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Abstract

In class-incremental learning (CIL), when deep neural
networks learn new classes, their recognition performance
in old classes will drop significantly. This phenomenon is
widely known as catastrophic forgetting. To alleviate catas-
trophic forgetting, existing methods store a small portion
of old class data with a memory buffer and replay it while
learning new classes. These methods suffer from a severe
imbalance problem between old and new classes. In this pa-
per, we discover that the imbalance problem in CIL makes
it difficult to preserve the feature relation of old classes
and hard to learn the feature relation between old and new
classes. To mitigate the above two issues, we design a triplet
contrastive preserving (TCP) loss to preserve old knowl-
edge, and propose an asymmetric augmented contrastive
learning (A2CL) method to learn new classes. Compre-
hensive experiments demonstrate the effectiveness of our
method, which increases the average accuracies by 1.26%
and 0.95% on CIFAR-100 and ImageNet. Especially under
smaller memory buffer settings where the imbalance prob-
lem is more severe, our method can surpass the baselines by
a large margin (up to 3.2%). We also show that TCP can be
easily plugged into other methods and further improve their
performance.

1. Introduction
Nowadays, deep neural networks (DNNs) show remark-

able performance gains in many fields such as image recog-
nition [12, 31], object detection [27], natural language pro-
cessing [34], and so on. The traditional learning paradigm
assumes that the training and testing data are subject to the
same distribution. However, in real-world applications, the
model will continually encounter new data and may need to
handle new classes of data that have never been seen dur-
ing their previous training. Therefore, the goal of enabling
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DNNs to incrementally learn from continually accumulated
data has attracted lots of research efforts.

A naive approach is to retain the full version of the old
dataset and train the DNN on all the old and new data. Nev-
ertheless, this approach is inefficient and even impractical
in terms of memory constraints. However, learning on data
of new classes without accessing old data causes the DNN
to rapidly forget old knowledge, which is widely known
as the catastrophic forgetting phenomenon [9, 28]. Lots of
strategies have been proposed to alleviate catastrophic for-
getting [1,17,21–23,26,32]. Among them, the replay-based
methods [1, 21, 26, 32] combined have exhibited promising
results and thus are widely used. These methods only keep
a small portion of old training data as the memory buffer
and replay the stored old data when training DNN with new
data.

Although storing a small portion of old training data can
alleviate catastrophic forgetting to some extent, it suffers
from a severe data imbalance problem between old and new
classes. The imbalance problem has a negative impact on
both learning new knowledge and preserving old knowl-
edge. For one thing, with a few old training data, it is hard
for us to learn the feature relation between the old and the
new classes [24]. For another, with a few old training data,
preserving the feature relation of old classes is challeng-
ing because of overfitting. Existing methods propose to al-
leviate this issue with distillation [21, 26, 32], which trade
off the ability to learn new classes. Actually, this stability-
plasticity trade-off between the learning of new classes and
the knowledge preserving of old classes is widely observed
in CIL [6]. Achieving effective CIL requires considering
these two aspects simultaneously.

In this paper, we focus on two fundamental questions for
CIL: To facilitate an effective CIL learner, (1) what types of
knowledge in the old model should be preserved? and (2)
how to adapt the feature space to the new data?

(1) What to Preserve. We identify an important but
overlooked issue in the distillation strategies which leads to
the suboptimal trade-offs: forcing the new model to output
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Figure 1. Here, R1, R2, R3 and R′
1, R

′
2, R

′
3 are the cosine similarities between features from the old model and the new model, respectively.

(a) In phase K, the contrastive relationship for old data feature R1 > R2 > R3 is critical for distinguishing old data. (b) Traditional point-
wise distillation strategies penalize the exact feature positions remain unchanged. (c) Our proposed method keep the contrastive relationship
of feature vectors satisfy R

′
1 > R

′
2 > R

′
3.

similar features in the sense of exact value as the old model
for old data could harm the learning of new data. This is
because that learning new classes can change the optimal
feature space (illustrated in Figure 1 (b)), and forcing the
new model to preserve the exact value of the old model log-
its hinders the learning of the new optimal feature space.

