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Abstract

Training dataset biases are by far the most scrutinized
factors when explaining algorithmic biases of neural net-
works. In contrast, hyperparameters related to the neural
network architecture have largely been ignored even though
different network parameterizations are known to induce
different implicit biases over learned features. For example,
convolutional kernel size is known to affect the frequency
content of features learned in CNNs. In this work, we
present a causal framework for linking an architectural hy-
perparameter to out-of-distribution algorithmic bias. Our
framework is experimental, in that we train several versions
of a network with an intervention to a specific hyperparam-
eter, and measure the resulting causal effect of this choice
on performance bias when a particular out-of-distribution
image perturbation is applied. In our experiments, we fo-
cused on measuring the causal relationship between con-
volutional kernel size and face analysis classification bias
across different subpopulations (race/gender), with respect
to high-frequency image details. We show that modifying
kernel size, even in one layer of a CNN, changes the fre-
quency content of learned features significantly across data
subgroups leading to biased generalization performance
even in the presence of a balanced dataset.

1. Introduction

Algorithmic biases of a deep neural network, i.e., per-
formance disparities across subgroups in the data distri-
bution, are most often attributed to sampling biases in its
training dataset where some groups of the data distribu-
tion have significantly lower or higher proportions than
others. While an imbalance in the training data certainly
has a strong influence on a deep network’s algorithmic

bias [1, 11, 25, 40, 49, 59], it is just one factor in the de-
velopment pipeline. Examples of other important fac-
tors in a model’s design include its parameterization and
training objective function. While several previous works
[4, 28, 33, 36, 41, 54] explore the impact of objective func-
tions on bias and suggest fairness regularizers to include
during training, a network’s parameterization, i.e., its par-
ticular functional form, has been virtually unexplored in the
context of bias. A neural network has several parameteri-
zation hyperparameters that must be set by its designer, in-
cluding the number of layers, activation functions, and con-
volutional kernel sizes in the case of a convolutional neural
network (CNN). Each of these choices can affect the type
of features learned by the model, which could in turn im-
pact bias. In this work, we take a first step in showing how
to causally link a convolutional neural network’s kernel size
to its algorithmic bias.

Different network parameterizations are known to in-
duce different implicit biases over learned features. For
example, CNNs tend to learn representations that are sen-
sitive to high spatial frequency features of the input signal
[8, 51, 56]. Based on the Fourier uncertainty principle, this
phenomenon may be attributed to the size of the convolu-
tional kernels [8] – smaller kernel sizes result in features
that span a greater range in the Fourier domain. This im-
plicit feature bias may be exposed by injecting a certain
high-frequency signal into test images and observing a drop
in the algorithm’s performance [53]. Implicit biases typi-
cally do not harm the model on within-distribution test sam-
ples because the parameters are well-tuned to the statistics
in that distribution. The frequency noise/energy injection
is essential to push the images out-of-distribution (OOD),
thereby linking implicit biases to the generalization perfor-
mance of the network. In this work, we show that in addi-
tion to this effect, implicit biases also affect the algorithmic
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bias of a network, such that features used by the network for
one data subgroup may have significantly different charac-
teristics for another. This in turn, can lead to disparate OOD
performance on these groups.

The main contribution of our work is a causal framework
for linking an architectural hyperparameter of a neural net-
work to its OOD bias. Our framework is based on an ex-
perimental procedure in which one or more parameters of a
neural network architecture are modified at a time and the
resulting bias on OOD samples are studied. First, we train
from scratch multiple versions of the same network model
that differ only in their choice of hyperparameter, e.g., con-
volutional kernel size. Second, we construct an OOD test
set of images by injecting controlled perturbations to them,
and obtain each model’s prediction on each image. The per-
turbation type should be based on the intended implicit fea-
ture bias being studied. For example, in our experiments,
we use adversarial attacks and energy injections in Fourier
passbands to probe frequency biases. Third, we fit a lin-
ear regressor to predict a model’s performance on an OOD
test image as a function of the hyperparameter choice, de-
gree of perturbation to the image, and various image at-
tributes. Fourth and finally, we use the regression coef-
ficients to measure the hyperparameter’s causal effects on
model performances across data subgroups. This analysis
provides a quantitative answer to whether the hyperparam-
eter has a disparate causal effect across data subgroups.

