 1. Experimental results on the RepCount dataset [11]. The
results of previous methods are copied from TransRAC [11].

Method MAE↓ OBO ↑
RepNet [6]∗ 0.9985 0.0090
Context [42]∗ 0.7620 0.4120
TransRAC [11]∗ 0.6401 0.3240
Zhang et al. [43]† 0.4825 0.3125
Context [42]† 0.4689 0.4800
Full [18]∗ 0.4608 0.3333
TransRAC [11]† 0.4409 0.4300
Ours 0.3879 0.5100

Table 2. Experimental results on the UCFRep dataset [42]. ∗:
copied from Full [18]. †: re-implemented by our own for fair
comparison (see supplementary material for more details).

Precisely, given N videos, the MAE measures the nor-
malized absolute error between prediction count c and the
ground truth c̃, while the OBO estimates the rounding error
with 1 as the error margin.

4.3. Comparison with State-of-the-art Methods

Results on RepCount. In the evaluation on the Rep-
Count dataset [11], we conduct a comprehensive com-
parison of our method with previous video recognition
methods [7, 8, 21] as well as recent approaches in repet-
itive counting [6, 11, 42]. The results, presented in Ta-
ble 1, demonstrate that our method outperforms previous
techniques by a significant margin. Particularly, our ap-
proach surpasses the previous state-of-the-art method Tran-
sRAC [11] by 5.90% in MAE and 9.47% in OBO.

Results on UCFRep. In the evaluation on the UCFRep
dataset [42], we compare our method with recent ap-
proaches in repetitive action counting. As presented in
Table 2, our method achieves superior performance com-
pared to previous techniques in terms of MAE. Specifi-
cally, we outperform the previous state-of-the-art method
TransRAC [11] by 5.3% in MAE. Furthermore, in terms
of OBO, our method surpasses the previous state-of-the-art
method Context [42] by 3%.

Generalization. Following [11], we also conduct the
cross-dataset generalization experiment, i.e., training on
the RepCount dataset [11] while testing on the UCFRep
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Method MAE↓ OBO ↑
RepNet [6] 0.9985 0.0090
TransRAC [11] 0.6401 0.3240
Ours 0.5227 0.3500

Table 3. Experimental results of the cross-dataset generalization
evaluation on the UCFRep dataset [42]. The results of previous
methods are copied from TransRAC [11].

Flow MAM R LW MAE↓ OBO ↑
0.4736 0.2450

✓ 0.4808 0.2715
✓ ✓ 0.4159 0.3377
✓ ✓ ✓ 0.3909 0.3576
✓ ✓ ✓ ✓ 0.3841 0.3860

Table 4. Ablation analysis on each component of our method. ’R’
indicates reconstruction and ’LW’ denotes loss weights.

dataset [42]. As shown in Table 3, our method outperforms
the previous state-of-the-art method by 11.74% in MAE and
2.8% in OBO.

4.4. Ablation Analysis

In this section, we show ablation results on the RepCount
dataset [11]. See supplementary material for more analysis.

The effectiveness of each component: As depicted in
Table 4, we analyze the impact of each component individ-
ually. Initially, simply processing the flow information as
RGB information in the global branch results in poor perfor-
mance. However, after incorporating our motion attention
module (MAM), which leverages flow features to enhance
motion feature learning implicitly, we observe a significant
improvement of 6.49% in MAE and 6.62% in OBO. This
highlights the effectiveness of our MAM in capturing mo-
tion patterns. Moreover, integrating the matrix reconstruc-
tion loss for temporal correspondence further enhances the
performance by 2.5% in MAE and 1.99% in OBO. Lastly,
our proposed variance-integrated loss weights generation
method contributes an additional improvement of 0.68% in
MAE and 2.84% in OBO. These results collectively demon-
strate the effectiveness of each component in our method.

Reconstruction on different branches: To investigate
the impact of applying matrix reconstruction loss to differ-
ent branches, we perform experiments and present the re-
sults in Table 5. We observe that applying the reconstruc-
tion loss to both branches yields the best performance, indi-
cating that incorporating temporal correspondence through
reconstruction in both the RGB and motion branches is ad-
vantageous for counting repetitive actions accurately.

The temporal self-similarity matrix: We calculate
the L2 distance between the ground truth temporal self-
similarity matrix and the predicted matrix. The ground truth
matrix is constructed based on the annotations of starting
point and ending point of each repetitive action. Specifi-
cally, the dimensions of the matrix are 64 ∗ 64 and we put

Flow RGB MAE↓ OBO ↑
0.4159 0.3377

✓ 0.4030 0.3444
✓ 0.3929 0.3444

✓ ✓ 0.3909 0.3576

Table 5. Ablation study of applying matrix reconstruction loss to
different branches.

Distance↓
w/o. Recon 26.59
w. Recon 20.32

Table 6. The distance between the predicted temporal self-
similarity matrix and ground truth matrix with or without the re-
construction process.

Variance Prediction MAE↓ OBO ↑
0.3909 0.3576

✓ 0.3947 0.3642
✓ 0.3910 0.3775

✓ ✓ 0.3841 0.3860

Table 7. The effect of different inputs on the variance-integrated
loss weights generation. The first row indicates that no loss
weights are used.

every value indicating the same moment of repetitive ac-
tions to 1 and others to 0. We show the mean distance of the
test set from the RepCount dataset [11] in Table 6. As we
can see from this table, the temporal self-similarity matrix
is much more similar to the ground truth with the recon-
struction process.

The inputs of variance-integrated loss weights gener-
ation. We analyze the effect of different inputs on the loss
weights generation. As shown in Table 7, both the variance
and output predictions Ŷ and ŶF are beneficial to our au-
tomatic loss weights generation.

5. Conclusion
In this paper, we propose a two-branch framework for

the repetitive action counting task with the motion branch
supplementing the RGB branch. Specifically, we propose a
simple motion attention module that uses flow information
to implicitly enhance motion feature learning. In addition,
to alleviate the noise from moving background distractors,
we propose a temporal self-similarity matrix reconstruction
loss to improve the temporal correspondence. Lastly, we in-
troduce a novel variance-integrated loss weights generation
technique that uses variance as guidance to automatically
generate dynamic loss weights for two branches. Extensive
experimental results and cross-dataset generalization have
proven the effectiveness of our method. In the future, repet-
itive action counting with multiple repetitive objects should
be addressed. In addition, weakly supervised or even self-
supervised methods should be considered and the combina-
tion with other modalities such as language is promising.
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