(2) How to Adapt. We propose to employ a contrastive-
based loss [16] to learn the contrastive relationship between
features of old classes and new classes. Nevertheless, di-
rectly applying contrastive learning in the CIL setting faces
a severe challenge caused by the imbalance of old and new
data. As shown in Figure 1 (b) and (c), since there are much
fewer data points in old classes than in new classes, directly
contrasting old and new data points would learn the subop-
timal feature relation. To address this issue, we introduce
an asymmetric data augmentation strategy into the con-
trastive learning process to learn better feature relation.

To summarize, the main contributions of this paper are:

• We discover that learning and preserving the con-
trastive relationship of features (i.e., the order of simi-
larity values between features) is essential for achiev-
ing a superior stability-plasticity trade-off in CIL.

• We propose a triplet contrastive-relationship preserv-
ing (TCP) loss for distillation to preserve the con-
trastive relationship of old data features and thereby
retain the discriminative knowledge of the old model
and allow the feature space to change for better for-
ward transfer.

• We propose an asymmetrical augmented contrastive
learning (A2CL) method to alleviate the severe class
imbalance problem in CIL and learn the better con-
trastive relationship between new and old data.

• Extensive experiments show that our method can re-
duce classification errors by 1.26% and 0.95% on
CIFAR-100 and ImageNet. With a very small mem-
ory buffer (only ten exemplars per class are saved),
our method outperforms the baseline significantly by
3.2%. We also show that TCP can be easily plugged
into other methods and boost their performance.
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Figure 2. t-SNE visualization of the oracle feature spaces using all
training data of 50 and 60 classes in CIFAR-100. We take three
representative classes as the example. Blue, green, and yellow tri-
angles represent the feature space of a DNN learned with all data
of 50 classes; Blue, green, yellow, and orange squares represent
the feature space of finetuning the DNN with all data of 60 classes.

2. Motivation

To verify our motivation, we train a DNN using 50
classes and show its feature space in Figure 2, where only
three classes (blue, green, and yellow dots) are plotted.
Here, Ri denotes the cosine similarity of two selected sam-
ples. The cosine similarities between the three samples
satisfy R1 > R2 > R3 (i.e., the contrastive relationship
R1 − R2 > 0, R1 − R3 > 0, and R2 − R3 > 0). Then,
we further finetune DNN with all the data from the 50 old
classes and 10 new classes (i.e., the joint-training setting)
and show the adapted feature space in Figure 2. We can
see that in the new feature space learned from all the data,
the exact positions of features (i.e., feature values) have
changed. In other words, the learning of new data could re-
sult in the drift of old data features. Nevertheless, the con-
trastive relationship between sample features remains un-
changed and still satisfies the same order R′

1 > R′
2 > R′

3

(i.e., the contrastive relationship R′
1−R′

2 > 0, R′
1−R′

3 > 0,
and R′

2 −R′
3 > 0). In the oracle experiment, we found that

more than 77% of the sample triples will keep the contrast
relationship unchanged during incremental learning.

Based on the above oracle experiments, we argue that the
key knowledge in the old model to preserve is not the abso-
lute mapping from the input to output logits but rather the
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contrastive relationship of features. As illustrated in Fig-
ure 1 (c), in the learning phase of new classes (Phase K+1),
we want the contrastive relationship of the feature similar-
ities R′

1, R
′
2 and R′

3 to remain the same as their previous
relationship in Phase K: R1 > R2 > R3. In this way, we
preserve the essential contrastive relationship between
features to retain the discriminative knowledge of the old
model. In the meantime, we allow the feature space to
change, which is desirable for better forward transfer since
the learning of new data requires the adaption of the feature
space (see Figure 2).

