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Abstract

Most existing portrait matting models either require ex-
pensive auxiliary information or try to decompose the task
into sub-tasks that are usually resource-hungry. These chal-
lenges limit its application on low-power computing de-
vices. In addition, mobile networks tend to be less pow-
erful than those cumbersome ones in feature representation
mining. In this paper, we propose an extremely efficient por-
trait matting model via self-distillation (SDNet), that aims
to provide a solution to performing accurate and effective
portrait matting with limited computing resources. Our SD-
Net contains only 2M parameters, 2.2% of parameters of
MGM, and 1.5% of that of Matteformer. We introduce the
training pipeline of self-distillation that can improve our
lightweight baseline model without any parameter addi-
tion, network modification, or over-parameterized teacher
models which need well-pretraining. Extensive experiments
demonstrate the effectiveness of our self-distillation method
and the lightweight SDNet network. Our SDNet outper-
forms the state-of-the-art (SOTA) lightweight approaches
on both synthetic and real-world images.

1. Introduction
Portrait matting is a popular computer vision task that

aims to extract accurate alpha mattes of humans in a given

image or video. It has significant value in multimedia

creation applications regardless of the scenarios, such as

background replacement of live conferences, photo/video

editions, and movie-making without the need to build a

green or blue screen background. Although previous meth-

ods [18, 27, 32, 33, 46] utilize pre-defined trimaps (a draft

marking foreground, background, and transition areas) as

constraint information to reduce solution space and achieve

brilliant performance on portrait matting, high prediction

accuracy often comes with tedious manual annotation and

time costs. Some trimap-free models are proposed to situ-

ate these problems without extra auxiliary cues (e.g. trimap
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Figure 1. Parameters vs. performance of trimap-free models. *

indicates that the models pre-trained on Supervisely Person Seg-

mentation (SPS) dataset [45].

or sematic mask) by learning the image saliency from object

detection or segmentation methodology.

Current trimap-free methods often try to decompose the

portrait matting into sequential sub-tasks that first gener-

ate pseudo-trimaps, semantic masks, or implicitly learn the

transition region distribution before solving matting prob-

lems. While multi-stage tasks often come at large model

sizes and the expense of high computational costs, which

limit matting methods applied in applications on mobile de-

vices with low-power computing capability. One of the di-

rect solutions to situate this is to adopt lightweight back-

bones such as MobileNet [19] instead of widely-used cum-

bersome backbones such as ResNet [17] and VGG [44]. In

addition, other model compression and acceleration meth-

ods such as knowledge distillation (KD) can also be in-

troduced to address this issue. KD is a typically effective

approach that is extensively explored in multiple computer

vision tasks [31, 47, 49, 51] such as segmentation, it trains

a lighter student network with the guidance of an over-

parametrized teacher model.

However, there still remain two big challenges in the

above solutions. First, lightweight networks tend to be less
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powerful than those cumbersome ones in feature represen-

tation mining, which has been widely acknowledged in pre-

vious lightweight backbone research [19, 42, 52]. Second,

conventional knowledge distillation (KD) often suffers from

the following problems: 1) Traditional KD needs a two-step

implementation which is to first train a heavy teacher and

then transfer its knowledge to a light student. 2) The choice

of a teacher model has a great impact on the performance

of the student model and the model with the best perfor-

mance may not be the best teacher [10, 23, 36]. Substantial

attempts to select or design the best teacher model and the

two-step training mechanism of KD can lead to long time

consumption. 3) The student model scarcely exploits all

the information transferred from the teacher model, which

leads to inefficient knowledge transfer and a significant gap

between the student and teacher.

To address the above challenges, in this paper, we pro-

pose an Extremely Efficient Portrait Matting Model via

Self-Distillation (SDNet), that aims to provide a solution to

performing accurate and effective portrait matting on low-

power computing devices. We employ ILBlock [8] as the

backbone to build a computationally efficient lightweight

baseline network of our SDNet. To further improve the

matting performance and address the issues of traditional

KD, we propose a self-distillation (SD) method that seeks

privileged information from downstream features as teacher

knowledge to guide the upstream features throughout the

decoding process. Compared with traditional KD meth-

ods, our SDNet performs only a one-step training process

and achieves significant model self-improvement without

the modification of network structure or addition of parame-

ters. As illustrated in Figure 1, our model achieves the most

significant performance with the least parameters among

SOTA trimap-free models.