While our framework is general, we focused our experi-
ments on studying the causal relationship between sensitiv-
ity to high-frequency image details induced by changes to
convolutional kernel sizes and performance of face analy-
sis classifiers across subpopulations (race/gender protected
groups). We trained several research-grade face gender
classifiers on public datasets, and show that modifying ker-
nel size from a commonly used range: 3×3 to 11×11 even
in just the first layer of these CNNs will not only change the
frequency content of learned features, but that this change
can vary significantly across race/gender groups. We estab-
lished this effect using both adversarial perturbations and
energy injections to the high-frequency bands of the test
images. This work opens the door to further careful stud-
ies on understanding the impact of neural network design
decisions on algorithmic bias.

2. Related Work

2.1. Fairness in computer vision

Studies on fairness in computer vision predominantly fo-
cus on measuring and mitigating possible biases of com-
puter vision models and datasets [1,11,17,25,39,40,49,59].
Biases may be measured with a number of metrics [9,18,50]
that quantify disparate performance differences of algo-
rithms across population subgroups. Face recognition and

analysis systems are often under the most scrutiny due to
their sensitive nature [2,24,59]. Perhaps the most famous of
these studies was “Gender Shades” study [6], which identi-
fied the systematic failings of face analysis systems on par-
ticular racial and gender demographics.

Natural image datasets are known to have sampling bi-
ases [1, 38, 49], i.e., their joint distributions of attributes are
far from random. For example, the CelebA face dataset is
known to have a higher proportion of females with young
ages compared to males [2]. A model trained on such a
dataset can inherit its biases [24, 38, 57]. Therefore, algo-
rithmic fairness issues can be greatly mitigated if the algo-
rithm is trained on a more balanced dataset. Human face
datasets have been particularly scrutinized [2,26,29,30,35]
as models trained on these data can exhibit systematic fail-
ings with respect to attributes protected by the law [27].
Multiple approaches to mitigate dataset bias include col-
lecting more diverse examples [35], using image synthesis
to compensate for distribution gaps [2, 30, 43, 47, 52, 59],
and resampling [31]. Our work, in contrast, is focused on
understanding biases of deep learning models due to pa-
rameterization decisions instead of data. In addition, [10],
[37], [42], [3] and [45] propose related ideas on searching
for optimal hyperparameters taking fairness into account,
but were not focused on computer vision tasks and archi-
tectures.

2.2. Adversarial attacks

An adversarial attack perturbs an image until a given
network changes its prediction, usually by applying gra-
dient descent on the image. The resulting changes to the
image are high frequency, and imperceptible to the hu-
man eye. This lack of robustness has sparked many theo-
ries [5, 13–16, 21, 34, 44, 48]. Recent work has shown that
commonly found adversarial examples for state-of-the-art
convolutional neural networks contain dataset-specific in-
formation [51]. Furthermore, these adversarial attacks re-
flect properties of the features learned by the model [8], and
that the model is biased towards certain features based on
their architectural choice [12]. In this work, we analyze the
information carried out by the attacks as a function of dif-
ferent architectural hyperparameter choices. Furthermore,
we explore a novel hypothesis that adversarial attacks may
allow us to expose differentiable information captured by a
model’s features across different dataset subpopulations.

2.3. Frequency biases in CNNs

In image processing, the most common way to represent
pixel location is in the spatial domain by column (x), row
(y), and z (value). The frequency (or Fourier) domain offers
an alternative perspective on the signal, by decomposing it
in terms of sinusoids of varying frequencies.