3. Related Work

3.1. Class-incremental Learning

Most methods use the logits distillation [13] to preserve
old knowledge, which is introduced by LwF [19]. Then,
iCaRL [26] introduces the replay-based setting and shows
the potential to effectively alleviate forgetting by storing
and replaying a small number of old samples. After that, a
lot of studies [1, 14, 20, 32, 35] follow the distillation-based
and replay-based setting to increase the performance of
CIL. The aforementioned methods mostly use cross-entropy
to learn new classes. Yu et al. [37], and Cha et al. [2] use
the triplet loss and contrastive loss to learn more represen-
tative feature space for new classes. In this paper, unlike
the previous distillation-based work, we aim to preserve the
contrastive relationship instead of logits or feature values.

3.2. Knowledge distillation

Existing knowledge distillation (KD) methods mainly
train a student DNN to mimic the logits or feature posi-
tion of the old model [13] and are widely used in class-
incremental learning. In order to transfer the structured
information to the student, Tian et al. [33] proposes con-
trastive representation distillation (CRD) to learn a new stu-
dent representation. Specifically, CRD pulls the represen-
tations from the teacher and student closer with the same
input sample; otherwise, it pushes the representations apart.
Our work focuses on keeping the learned contrastive rep-
resentation unchanged instead of learning a new represen-
tation. Park et al. [25] and Gao et al. [25] propose rela-
tional knowledge distillation (RKD) to penalize the change
of exact angle values in each sample triplet. Unlike learn-
ing on fixed datasets, CIL aims to learn new classes that can
change the optimal feature space of old classes. Although
distilling the exact values of old data, such as feature po-
sition and angle values of features, can alleviate forgetting,
it can also hinder learning new data. Therefore, instead of
keeping some exact values unchanged, we aim to preserve
the contrastive relationship in each triplet (i.e., the order of
similarity values between features).

3.3. Supervised Contrastive Learning

Self-supervised contrastive learning (SSCL) [3–5,11,18]
is widely used to learn the representation from unlabeled
images. Some studies [8, 10] show that contrastive learning
shows a high potential to increase the plasticity in unsuper-
vised continual learning. Recently, Khosla et.al. [16] ex-
tended the SSCL to a fully-supervised setting by leveraging
the label information and introducing the supervised con-
trast learning. They propose supervised contrastive learning
(SCL) to pull each sample pair from the same class closer
and push each sample pair from the different classes away.
Meanwhile, Khosla et.al. [16] also show the connection be-
tween supervised contrastive loss and triplet loss, which is
widely used in deep metric learning [15, 29]. In short, the
triplet loss and the contrastive loss share the same idea of
pulling the features from the same class closer and pushing
the features from different classes away.

In our work, we introduce the idea of contrastive learning
in two aspects: (1) To preserve old knowledge, we follow
the idea of triplet loss [29] and design a Triplet Contrastive
Preserving loss term to maintain the contrastive relationship
of old sample features. Different from SDC [37], we intro-
duce the triplet loss as the distillation term to preserve old
knowledge rather than learn new classes. (2) When adapt-
ing to new classes, we use the supervised contrastive loss to
model the contrastive relationship between new classes and
old classes.

4. Background
4.1. Replay-based class-incremental Learning

Here we introduce the general setup of class-incremental
learning. Let D, X, and Y denote the training dataset, train-
ing images, and training labels. In CIL, we aim to learn
a DNN on a sequence of tasks D = {D1,D2, · · · ,DN},
where (Xi, Yi) ∈ Di is the sub-dataset of phase k. In phase
k, the neural network can access the full Dk, and the previ-
ous sub-datasets {D1,D2, · · · ,D(k−1)} are no longer fully
available. In this paper, we follow the popular replay-based
class-incremental learning settings to store a small part of
exemplars of the previous sub-dataset in a memory buffer
M. Then, in phase k, we need to learn a DNN model by
accessing dataset D(∗)

k = Dk ∪ M and the model learned
in phase k-1 (usually referred to as the old model). And
the data in M is usually used for distillation to preserve the
knowledge of the old model.