Overall, the contributions of this paper are as follows:

• We propose a novel extremely efficient and lightweight

portrait matting model with only 2M parameters.

• We introduce the training pipeline of self-distillation

that can improve our lightweight baseline model with-

out any parameter addition, network modification, or

over-parameterized teacher models which need well-

pretraining.

• Extensive experiments demonstrate the effectiveness

of our self-distillation method and the lightweight SD-

Net network. Our SDNet outperforms the state-of-

the-art (SOTA) approaches on both synthetic and real-

world images.

2. Related works
Currently, the matting is generally formulated as an im-

age composite problem, which solves the 7 unknown vari-

ables per pixel from only 3 known values:

Ii = αiFi + (1− αi)Bi (1)

where 3 dimensional RGB color Ii of pixel i, while fore-

ground RGB color Fi, background RGB color Bi, and

matte estimation αi are unknown. In this section, we dis-

cuss the SOTA works trying to solve this under-determined

equation.

2.1. Classic methods

Classic foreground matting methods can be generally

categorized into two approaches: sampling-based and

propagation-based. Sampling-based methods [6, 22] sam-

ple the known foreground and background color pixels,

and then extend these samples to achieve matting in other

parts. Various sampling-based algorithms are proposed,

e.g., global sampling method [22] and comprehensive sam-

pling [13]. Propagation-based methods [1, 5] reformulate

the composite Eq. 1 to propagate the alpha values from the

known foreground and background into the unknown re-

gion, achieving more reliable matting results. [21] provides

a very comprehensive review of various matting algorithms.

2.2. Deep learning-based methods

Classic matting methods are carefully designed to solve

the composite equation and its variant versions. However,

these methods heavily rely on chromatic cues, which leads

to bad quality when the color of the foreground and back-

ground show small or no noticeable difference.

Trimap-based methods. Automatic and intelligent mat-

ting algorithms are emerging, due to the rapid develop-

ment of the deep neural network in computer vision. Ini-

tially, some attempts were made to combine deep learning

networks with classic matting techniques, e.g. KNN mat-

ting [5]. Cho et al. [9] employ a deep neural network to

improve the results of the closed-form matting and KNN

matting. These attempts are not end-to-end, so not surpris-

ingly the matting performance is limited by the convolu-

tion back-ends. Subsequently, full DL image matting algo-

rithms appear [4, 46]. Xu et al. [46] propose a two-stage

deep neural network (Deep Image Matting) based on Seg-

Net for alpha matte estimation and contribute a large-scale

image matting dataset (Adobe dataset) with ground truth

foreground (alpha) matte, which can be composited over a

variety of backgrounds to produce training data. We also

use this data for the first-step pre-training of our network.

Lutz et al. [35] introduce a generative adversarial network

(GAN) for natural image matting and improve the results of

Deep Image Matting [46]. Cai et al. [2] investigate the bot-

tleneck of the previous methods that directly estimate the

alpha matte from a coarse trimap, and propose to divide the

matting problem into trimap adaptation and alpha estima-

tion tasks. Hou et al. [18] employs two encoder networks
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Figure 2. The architecture of the SExtremely Efficient Portrait Matting Model via Self-Distillation (SDNet). The SDNet employs IL-

Block [8] as the backbone to build a 4-stage encoder. An Adaptive Multi-Perspective Aggregation (AMPA) module is followed and can

aggregate multiple receptive fields in one layer to fully mine both high-level and low-level features. We perform self-distillation in the

process of our proposed multi-level aggregation decoder.

to extract essential information for matting, however, it is

not robust to faulty trimaps. Forte et al. [29] propose a low-

cost upgrade to alpha matting networks to also predict the

foreground and background colours. They study variations

of the training regions and explore a wide range of existing

and novel loss functions for optimal prediction.

Additional natural background. Qian et al. [39] com-

pute a probability map to classify each pixel into the fore-

ground or background by simple background subtraction.