Several recent works have provided new insights into the
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behavior of CNNs by studying the relationship between fre-
quency content in input signals and a CNN’s predictions.
For example, one finding is that high-frequency components
play a significantly higher role in a CNN’s decision func-
tion and performance compared to human perception [51].
Please refer to Figure 2 for example of high/low-frequency
components of an image. Another study showed that a con-
tributing factor to this is that convolutional operations in
CNNs will introduce an implicit bias towards using higher
frequencies in an image [8]. Nonlinear activation functions
such as the rectified linear unit (ReLU) could also be a con-
tributing factor [22]. We build on the findings in these
works to study the effect of frequency-based features in
differentiable algorithmic performance across dataset sub-
groups like gender and race. The Discrete Fourier Trans-
form (DFT)is commonly used to transform an image be-
tween the spatial and frequency domain.

3. Methods
Our goal is to uncover the causal effect of convolutional

kernel size on potential algorithmic biases due to an al-
teration of learned feature characteristics. We propose a
framework to do this (see Fig. 1 for an overview). Our
framework consists of three key steps. We first train K ver-
sions of the same network architecture that differ only by
the choice of a single hyperparameter. The hyperparameter
choice acts as a causal intervention, giving us an experimen-
tal rather than observational testing procedure. We then ap-
ply an out-of-distribution (OOD) perturbation to a set of test
images that are annotated with various attributes of interest,
including “protected” attributes (e.g., race and gender for
faces) that we will use for bias analysis. Finally, we use a
linear regression to predict some measure related to model
predictions, given covariates such as the hyperparameter
choice, image attributes, and OOD perturbation degree. We
use the regression coefficients as estimates of causal effects
of the various factors on the model, and specifically com-
pare the differences between coefficients corresponding to
protected attributes to evaluate bias. We describe the three
steps of our framework in the following sections.
3.1. Architecture training

We first train K different versions of the same architec-
ture, all identical in structure except for a modification to
the hyperparameter of interest. We train all architectures on
the same training dataset. We also initialize the weights and
biases of all networks from identical normal distributions
(i.e., identical mean and variances). After the networks are
trained, we “freeze” their parameters, and will not modify
them further in our framework.
3.2. OOD perturbations to test data

Given various trained architectures, our goal is to am-
plify biases across their learned features. One option is to

run test samples coming from the same distribution as the
training data through these networks, and measure perfor-
mance across different protected attribute subgroups. The
problem with this strategy is that deep neural networks are
over-parameterized and therefore able to fit any training dis-
tribution nearly perfectly. Hence, even if a hyperparameter
is altered from one network to another, both networks will
likely yield similar performances on training data points.

However, as demonstrated in past works [53, 56], out-
of-distribution (OOD) samples can paint a far different pic-
ture, with some models suffering in performance compared
to others, thereby exposing differences across learned fea-
tures. Therefore, a key step in our model is to inject a test
set of images with a subtle class of perturbations so that they
become OOD. In our experiments, we focus on frequency-
related implicit biases of CNNs, and so we consider two
types of perturbations from the neural network literature:
adversarial attacks, and frequency energy injections.

3.2.1 Adversarial attacks

We consider two types of adversarial attacks in our exper-
iments. The first, FGSM [16], applies gradient descent on
the loss of the network’s output with respect to the input im-
age to “nudge” the image in incremental steps towards a di-
rection that changes the network’s prediction. The second,
CW attack [7], utilizes two separate losses: a gradient-
based loss to make the classifier change its prediction (sim-
ilar to FGSM), and a regularization to make the magnitude
of the change to the image as small as possible. This makes
the perturbation distance(i.e. l2 norm of the difference be-
tween perturbed image and original image) of CW attack a
useful metric for measuring the degree of difficulty to per-
turb an image. We show an example of a CW and FGSM
attack for the same input image in Figure 1 in Supplemen-
tary, which further shows that CW perturbation is an order
of magnitude smaller due to the effect of its regularization.

3.2.2 Frequency energy injection

We also experiment with injecting energy to a specific fre-
quency band to obtain a more fine-grained link between fre-
quency content and network features. Fig. 2 depicts our
process. For each test image, we use the DFT to obtain a
Fourier spectrum, and amplify the amplitudes of Fourier co-
efficients lying on an annulus in the spectrum. In particular,
let F [ωx, ωy] = |A|e−jϕ represent a complex coefficient
in the Fourier spectrum of an image at location (ωx, ωy)
(corresponding to x and y frequencies), with radius r =√

ω2
x + ω2

y , lying in the annulus defined by (r−r0)
2 ≤ ∆2.