The mainstream class incremental learning framework
is shown in Figure 3 (b). For learning new data (i.e., for-
ward transfer), the mainstream framework minimizes cross-
entropy loss on new training data. To alleviate catastrophic
forgetting (i.e., negative backward transfer), they use the
old model and the new model to extract the features of the
memory buffer data, denoted as {mi}i=1,··· and {m′

i}i=1,···,
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Figure 3. (a) Our framework. We apply the triplet contrastive-relationship preserving (TCP) loss to preserve the contrastive relationship
among old exemplars. Then, we employ supervised contrastive loss with a new asymmetric augmentation strategy to optimize the con-
trastive relationship between new and old classes. (b) Traditional framework. They penalize the feature positions to remain unchanged to
alleviate forgetting and use the cross-entropy loss to learn new data.

respectively. Then, they employ a distillation loss that en-
courages mi and m

′

i to be similar for each data point i in
M in a point-wise manner.

To summarize, the objective of existing mainstream CIL
method in each incremental phase is:

L = LCE + λLdistill, (1)

where LCE and Ldistill denote the cross-entropy loss and
point-wise distillation loss.

4.2. Supervised Contrastive Learning

In supervised contrastive learning (SCL) [16], Given a
batch of N training samples {(xi, yi)}Ni=0, we generate two
copies for one sample by applying two random augmen-
tations to form an augmented batch {(x̂i, ŷi)}2Ni=0, where
ˆx2k−1 and x̂2k denote two augmented views of a sample

xk and yk = ˆy2k = ˆy2k−1. Denote h as the feature ex-
tractor and g as a nonlinear projection head [3], we use the
following formula to map the augmented sample batch into
a normalized feature space:

fi = g (h (x̂i)) . (2)
Then we train the feature extractor by minimizing the

following supervised contrastive loss:

Lsupcon =

2N∑
i=1

−1

|Pi|
∑
j∈Pi

(
exp (fi · fj/τ)∑
k ̸=i exp (fi · fk/τ)

)
, (3)

where τ > 0 is a hyperparameter that stands for the temper-
ature and Pi is the index set of positive samples with respect
to the anchor sample x̂i, defined as

Pi = {j ∈ {1, . . . , 2N}|j ̸= i, yi = yj}. (4)

The sample in Pi is either xi passing another augmenta-
tion or one of the other augmented samples with the same
label as xi.

5. Method
5.1. Framework Overview

Figure 3 (a) demonstrates how our method trains the new
model in one incremental phase. To alleviate forgetting,
we propose to preserve the knowledge of the old model
on the contrastive relationship of features by designing a
triplet contrastive relationship preserving (TCP) loss. To
learn the contrastive relationship of features from the new
data, we apply the supervised contrastive loss (SCL). Di-
rectly applying SCL in the CIL setting faces a severe imbal-
ance challenge between old and new data. Thus, we develop
an asymmetrical augmented contrastive learning (A2CL)
method to address this issue. To summarize, our objective
of training the new model can be written as

L = LA2CL + αLTCP, (5)

where LA2CL and LTCP denote asymmetrical augmented
contrastive loss and the TCP loss.

5.2. TCP: Triplet Contrastive-relationship Preserv-
ing Loss

Traditional logits or feature distillation strategies aim to
align the exact logits or feature value of the old model and
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buffer exemplars. (b) How to adapt: We apply SCL with asymmetrical data augmentation for learning better feature relation. Specifically,
the contrastive loss is computed between a weakly augmented view of a data point and a list of strongly augmented views of other data
(including memory buffer exemplars and new data).

the new model. As shown in Figure 1 (b), Strictly penal-
izing the changes of the old sample’s feature positions ob-
tained by the new model as feature distillation [14] does
would harm the performance of CIL. It ensures the back-
ward transfer, however, would harm the forward transfer.
When incrementally learning new classes, the feature space
will naturally drift as the new class’s feature vectors join;
forcing the old data’s feature positions unchanged will hin-
der the learning of new classes.

In contrast, we adopt the “triplet-wise” TCP loss to pre-
serve the sample’s relative relationship learned by the old
model. As shown in Figure 3, other distillation strategies
focus on minimizing the similarities between feature mi

and m
′

i. In contrast, our TCP loss is conducted within sam-
pled triplets. It enforces the consistency of the triplet’s con-
trastive relationship between the old model (R1 > R2) and
the new model (R

′

1 > R
′

2). It enables the feature space to
flexibly adapt for new classes, which is important for better
forward transfer.