This algorithm is sensitive to the threshold and fails when

the colors of the foreground and background are similar.

Sengupta et al. [43] introduce a self-supervised adversarial

approach - Background Matting (BGM), achieving state-of-

the-art results. However, as a prerequisite, the photographer

needs to take a shoot of natural background first, which is

not friendly to the intensive multi-scene shooting applica-

tion. Liu et al. [28] propose the Background Matting V2

that employs two neural networks: a base network com-

putes a low-resolution result which is refined by a second

network operating at high-resolution on selective patches.

Trimap-free methods. Currently, a majority of deep

image matting algorithms [2, 18, 35, 46] try to estimate a

boundary that divides the foreground and background, with

the aid of a user-generated trimap. Several trimap-free mat-

ting methods [4, 53] predict the trimap first, followed by

alpha matting. Qiao et al. [40] employ spatial and channel-

wise attention to integrating appearance cues and pyramidal

features, they also introduce a hybrid loss function fusing

Structural SIMilarity (SSIM), Mean Square Error (MSE),

and Adversarial loss to guide the network to further im-

prove the overall foreground structure in trimap-free mat-

ting. Lin et al. [29] propose a robust real-time matting

method (RVM) training strategy that optimizes the network

on both matting and segmentation tasks. Ke et al. [24]

present a lightweight matting objective decomposition net-

work (MODNet) by optimizing a series of sub-objectives

simultaneously via explicit constraints. They also introduce

an e-ASPP module to fuse multi-scale features, plus a self-

supervised sub-objectives consistency (SOC) strategy to ad-

dress the domain shift problem, which is common in trimap-

free methods.

Besides, most current trimap-free methods focus only on

human/portrait matting but ignore the objects that are inter-

acting with or attached to people. In addition, they learn the

saliency of the images by data-driven training, which lacks

the situational perception between salient objects and the

surrounding environment, leading to biased or incomplete

foreground prediction, especially in multi-object scenes.

This is the main reason why we propose the method of Sit-

uational Perception Guided Image Matting. In this paper,

we quantitatively evaluate the performance of our model for

alpha matting in human-object interactive and multi-object

scenes.

2.3. Self-Distillation

Self-distillation is a technique that has gained increas-

ing attention in the deep learning community. It involves

training a neural network to mimic its own behavior in or-
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der to improve its performance. [51] introduced a method

that utilizes a deeper classifier to teach a shallower classi-

fier, resulting in improved performance while maintaining

the response time. This approach demonstrates the poten-

tial of self-distillation in balancing accuracy and computa-

tional efficiency. [47] proposes to maintain the consistency

of feature maps and predictions between different distorted

data. Their approach highlights the importance of consis-

tency in self-distillation and its role in enhancing model

performance. [49] presented a method that pre-trains a stu-

dent model and subsequently uses it to generate soft la-

bels for self-distillation. Their work shows the effective-

ness of using soft labels to guide the learning process in

self-distillation. Despite the success of self-distillation in

various deep learning applications, its adoption in the con-

text of image matting remains relatively unexplored. In this

work, we aim to address this gap by proposing a novel self-

distillation method tailored for portrait matting tasks using

an extremely lightweight network.

3. Methodology
In this section, we describe our proposed lightweight net-

work SDNet and the self-distillation method which does not

need to change the network structure or add any parameters.

3.1. Multi-scale feature exaction

As illustrated in Figure 2, SDNet is based on an encoder-

to-decoder architecture. The encoder employs ILBlock [8]

as the backbone to extract features within multiple scales.

ILBlock [8] is a lightweight feature extractor that is first ap-

plied in the salient object detection (SOD) task. ILBlock [8]

consists of a vanilla OctConv [7] and two 3 × 3 simplified

gOctConvs [8]. Compared to the manual setting of chan-

nels in the vanilla OctConv [7], gOctConv [8] is a flexible

self-adaptive convolutional operator which takes inputs of

multiple arbitrary scales and does not need lots of effort to

re-adjust for models. The output of gOctConv [8] is also

flexible and fits well with the matting network.