We increase the amplitude A by a factor of 1 + δ, to yield
a modified coefficient F ′[ωx, ωy] = (1+ δ)|A|e−jϕ. In our
experiments, we set ∆ = 2, and δ = 15 and r0 > 0 is the
frequency radius into which we are injecting energy [56]. If
r0 is small (large), we are modifying low (high) frequency
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Figure 1. Method Framework. The framework of our method consists of three parts. First, we perturb all the test images with Out Of
Distribution(OOD) perturbations (in this work, we use adversarial attack perturbation and frequency noise injection), to make a new test
dataset which contains the same images but with different noises injected. Second, we send the new test images to different models, where
the models share most of the architecture design but differs only in some small part (e.g. convolutional kernel size). Last, we collect the
results got from the last step and split them into according to sensitive attributes, and apply our causal analysis on the results.

components of the image. Finally, we reconstruct the per-
turbed image using an inverse DFT.
3.3. Causal analysis

We run the test set of OOD images through the K net-
works, yielding K predictions per image. We assume each
image also comes with annotations for various relevant se-
mantic attributes (including protected attributes with which
we may compute algorithmic bias measures), as well as
perturbation attributes (e.g., frequency of energy injection).
Our goal is to measure the causal effects of the architectural
hyperparameter of interest (kernel size) on model perfor-
mance per protected attribute subgroup.

To do so, we use a multivariable linear regression model
that predicts a dependent variable from multiple indepen-
dent variables. For test image i processed in network k,
let xk be the corresponding hyperparameter and yik be a
measure of network performance on image i. Then we can
specify the following regression equation:

yik = βxk + ϵ0ik, (1)

where ϵik is an error term. Our coefficient of interest is
β. Under the assumption that E[xk · ϵ0ik] = 0, we can inter-
pret β as the causal effect of network architecture on perfor-
mance. Of course, this independence assumption is unlikely
to hold, as image attributes, including the OOD perturbation
value, will generally affect a neural network’s performance.

We can weaken this assumption using a vector of image
attributes Zi, and augmenting equation (1) as follows:

yik = βxk +Zi
′γ + ϵ1ik, (2)

where γ is a vector of coefficients, and β is the causal
effect of network architecture on performance under the
weaker assumption E[xk · ϵ1ik|Zi] = 0. Moreover, we hy-
pothesize that the effect of architecture hyperparameter x
on performance may vary by protected attributes, a subset
of all image attributes in Zi. In order to allow for this pos-
sibility, we further augment equation (2) as follows:

yik = Pi
′βxk +Zi

′γ + ϵ1ik, (3)

where Pi is a vector of protected image attributes, and
β is now a vector of coefficients. We use a heuristic ap-
proach to choose the vectors Zi and Pi that is commonly
used for causal inference in the social sciences [55]. First,
we incrementally add controls to Zi and test whether our
estimates of β change under alternative specifications (us-
ing an F-test with the null-hypothesis that the estimates of
β are equal across specifications). This is a test of the ex-
ogeneity assumption; if Zi is a sufficiently rich vector of
controls to satisfy E[xk · ϵ0ik|Zi] = 0, then the assumption
will also be satisfied conditional on an augmented vector of
controls. Second, we start with a rich vector Pi to allow
for the effect of network architecture on performance to be
highly flexibly estimated. In our application, we begin by
specifying Pi as a fully saturated vector of dummy vari-
ables corresponding to all protected attribute combinations
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Figure 2. Examples of frequency energy injection perturbations. Our goal with this perturbation is ’jitter’ all frequencies with the same
magnitude in an input image. To do this, we inject random noise to the Fourier coefficients of an image lying on an annulus of a particular
radius in the Fourier spectrum (top row of annulus), according to: (1 + δ)|A|e−jϕ.