To measure the contrastive relationship, we consider a
triplet {mi,mj ,mk} in the memory buffer M. We pass it
through the old and the new model to get two normalized
feature triplets {fi, fj , fk} and {f ′

i , f
′

j , f
′

k}. We set mi as
the anchor sample and calculate the cosine similarity be-
tween the anchor and two other samples.

Ri,j = fi · fj , Ri,k = fi · fk, (6)

R
′

i,j = f
′

i · f
′

j , R
′

i,k = f
′

i · f
′

k. (7)

Without the loss of generality, we choose mj as the pos-
itive sample and mk as the negative one. The contrastive
relationship of the triplet is reflected through the difference
in the feature similarity between the anchor and positive or
negative sample Di,jk and D

′

i,jk. We aim to ensure their
consistency.

Di,jk = Ri,j −Ri,k, (8)

D
′

i,jk = R
′

i,j −R
′

i,k. (9)

(a) (b)
Figure 5. Feature embedding of ResNet-32 learned using con-
trastive learning with two different augmentation strategies. (a)
Apply an uniformly strong augmentation on both two views in
SCL; (b) Apply the asymmetrical augmentation (our method), i.e.,
one weak and one strong augmentation on the two views.

Following the idea of triplet loss, treating the old model’s
relative feature similarity Di,jk as a reference, our TCP
loss enforces the new model’s feature similarities of anchor-
positive pair to be smaller than that of anchor-negative pair
by a margin of σ. Specifically, for Di,jk > 0, the D

′

i,jk is
encouraged to meet D

′

i,jk > 0 and D
′

i,jk > σ. In light of
the above, for each triplet satisfies Di,jk > 0, we formulate
the triplet contrastive-relationship preserving (TCP) loss as
follows:

Ltriplet = max{σ −D
′

i,jk, 0}, (10)

where σ denotes the margin in the triplet loss. Then for
each triplet, we minimize the mean value of the triplet
contrastive-relationship preserving loss function. The final
loss function is:

LTCP =
1

Ntri

∑
Di,jk>0

max{σ −D
′

i,jk, 0}, (11)

where Ntri denotes the total number of triplets in the mem-
ory buffer M which satisfy the Di,jk > 0 constrain. We
choose the relative feature similarities of the old model
Di,jk as the margin σ. Note that we select all the triplets that
satisfy Di,jk > 0 without any hard sample mining strategy;
the training speed is only 5% slower than point-wise dis-
tillation loss on RTX 3090. With the same batch size, the
additional computation overhead of LTCP is negligible.
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5.3. A2CL: Asymmetrical Augmented Contrastive
Learning

In order to adapt the feature space to learn new classes,
instead of using the cross-entropy loss, we employ the su-
pervised contrastive loss to learn the representations from
the perspective of contrastive relationship optimization.

However, directly applying the supervised contrastive
loss in the CIL setting faces a severe challenge caused by
the imbalance of old and new data as we can only access a
small part of old data in the memory buffer M. As illus-
trated in Figure 4 (b)-left, if we directly use the old samples
in the memory buffer, we would learn a suboptimal feature
representation with the biased feature relation.

In order to alleviate the imbalance issue, the straight idea
is to apply different data augmentation strategies on old and
new data in SCL instead of using a simple augmentation for
each exemplar.

For the old data with only a few exemplars, we use a uni-
formly strong data augmentation strategy for the two views
of each old exemplar. In this way, the model can see more
complex variations of the old data and avoid overfitting the
old data. As shown in Figure 3 (a), we feed old exemplars
in the memory buffer M into the strong augmentation mod-
ule and then push its output feature away from the feature
of the new data.