We split our encoder into 4 stages, which are stacked

with 3,4,6,4 ILBlocks [8]. Each stage takes the input of

resolution (Hi, Wi) and outputs the features of resolution

(Hi, Wi) and (Hi/2, Wi/2). The ILBlocks [8] can enable

each stage to integrate multi-scale features while keeping

lightweight. Therefore, the output of our multi-stage en-

coder contains both high-level features with abstract seman-

tics and low-level features with detail distributes that con-

tribute to the matting task. For simplicity, we denote the

multi-stage feature representations of the encoder as a set

Fenc = {F 1
enc, F

2
enc, F

3
enc, F

4
enc}.

3.2. Adaptive Multi-Perspective Aggregation

As described in previous dense prediction work [38],

larger receptive fields establish dense connections between

C +

D-Conv

Atr-Conv

Asy-Conv
C Concatenation + Element-wise Sum

Figure 3. Network structure of Adaptive Multi-Perspective Aggre-

gation (AMPA) module.

feature maps and per-pixel classifiers which improve the

accuracy of internal regions, while smaller receptive fields

benefit the localization focus on local fine-grained details

near the object boundaries. Inspired by this, we propose an

Adaptive Multi-Perspective Aggregation (AMPA) module

and fuse multiple receptive fields in one layer to enhance the

diversity of reception in feature representations that cover

both global semantic integrity and detail attributes. Tech-

nically, we connect standard depthwise separable convolu-

tion [11], atrous convolution [3], and asymmetric convolu-

tion [12] parallel for multi-scale fusion. This can be sum-

marized as follows:

χ1
1 = Convd(F

i
enc)

χ2
1 = Convatr(F

i
enc)

χ3
1 = Convasy(F

i
enc)

χ2 = RELU(LN(Concat[χ1
1, χ

2
1, χ

3
1]))

(2)

where F i
enc denotes the feature produced by the encoder at

each stage, Conv∗ denote different types of convolutional

operations (i.e., depthwise separable, atrous, and asymmet-

ric convolutions), and BN is the abbreviation of batch nor-

malization, and Concat[*] is the concatenation operation. A

1 × 1 convolution is followed to squeeze channels of χ2 to

the same number as the input of F i
enc. And then, we utilize

the SEblock [20] (see Figure 4) to model the channel-wise

attention for effective enhancement of the fused feature rep-

resentations, as follows:

χ3 = SE(Conv1×1(χ2))

F̄ i
enc = Conv1×1(χ3) + F i

enc

(3)

where we use a residual connection to fuse χ2 with the input

of F i
enc for better optimization. The network structure of

AMPA is also shown in Figure 3.

3.3. Multi-level aggregation decoder

In order to better aggregate multi-level features and fully

mine both semantic abstract information and fine-grained

details, we design a multi-level aggregation decoder. As

shown in Figure 2, the output features (F̄ i
enc, i = 2, 3, 4) of

the adaptive multi-perspective aggregation (AMPA) mod-

ule are first sent to 3 × 3 convolutional layers that output
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F i
dec, i = 2, 3, 4, respectively. F 4

dec is processed by a 1× 1
convolutional layer and output F̄ 4

dec whose channel num-

ber is reduced to 1. And then, F̄ i+1
dec from the previous de-

coder stage is upsampled and fused with current stage fea-

ture F i
dec, i = 2, 3 for multi-stage feature aggregation, as

follows:

F̄ i
dec = Conv1×1(Concat[UP(F̄ i+1

dec ), F
i
dec]) (4)

where a 1×1 convolution is followed to reduce the channel

numbers of F̄ i
enc, i = 2, 3 to 1, and UP is the upsampled

operation.

Inspired by multiple salient object detection methods, we

utilize the multi-level supervision strategy to supervise the

feature of F̄ i
dec, i = 2, 3, 4 by the ground truth alpha matte

(αgt). We recover the spatial size of F̄ i
dec to the same as the

original input and the loss is calculated as:

Laux =
3∑

i=1

Lalpha

where Lalpha is the sum of L1 loss Ll1, Laplacian loss Llap

and composition loss Lc:

Li
l1 = ||UP(F̄ i

dec)− αgt||1

Li
lap =

5∑

n=1

2n−1

5
||Ln

pyr(UP(F̄ i
dec))− Ln

pyr(αgt)||1

Li
c = ||UP(F̄ i

dec) ∗ Fgt + (1−UP(F̄ i
dec)) ∗Bgt − Igt||1

For better multi-scale feature aggregation, we send

F̄ i
dec, i = 2, 3, 4 to three individual gOctConv blocks and

the feature aggregation can be summarized as:

χ̄4 = gOct(F̄ 4
dec)

χ̄3, χ̄
∗
4 = gOct(F̄ 3

dec, χ̄4)

χ̄2 = gOct(F̄ 2
dec, χ̄3, χ̄

∗
4)

αf = Conv1×1(χ̄2)

(5)

(a) (b)

(c)

Distillation Path 
(from teacher to student)

AMPA + 3x3 Conv

Figure 5. The settings of different reference features: (a) best

teacher distillation; (b) dense distillation; (c) transitive distillation.

where the final gOctConv outputs a high-resolution feature

χ̄2 which is used to predict a final alpha matte αf after a

1× 1 convolutional operation. αf is also supervised by the

alpha matte ground truth αgt through Lalpha.

3.4. Self-Distillation

We introduce the training pipeline of self-distillation that

can improve our lightweight baseline model. Compared

to the original model, the self-distillation does not change

the network structure or add any parameters addition. Due

to the model design of our decoder, we observe that the

downstream-stage features often integrate more multi-scale

features from upstream-stage features and the downstream

features are closer to the predicted values. We believe

that privileged information from the downstream features

can guide the representations of upstream features. There-

fore, we introduce a self-distillation training pipeline, which

seeks downstream features as teachers to facilitate upstream

features. Specifically, the self-distillation (SD) loss Ld

is defined by the cosine similarity between the reference

(teacher) feature and the student feature. Inspired by [50],

we compare three settings of reference features, as follows:

• Best teacher distillation. F̄ 2
dec is chosen as reference

feature to guide F̄ 3
dec and F̄ 4

dec.

• Dense distillation. Each downstream feature (i.e.,
F̄ 2
dec, ..., F̄ i−1

dec ) are utilized as reference features to

teach the upstream feature F̄ i
dec.

• Transitive distillation. Each downstream feature is

selected as the reference feature only for its adjacent

upstream feature.

The self-distillation settings are also illustrated in Figure 5.

Among them, the best teacher distillation performs the best

on our self-distillation training pipeline. The comparison

result is also discussed in the ablation study section.
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Methods Param (M) Trimap SAD↓ MSE↓
DIM [46] 75.1 � 6.9 0.0014

IndexNet [33] 8.2 � 6.6 0.0013

MODNet [15] 6.5 � 6.3 0.0011

GCA Matting 24.8 � 2.6 0.0003

MGM 90.4 � 2.4 0.0003

FBA Matting 34.7 � 2.3 0.0003

Matteformer 138.6 � 2.0 0.0002
Ours w/o SD 2.0 � 3.3 0.0005

Ours 2.0 � 2.7 0.0003

DIM� [46] 75.1 11.6 0.0048

FDMPA� 12.3 11.5 0.0047

LFM� 38.5 10.1 0.0043

SHM� 79.6 9.2 0.0031

HAtt� 38.7 9.4 0.0034

BSHM� 32.3 8.8 0.0029

MODNet� 6.5 7.7 0.0023

Ours w/o SD 2.0 7.6 0.0028

Ours 2.0 6.2 0.0016

Table 1. The quantitative results on the portrait subset of

Composition-1k. w/o SD denotes the SDNet baseline network

without self-distillation. * indicates that the models pre-trained

on Supervisely Person Segmentation (SPS) dataset [45].

Methods Param (M) Trimap SAD↓ MSE↓
DIM [46] 75.1 � 8.1 0.0025

IndexNet [33] 8.2 � 7.8 0.0022

MGM 90.4 � 6.8 0.0006

GCA Matting 24.8 � 6.0 0.0006

FBA Matting 34.7 � 4.4 0.0004

Matteformer 138.6 � 3.3 0.0002

Ours w/o SD 2.0 � 5.9 0.0007

Ours 2.0 � 4.7 0.0004

LFM 38.5 16.9 0.0087

HAtt� 38.7 12.6 0.0054

MODNet� 6.5 9.8 0.0037

Ours w/o SD 2.0 10.3 0.0043

Ours 2.0 8.7 0.0028

Table 2. The quantitative results on the portrait subset of

Distinction-646.