(e.g., White Male, White Female, etc.) and estimate β. We
then test whether the elements of β are equal to each other
using pairwise F-tests. If we are unable to reject equality
of coefficients, we cannot reject that the effect of network
architecture on performance varies across those two groups.

β encodes the joint causal effects of hyperparameter
value x and protected attributes in Pi on output y. In partic-
ular, βg is the expected change in y due to a unit change to
x, when feature g is “True” (set to 1). In our experiments,
we compare the values in βg corresponding to different pro-
tected attribute subgroups to one another (see Table 2 in
Supplementary, and Fig. 6).

4. Experiments & Results
We evaluated our work on the task of gender classifica-

tion from face images using two popular datasets: Fairface
[23] and UTKFace [58]. Fairface contains a roughly equal
number of samples from different race/gender groups, and
has 86,744 training and 10,954 testing samples. FairFace
contains labels for 7 race groups (‘East Asian’, ‘White’,
‘Latino Hispanic’, ‘Southeast Asian’, ‘Black’, ‘Indian’,
‘Middle Eastern’) and 2 gender groups (‘Male’ and ‘Fe-
male’). UTKFace contains 20,000 training and 3,705 test-
ing samples, but is not balanced across race groups. It con-
tains labels for 5 race groups (‘White’, ‘Black’, ‘Asian,’
‘Indian’, ‘Others’) and two gender groups (’Male’ and
’Female’). We remove faces from ‘Others’ because they
have no consistent characteristics. To mitigate effects of
sampling biases during training, we used inverse sampling
based on the number of examples from each race group.
Training details are in Section A in Supplementary.

We demonstrate results using the ResNet-34 [19] base
architecture for our experiments but obtained similar re-
sults using two other popular networks: DenseNet [20] and
VGG-16 [46]. Please refer to Section D, E in Supplemen-

tary for results using these two models. Our architectural
hyperparameter of interest was convolutional kernel size.
We considered two different scenarios: changing only the
kernel size of the first layer and changing the kernel size
of all layers simultaneously. Interestingly, both scenar-
ios yielded similar results, and so we leave results for the
latter in Figure 6 in Supplementary. We varied the first
layer kernel size (FLKS) within the range [3, 11], which en-
compasses the popular choices for this hyperparameter for
nearly all CNNs in the literature. We initialize the weights
and biases of all of our models randomly by drawing from a
Normal distribution with variance set to 0.02. For each net-
work and kernel size value, we trained 3 independent mod-
els and presented average results to mitigate the influence
of random initialization factors.

We report our networks’ accuracies for different race
groups on non-OOD test images in Table 1 in Supplemen-
tary, to demonstrate that they all achieve high accuracies on
both datasets. The performances do not significantly vary
with FLKS because the training and testing images are all
from the same distribution. We now present our results sep-
arately for the two OOD perturbations described in Sec. 3.2:
adversarial attacks and frequency energy injections.
4.1. Adversarial attacks

We present results in this section using the CW adver-
sarial attack. We obtained similar results using FGSM (see
Figure 8 in Supplementary).

4.1.1 Analyzing Fourier spectra

We first visualize the average Fourier spectra magnitudes
of the adversarial perturbation images split by race/gender
groups and FLKS in Fig. 3 (for Fairface) and the results for
UTKFace are in Figure 7 in Supplementary. Results on both
datasets show similar trends. First, as FLKS increases, the

4709



Figure 3. Average spectra of adversarial perturbation images split by race and gender for Fairface. Each row represents a model with
a different first layer kernel size (FLKS). As FLKS increases, the spectra become more concentrated at low frequencies. The spectra for
the Black race group consistently have less energy at high frequencies compared to the spectra of other race groups. Male spectra also have
lower high frequency information compared to Female spectra. These results demonstrate that changes to FLKS induce different feature
biases for networks, which also vary by protected attribute subgroups. See Figure 7 in Supplementary for the analogous spectra for the
UTKFace dataset.

spectral energy becomes more focused at low-frequencies
(closer to center). Second, holding FLKS value constant,
we see that the spectrum for the Black group consistently
contains less high-frequency energy compared to the spec-
tra of other race groups. This result also holds for the Male
group compared to Female. The difference between differ-
ent subgroups shrinks as FLKS increases, in line with find-
ings from a previous study showing that low FLKS leads to
higher implicit frequency bias [8].