For the new data with a large number of exemplars, we
empirically find that adopting a uniformly strong data aug-
mentation causes the DNN to fail to learn well-separated
features for new classes, as shown in Figure 5. In addition,
we cannot apply a uniformly weak augmentation strategy to
both views of each new exemplar, either. We argue that this
is necessary since the “new data” in phase k would become
the “old exemplars” in phase k+1. If the model has not seen
strongly augmented views of the new data in phase k, it is
difficult for the model to correctly handle their strongly aug-
mented views in phase k+1. Therefore, we apply an asym-
metric augmentation strategy to generate a weakly aug-
mented view and a strongly augmented view for each new
exemplar.

Specifically, in each training iteration, we sample N new
data and M old exemplars, and conduct the augmentation as
follows:

x̂2k−1 = Astrong(xk); x̂2k = Aweak(xk),

m̂2k−1 = Astrong(mk); m̂2k = Astrong(mk),
(12)

where {xk}i=1,··· ,N and {mk}i=1,··· ,M denote the new and
old exemplars, {x̂i}i=1,··· ,2N and {m̂i}i=1,··· ,2M denote
the augmented new and old exemplars, Astrong and Aweak

denote the augmentation function. Then, we concatenate
{x̂i}i=1,··· ,2N and {m̂i}i=1,··· ,2M to get the overall batch
of augmented data. Finally, we feed the asymmetrical aug-
mented data batch into the new model and use Equation 3
to compute the LA2CL.

5.4. Comparison of the TCP Loss and Other Distil-
lation Losses

Previous distillation losses in CIL methods can be clas-
sified into two types: point-wise ones and pair-wise ones.

Point-wise Distillation The distillation losses used in
most CIL methods [1,14,19,26,33,35] are point-wise distil-
lation losses. They penalize the change of feature position
(i.e., feature values) for each data point. Denoting the fea-
ture for data i extracted from the new model and the old
model as mi and m

′

i, a general form of the point-wise dis-
tillation loss is

Lpoint−wise =
∑
i

L(mi,m
′

i). (13)

Pair-wise Distillation Instead of penalizing changes in
the feature positions, the pair-wise distillation losses in
Co2L [2] and TPCIL [32] penalize the changes of feature
similarities between each pair of data. A general form of
the pair-wise distillation loss is

Lpair−wise =
∑
i ̸=j

L(R(mi,mj), R(m
′

i,m
′

j)), (14)

where R denotes a similarity measure (e.g., the cosine sim-
ilarity measure) between two feature vectors.

Pair-wise distillation losses are more suitable for CIL
than point-wise losses as they allow some flexibility in the
changes of feature positions. Nevertheless, as shown in Fig-
ure 2, the learning of new classes changes the similarities
(R1 ̸= R′

1, R2 ̸= R′
2, R3 ̸= R′

3) between data pairs. That
is to say, penalizing any changes in pair-wise similarities
might still be too constrained for the CIL setting.

Our Triplet-wise Distillation In contrast to the point-
wise and pair-wise distillation losses, our proposed TCP
loss (Equation 11) is a triplet-wise distillation loss. It
only penalizes the change of relative feature similarity be-
tween data triplets instead of any exact values. Compared
with previous distillation losses, TCP allows more flexibil-
ity in the changes of the feature space, thus enabling our
method to achieve a superior trade-off between preserving
old knowledge and learning new knowledge.

6. Experiments
In this section, we first report the average accuracy of the

proposed method on CIFAR-100 and ImageNet under dif-
ferent settings and compare it with representative CIL meth-
ods. Then, we provide an ablation study to show the effect
of the proposed Triplet Contrastive Preserving (TCP), and
Asymmetrical Augmented Contrastive Learning (A2CL).
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Method CIFAR-100 ImageNet-100 ImageNet-1000

T=1 5 10 5 10 5 10

LwF [19] 64.42 49.78 47.51 53.61 47.98 45.81 41.47
EEiL [1] 47.78 54.10 52.83 57.06 52.60 48.67 44.20
iCaRL [26] 68.08 57.03 52.96 64.79 59.42 53.50 48.73
LUCIR [14] 68.27 63.46 59.93 70.47 68.09 64.18 61.34
AAN [20] - 66.37 64.86 72.55 69.22 64.69 62.39
Mnemonics [22] - 63.34 62.28 72.58 71.37 64.54 63.01
PODNet [7] - 64.07 62.18 72.01 70.57 64.95 62.24
TPCIL [32] 68.72 65.28 62.62 72.53 70.02 64.89 62.88
Ours 69.23 66.54 64.11 73.48 71.14 65.76 63.78