4. Experiments

We first describe the datasets used for training and test-

ing. Subsequently, we compare our results with existing

state-of-the-art (SOTA) foreground matting algorithms. Fi-

nally, we conduct ablation experiments to show the effec-

tiveness of each branch and module.

Methods Param (M) Trimap SAD↓ MSE↓
DIM [46] 75.1 � 6.7 0.0016

IndexNet [33] 8.2 � 6.4 0.0015

MODNet 6.5 � 5.4 0.0013

GCA Matting 24.8 � 5.0 0.0013

MGM 90.4 � 4.6 0.0011

FBA Matting 34.7 � 3.7 0.0009

Matteformer 138.6 � 3.2 0.0007

Ours w/o SD 2.0 � 5.4 0.0016

Ours 2.0 � 4.4 0.0011

DIM [46] 75.1 32.7 0.0221

DIM� [46] 75.1 17.8 0.0115

FDMPA� 12.3 16.0 0.0101

LFM� 38.5 15.8 0.0094

SHM� 79.6 15.2 0.0072

HAtt� 38.7 13.7 0.0067

BSHM� 32.3 11.4 0.0063

MODNet� 6.5 8.6 0.0044

Ours w/o SD 2.0 8.8 0.0060

Ours 2.0 7.2 0.0040

Table 3. The quantitative results on PPM-100.

4.1. Datasets

Adobe Image Matting(AIM) [46] is a widely-used

dataset for image matting. We select 78 human foreground

images within it for training and 22 for testing. Distinction-

646 [40] contains 342 human images for training and 22

for testing. During training, We composite each foreground

with a random background from COCO [30] images. We

apply random affine, cropping, and color jitters to every

training sample. For evaluation, we composite each test

foreground with 10 diverse backgrounds from VOC [14].

In addition, we also conduct comparative real-world por-

trait dataset PPM-100 [25] for testing.

4.2. Evaluation metrics

We report the mean square error (MSE) and the sum

of the absolute difference (SAD) between predicted and

ground truth alpha mattes. Lower values of these metrics

indicate better estimated alpha matte.

4.3. Implementation detail

We use Adam [26] Optimizer for training. The model is

trained from scratch without pretraining. The batch size is

set to 4 and the initial learning rate is 0.0001. We train our

network for 120 epochs and the learning rate is multiplied

by 0.1 at 75 and 100 epochs.
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(b) MODNet (c) GCA (d) Ours (e) Ours/wo trimap(a) IndexNet (e) GT(b) Input (b) Trimap

Figure 6. Visual comparisons on public composition datasets. Row 1-2: visualizations on Distinction-646; Row 3-5: visualizations on

Composition-1k.

(b) MODNet (c) GCA (d) Ours (e) Ours/wo trimap(a) IndexNet (e) GT(b) Input (b) Trimap

Figure 7. Visual comparisons on PPM-100.

4.4. Comparative study

We conduct comparative study on dual composi-

tion benchmarks: Composition-1K [46] and Distinction-

646 [40], and a real-world natural portrait benchmark:

PPM-100 [25]. We compare our models with the state-

of-the-art trimap-based (i.e., DIM [46], IndexNet [34],

GCA [27], FBA [16], and Matteformer [37]) and trimap-

free (i.e., FDMPA [54], LFM [53], SHM [4], Hatt [40],

BSHM [41], and MODNet [25]), and mask-guided (i.e.,
MGM matting [48]) methods. For MGM, we choose its

trimap-based version throughout the experiments.