To quantitatively assess differences in the perturbation
spectra, we also compute the f0.5 metric, known as “half
power frequency,” or the frequency below which half of the
signal’s power lies. f0.5 is a robust measure of energy con-
centration in a spectrum. Fig 4-top shows the f0.5 scores for
the spectra, confirming the visual trend observed in Fig. 3.
Please refer to the caption of Fig. 4 for more details.
4.1.2 Perturbation distances
We next present the average perturbation distances of ad-
versarial attacks across race groups and models in Fig 4-
bottom. The perturbation distance dp between an original
test image I and the perturbed image I ′ may be computed
by simply taking an L2 norm: dp(I, I ′) = ||I ′ − I||2, and
quantifies how close/far the perturbed image to the original
image. A larger distance indicates that more “work” must
be done harder to fool the model, and its a reflection of the

robustness of the model to other OOD perturbations [32].
Results show that perturbation distance (and variance)

increases with FLKS for all race groups. It is therefore
harder to adversarially attack a model with a larger FLKS,
likely because such a model focuses more of its energy on
low-frequency image information (see Fig 3) and is there-
fore robust. In addition, we see that dp for the Black group
is significantly lower than that of other groups. Please refer
to the caption of Fig 4 for more details.

4.1.3 Causal analysis
Next, we quantitatively analyze the causal relationship be-
tween race and gender on perturbation distance dp by apply-
ing our causal analysis framework introduced in Sec. 3.3.
Specifically, using Eq. 3, we set y to be dp, and set both
Pi and Zi to contain “dummy variables” corresponding to
all race/gender combinations. We use the Fairface dataset
for this analysis, and use the race groups East Asian, White,
Latino Hispanic, Southeast Asian, Indian and Black, and
gender groups of Male and Female.

We use the statsmodel package from Python to run this
regression, and the results of values of β and γ are in Ta-
ble 2 in Supplementary. The results of β are also shown in
Fig. 6(a). Based on the results, it is obvious that the coef-
ficients for Black and Indian are significantly higher than
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Figure 4. f0.5 measures for adversarial perturbation spectra & adversarial perturbation distance Each boxplot shows the median
score (white/red line in the boxes) and the 15% − 85% confidence interval for a different protected attribute group. The x-axis indicates
the models’ first layer convolutional kernel size (FLKS). (a) and (b) are f0.5 measures for adversarial perturbations using Fairface and
UTKFace, respectively. The f0.5 score drops as FLKS increases for all demographic groups, which indicates that the adversarial attack
focuses less on high-frequency information of the image for larger FLKS. (c) and (d) show the adversarial perturbation distances per race
group using Fairface and UTKFace, respectively, where distance is simply the l2 norm of the perturbation image. As the FLKS increases,
the perturbation distances generally increase too for all the demographic groups. In addition, for each FLKS value, the perturbation
distances for the Black group are always significantly lower than those for other demographic groups.

Figure 5. Frequency energy injection result. We show models’ performances with different FLKS for Black and Indian race groups
separately (Please refer to Figure 9 in Supplementary for results of other race groups). In each individual figure, the x-axis is the frequency
we are injecting energy at and the y-axis is the accuracy of different models. It is obvious that all the models suffer from low to mid
frequency’s energy injections, and become robust to mid to high frequency noises. It is hard to directly tell which group is getting
influenced more than the others, which furthers asks for a quantitatively analysis.

that of other race groups, indicating the impact of kernel
size on perturbation distance is much more significant for
the two groups. White, Black and Indian female have larger
β values than their corresponding male group.