GeoDL [30] - 65.14 65.03 73.87 73.55 - -
DER [36] - 67.60 66.36 76.26 74.81 - -
RMM [21] - 68.36 66.67 79.50 78.11 - -
Ours+RMM - 69.23 67.98 79.87 79.19 - -

Table 1. Average accuracy compared with other methods on CIFAR-100 and imageNet

Methods Encountered Classes Average Acc50 60 70 80 90 100
Weak Aug + TCPboth 79.5 70.26 65.08 58.77 55.97 51.27 63.48
Strong Aug + TCPboth 79.5 72.41 66.41 61.51 57.84 53.55 65.20
A2CL + TCPboth (ours) 79.5 73.45 67.75 62.96 59.57 56.02 66.54

Table 2. Average Accuracy of different augmentation strategies

6.1. Main Results

In this section, we report extensive results to show
that the proposed method can outperform other distillation-
based baselines on CIFAR100 and ImageNet datasets under
different settings. Then, we plug the proposed methods into
other methods to show the performance improvements.

6.1.1 CIFAR-100

We run our experiments under 1-, 5-, and 10-phase settings
with 50, 10, and 5 classes per incremental phase. As shown
in Table 1, for average accuracy, our method achieves the
average accuracy of 69.23%, 66.54%, and 64.11% under the
1-, 5- and 10-phase settings and outperforms the recent pair-
wise distillation strategy TPCIL by up to 0.51%. 1.26% and
1.49%, respectively. Compared with the recent point-wise
distillation strategy LUCIR, we achieved a 0.96%, 3.08%,
and 4.18% improvement in average accuracy under 1-, 5-
and 10-phase settings. In addition, as our method can be
easily plugged into other methods, we show the perfor-
mance of the proposed method plugged into RMM [21].
As shown in Table 1, Ours+RMM can outperform the orig-
inal RMM by 0.87% and 1.31% under the 5- and 10-phase
settings. We can also surpass the model expansion method
DER [36], which use much larger models, by 1.63% and
1.62% under the 5- and 10-phase settings, respectively.

6.1.2 ImageNet-100

We run the experiments under 5, and 10 phases with respec-
tively 10, and 5 classes per incremental phase on ImageNet-
100 dataset. Our method achieves the average accuracy of
73.48% and 71.14% under the 5- and 10-phase settings.
Compared with the pair-wise distillation strategy TPCIL,
our method can improve the performance by up to 0.95%
and 1.12% under 5- and 10-phase settings. For point-wise
distillation strategies, our results outperform the LUCIR by
up to 3.01% and 3.05% under 5- and 10-phase settings, re-
spectively. In addition, combined with RMM [21], we can
also achieve more than 0.37% and 1.08% improvement un-
der 5- and 10-phase settings.

6.1.3 ImageNet-1000

We provide the comparisons under 5 and 10 phases with
respectively 10, and 5 classes per incremental phase on
ImageNet-1000 dataset. We achieve the average accuracy
of 65.37% and 63.11% under the 5- and 10-phase settings.
Compared with pair-wise TPCIL, our method can surpass
them by up to 0.87% and 0.90% under 5- and 10-phase set-
tings, respectively. For point-wise distillation strategies, our
results outperform LUCIR by up to 1.19% and 1.92% under
5- and 10-phase settings, respectively.
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Method Old Acc. New Acc. Overall Acc.
A2CL+FDL [14] 72.56 53.78 69.43
A2CL+IRD [2] 73.06 58.66 70.66

A2CL+TCPrep 73.01 67.61 72.11
A2CL+TCPcon 73.43 65.09 72.04
A2CL+TCPboth 73.72 72.10 73.45

Table 3. Average Accuracy of old and new classes after the first
phase of CIFAR100 under 5-phase setting.