The quantitative results on the Composition-1K [46] are

shown in Table 1. Our trimap-based SDNet is slightly infe-

rior to trimap-based GCA [27], MGM [48], FBA [16], and

Matteformer [37] whose backbones are more cumbersome

but superior to the trimap-based DIM [46], IndexNet [34],

and MODNet [25]. Among trimap-free methods, our SD-
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Methods Parameters(Million) Size(MB)

DIM [46] 75.06 292.0

IndexNet [33] 8.15 22.9

GCA Matting 24.8 96.5

FBA Matting 34.7 138.8

MGM 90.4 340.0

Matteformer 138.6 513.0

FDMPA 12.3 47.6

LFM 38.5 146.2

SHM 79.6 299.4

BSHM 32.3 124.1

HAtt 38.7 146.6

MODNet [15] 6.48 25.0

Ours 2.03 8.1

Table 4. The comparison of model size.

SD settings Trimap SAD↓ MSE↓
w/o SD � 3.3 0.0005

Transitive � 2.9 0.0004

Dense � 2.8 0.0004

Best teacher � 2.7 0.0003

w/o SD � 7.6 0.0028

Transitive 6.4 0.0020

Dense 6.5 0.0021

Best teacher 6.2 0.0016

Table 5. Ablation of different reference feature settings in self-

distillation. w/o SD denotes the SDNet baseline without self-

distillation.

Net significantly outperforms other competing SOTA ones

without any extra pretraining on segmentation datasets(e.g.,
SPS [45]). Table 2 and Table3 also shows similar experi-

mental effects on the other composited Distinction-646 [40]

dataset and real-world PPM-100 [25]. Moreover, as shown

in Table 4, our SDNet has the smallest number of parame-

ters (only 2.0 M, 2.2% of parameters of MGM, and 1.5% of

that of Matteformer) among both trimap-based and trimap-

free models. The above comparative results demonstrate

the effectiveness of our lightweight network design and the

self-distillation training baseline in both composition and

real-world scenes. Further, Our SDNet is lightweight and

highly efficient on the portrait matting task and can be con-

sidered a novel baseline model that applied to mobile de-

vices. Some representative visualizations on composited

benchmarks and real-world PPM-100 are provided in Fig-

ure 6 and 7, respectively. The visual comparisons further

demonstrate the effectiveness of our lightweight model de-

sign and the self-distillation training pipeline.

Models Trimap SAD↓ MSE↓
SDNet w/o AMPA � 3.1 0.0004

Full SDNet � 2.7 0.0003

SDNet w/o AMPA 9.2 0.0036

Full SDNet 6.2 0.0020

Table 6. Ablation of the AMPA module.

5. Ablation study

5.1. Effectiveness of different distillation settings

We conduct an ablation study on the portrait subset of

the Composition-1K to compare the effectiveness of three

distillation methods mentioned in Section3.4. As shown in

Table5, although all three distillation methods significantly

improved the performance of our SDNet, the best teacher

distillation method slightly outperformed the other two in

terms of all evaluation metrics. Given the superior perfor-

mance of the best teacher distillation method, we choose it

as the distillation approach in our final model.

5.2. Effectiveness of AMPA module

In order to assess the contribution of the Adaptive Multi-

Perspective Aggregation (AMPA) module to the overall per-

formance of our model, we conducted an ablation study by

comparing the performance of our SDNet with or w/o the

AMPA module. As illustrated in Table 6, the performance

of our model w/o AMPA decreased significantly compared

to the version with AMPA. The degradation in performance

is particularly noticeable for trimap-free methods. We ob-

serve that the AMPA module plays a crucial role in cap-

turing multi-level features that cover both global semantic

integrity and detail attributes, thanks to its receptive diver-

sity on feature representations by adaptive multi-receptive

fields, especially for the trimap-free model versions.

6. Conclusion

In this paper, we propose an Extremely Efficient Portrait

Matting Model via Self-Distillation (SDNet), which aims to

perform accurate and effective portrait matting with limited

resources, such as mobile devices. Our SDNet has only 2M

parameters. We introduce an Adaptive Multi-scale Pyra-

mid Attention (AMPA) module that fuses multiple recep-

tive fields in one layer to enhance the diversity of recep-

tion in feature representations that cover both global seman-

tic integrity and detail attributes. To improve the perfor-

mance of our lightweight baseline, we introduce the training

pipeline of self-distillation without any parameter addition,

network modification, or over-parameterized teacher mod-

els from traditional distillation methods. Extensive experi-

ments demonstrate the effectiveness of our self-distillation

training pipeline and the lightweight model design.
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