4.2. Frequency Energy Injection

We next perform frequency-based OOD perturbations
to the test images as described in Sec. 3.2.2 and visual-
ize results in Fig. 5. Accuracies of all models/groups are

more influenced by perturbations to low-to-mid frequencies
(0.02−−0.20(Hz)) than to mid-to-high frequencies. FLKS
of 3 is less affected by frequency injections in the range
(0.08 − 0.15(Hz)). However, in general, it is difficult to
distill significant trends from the plots alone.

4.2.1 Causal analysis
Similar to Sec. 4.1.3, we now perform a regression to
measure the impact of kernel size, frequency of energy
injection, and protected attribute subgroup on model error
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Figure 6. Regression coefficient values for β for different race groups. (a) β values for the regression in Sec. 4.1.3 linking kernel size to
adversarial perturbation distance, also shown in Table 2 in Supplementary. There are significant differences across protected groups, e.g.,
the Black and Indian group has significant higher values compared to the other groups. (b) β values for the regression in Sec. 4.2.1. The
coefficients for Black are always lower than those of other race groups. In addition, the coefficient values for different frequencies within
the same race group are also significantly different.

per image. Using Eq. 3, we set y to be the error rate
of an image and set both Pi and Zi to contain “dummy
variables” corresponding to race/frequency (of injected
energy) combinations. We use four frequency subgroups:
{(0.05, 0.07), (0.09, 0.11), (0.13, 0.15), (0.17, 0.19)(Hz)},
which we label 1, 2, 3, 4 for convenience. We report the
results of coefficient β values in Fig 6(b). It is clear that the
coefficients for frequency group 4 are significantly smaller
than those of the rest of the frequencies, indicating that
changes to kernel size influence the performance less on the
OOD samples under relatively high-frequency injections.
The coefficient for the Black group in frequency group 1 is
also significantly smaller than those of the other groups. As
the frequency increases, this gap reduces.

5. Discussion and Conclusion

Our results in Figs. 3, 4, 5, 6 first demonstrate that
smaller convolutional kernel sizes can cause a CNN to
be biased towards high-frequency features, and increas-
ing the kernel size mitigates this bias. We also see that
such frequency bias significantly differed across different
race/gender subgroups. All models trained on the two
datasets focused less on high-frequency features for the
Black and Male subgroup. While different features do not
necessarily indicate performance bias on test samples, our
results allow us to conclude that these differences do lead to
performance biases on out-of-distribution (OOD) samples.
We observed that this is the case for two different types of
OOD image perturbation operators: adversarial attacks and
frequency domain energy injections.

Different population subgroups will have different image
characteristics. For example, the Black group will likely
have darker skin tones than other race groups, and Females
will have more hair on average than Males. Hence, it is not
surprising that there is some difference in how images from
one race are processed by a network compared to another.
However, our results indicate something more significant:

that there is a fundamental difference in the frequency char-
acteristics of the image features across groups used by the
network to make its decision. This difference may also lead
to a performance bias, depending on the type of OOD data
model is faced with. Our two OOD perturbations, while
conceptually clear and well-motivated, are not associated
with any real phenomena. It would be an interesting next
step to relate frequency biases of features to disparate model
performance on real-world OOD artifacts like shot noise,
fog, and motion blur [56].

Our work has several limitations. We cannot draw broad
conclusions about the nature of kernel size for general
CNNs across all applications, becaused we focused on a
single application of interest. A further evaluation on a
wider set of application domains is an important next step.
We also limited our causal analyses to a few key variables.
However, causal analysis typically relies on the “no hidden
counfounders” assumption. An exhaustive set of image fac-
tors will help in computing more precise causal effects.

We focused on convolutional kernel size of a network
in this work due to past results establishing a clear link be-
tween this hyperparameter and frequency content [8]. How-
ever, our framework is agnostic to the nature of the hyper-
parameter. Indeed, next steps in this research space include
similar analyses into a more comprehensive set of network
hyperparameters, such as activation functions, depth of lay-
ers, weight initialization strategies, and even high-level de-
signs (e.g., residual connections, transformer modules). We
see our work as a first step in the important direction of un-
derstanding how neural network design choices impact bias,
and hence, the fairness of these systems in our society.
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