6.2. Ablation Study

In this section, we will present the ablation studies of
our proposed techniques to show their effectiveness. We
evaluate different techniques under the 5-phase setting on
CIFAR-100 dataset. More detailed analysis about our
method could be found in the supplementary.

6.2.1 Comparison of distillation losses

While keeping a similar accuracy on old classes, our
TCP loss can significantly improve new data perfor-
mance. As shown in Table 3, we report the average ac-
curacy of old and new data after the first incremental phase
on CIFAR-100. Specifically, the old data contain 50 classes,
and the new data contain ten classes. With a similarly high
accuracy on old classes, we compare the accuracy on new
classes. For baselines, we show the performance of a point-
wise Feature Distillation Loss (FDL) [14] and a pair-wise
Instance-wise Relation Distillation (IRD) [2]. We apply our
TCP loss in two feature spaces: the representation space be-
fore the nonlinear projection head and the contrastive space
after the nonlinear projection head. In Table 3, TCPrep,
TCPcon and TCPboth denote that we apply the TCP loss in
representation space, contrastive learning space, and both.
The experiment results show that the new data accuracy
of pair-wise IRD can surpass the point-wise FDL by up to
4.88%. Using TCPrep, TCPcon could already significantly
improve new class accuracy by up to 6.43% compared with
IRD. Then, applying the TCP loss on both spaces, new data
accuracy reaches 72.10%, which outperforms the pair-wise
IRD by 13.44%. TCP loss achieves a better trade-off be-
tween stability and plasticity in CIL.

In addition, the additional execution time overhead
of TCP is negligible. Measuring the execution time of
one batch (256) on RTX 2080Ti, FDL, IRD, and TCP take
5.335, 5.474s, and 5.624s. TCP is 5.08% and 2.67% slower
than FDP and IRD, which is acceptable.

6.2.2 Comparison of augmentation strategies

We show that applying an asymmetric data augmenta-
tion strategy is useful to alleviate the imbalance between
old classes and new classes. In Table 2, we apply a com-

Method the number of exemplars per class
10 20 30 40 50

iCaRL 52.5 56.5 60.0 61.0 62.0
EEIL 41.8 50.3 55.2 57.1 59.7
LUCIR 61.0 64.0 64.5 65.5 66.0
TPCIL 61.5 65.3 66.2 66.5 67.0
Ours 64.7 66.5 67.0 67.2 67.7

Table 4. Average Accuracy when using different number of exem-
plars per old class

plex data augmentation on the memory buffer M and report
the effect of different data augmentation strategies on new
data. Here, the “Weak Aug” and the “Strong Aug” denote
using a uniformly weak or a uniformly strong augmentation
for both copies of the old data sample. “A2CL” denotes our
method that uses a weak and a strong augmentation for the
two copies of each new exemplar. As shown in the table,
our A2CL scheme outperforms both the strong and weak
data augmentation strategies by 3.1% and 1.3%.

6.2.3 The effect of exemplar number

memory buffer M is often used in CIL methods to store
the old class exemplars. Although storing more representa-
tive exemplars is helpful for performance, it brings a larger
memory overhead. Table 4 shows the average accuracy of
different methods when using different numbers of exem-
plars per class. We find that our method significantly
outperforms other methods when using a small mem-
ory buffer (e.g., less than ten exemplars per old class).
Specifically, we achieve an average accuracy of 64.7%, sur-
passing TPCIL by 3.2% (i.e., 64.7 v.s. 61.5). Our method
is superior for extremely storage-constrained scenarios.

7. Conclusion

In this paper, we discover that learning and preserving
the contrastive relationship is essential in class-incremental
learning (CIL). Based on this core idea, we propose two
techniques, TCP and A2CL, to preserve and adapt the con-
trastive relationship in the feature space in CIL scenarios.
Extensive experiments demonstrate that these techniques
successfully strike a better balance between stability and
plasticity and can be easily plugged into other methods to
boost their performance.
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