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Abstract

3D object reconstruction is important for semantic scene
understanding. It is challenging to reconstruct detailed
3D shapes from monocular images directly due to a lack
of depth information, occlusion and noise. Most current
methods generate deterministic object models without any
awareness of the uncertainty of the reconstruction. We
tackle this problem by leveraging a neural object repre-
sentation which learns an object shape distribution from
large dataset of 3d object models and maps it into a latent
space. We propose a method to model uncertainty as part of
the representation and define an uncertainty-aware encoder
which generates latent codes with uncertainty directly from
individual input images. Further, we propose a method to
propagate the uncertainty in the latent code to SDF values
and generate a 3d object mesh with local uncertainty for
each mesh component. Finally, we propose an incremental
fusion method under a Bayesian framework to fuse the la-
tent codes from multi-view observations. We evaluate the
system in both synthetic and real datasets to demonstrate
the effectiveness of uncertainty-based fusion to improve 3D
object reconstruction accuracy.

1. Introduction

Identifying and modelling 3D objects in the scene is an
important step towards semantic scene understanding [29].
Accurate object representations are key elements for down
stream tasks such as object detection, segmentation, track-
ing, manipulation and dynamic change detection. How-
ever, reconstructing detailed 3D object shapes from limited
image data remains challenging [5, 9, 50, 49, 13, 45, 12,
37, 24]. Man-made objects have highly variable shapes.
Monocular observations can be degraded by issues such as
occlusion, noise, truncation, lack of depth measurements,
which makes the reconstruction task a ill-posed problem.
Some form of prior knowledge of object shape is needed,
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Figure 1. The proposed uncertainty-aware 3D object representa-
tion. While the previous work decodes a deterministic shape from
a latent vector, Ours decodes a shape with uncertainty from a la-
tent distribution. We can reconstruct 3D objects with uncertainty
attached to each part from monocular or multi-view images.

and has been shown to significantly improve reconstruction
performance from single [24] and multiple viewpoints [37].

This paper aims to propose a robust 3D object recon-
struction method based on monocular images. To address
the problems mentioned above, we concentrate on effi-
ciently and robustly combining object priors through fu-
sion of multi-view observations. In particular, we propose
an uncertainty-aware fusion framework that refines 3D ob-
ject representations as new viewpoints are observed, and ex-
ploits large object shape datasets to maximize prior knowl-
edge of object geometries.

Recently, neural implicit representations [28] have pre-
sented remarkable achievements in multiple areas, includ-
ing object reconstruction [37], object SLAM [47, 43], and
scene reconstruction [42, 56, 55]. Neural object representa-
tions, e.g., DeepSDF [34], OccupancyNet [27], show the
ability for interpolation, partial completion of 3d shapes
and reconstruction from point cloud or monocular images
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[27, 37]. The representation can be trained on object shape
datasets to learn a prior distribution of a specific class of
objects.

We take a step further to couple uncertainty into the neu-
ral object representation as in Fig. 1. Uncertainty modelling
is highly critical for AI safety and robotics. For example,
autonomous driving vehicles need to make safe and reliable
decisions based on incomplete or noisy data. The uncer-
tainty accumulated in the perception system can be prop-
agated to the down stream tasks to help applications like
localization, tracking, motion planning, and make system
maximize the usage of the multi-view observations with ro-
bustness to corrupted observations. We discuss more uncer-
tainty applications in the Supplementary Materials.

Uncertainty modelling in deep learning is a widely
studied area. Methods including Bayesian Neural Net-
works [26], sampling approaches (e.g., MC Dropout [11],
Ensembles [21]) and direct methods [18], have been pro-
posed and used in real applications such as object detection
[10] and semantic segmentation [17]. As far as we know,
this paper is the first time to estimate uncertainty for neural
object representation from monocular images.

To couple uncertainty, we propose a framework that can
propagate uncertainty from image space, to latent space,
and finally to 3D object shape, as in Fig. 2. Specifically,
we propose a way to teach the encoder to produce a code
uncertainty that leads to the right model uncertainties from
single images. Then, we propose a method to propagate the
uncertainty through the decoder to the SDF and onto the
mesh. We design a two-stage training strategy following
the previous work [37]. First, we train the decoder to learn
a latent space. Then, holding the decoder fixed, we force the
encoder to output the correct code uncertainty. This strategy
makes the encoder and decoder loosely coupled, and stores
the uncertainty in the latent space, which can in theory gen-
eralize to different types of decoders. We summarize our
contributions below:

• We propose a 3d object modelling approach that relies
on an implicit neural representation and provides both
a 3D object reconstruction and an uncertainty measure
for each object.

• We propose an image encoder with direct uncertainty
modelling to estimate latent codes with uncertainty
from a single image.

• We propose an incremental fusion method that relies
on Bayesian inference to fuse multi-view observations
in the latent space to improve reconstruction accuracy
and reduce spatial uncertainty.

• We evaluate the system in both synthetic and real
datasets, demonstrating the benefit of fusing ob-

ject models produced from different views through
Bayesian inference on the encoded representation.

2. Related Work
2.1. 3D Object Representations and Reconstruction

Common 3D object representations include meshes [12],
voxels [24], octrees [54], TSDFs [34] and point clouds [9],
which are all flexible representations but require heavy stor-
age and computation. Each element in the representation
is discrete and independent, thus it remains difficult to re-
construct detailed shape from partial observations. There
are also compact representations using geometric primitives
such as cuboids and quadrics [53, 31, 23], which are signif-
icantly more computation efficient but only provide limited
information for localization and insufficient information for
collision detection and manipulation.

Detection and reconstruction methods have been pro-
posed that generate dense reconstructions in the form of
3D cuboids [19] or meshes [12] directly from single im-
ages, without reliance on prior knowledge of object shapes.
To make these systems more robust, researchers have also
proposed fusing multiple observations from different view-
points [30], and coupling semantic information as priors
into object reconstruction pipelines [38, 47]. Multi-view
reconstruction methods [48] generate 3D models from mul-
tiple frame, are also called structure from motion (SfM).
Geometric priors have also been widely used for differ-
ent objects and scenarios, e.g., shape prior [47, 43], size
prior [53, 33, 23]. PointFlow [52] uses normalization flow
to learn a prior distribution of point clouds and reconstructs
shapes from partial points. It remains an open question to
design an object representation with prior knowledge for
detailed shape reconstruction from images and yet can gen-
eralize to many objects of different shapes.

2.2. Neural Implicit Representation

Recently, neural implicit representations have attracted
wide attention in image and scene rendering [28, 32], voice
encoding [41], 3D objects [34, 27] and scenes representa-
tions [42]. For object representation, DeepSDF [34] pro-
poses to use a neural network to approximate a continual
signed distance function for modelling both known and un-
known objects, which are captured via interpolation and
completion of partial observation. Similar ideas are used in
object reconstruction [37, 8], object-level SLAM [43, 47]
and multiple object tracking [22]. For example, Duggal
et al. [8] reconstruct cars from single-frame lidar points
and optionally an image, but without uncertainty quantifi-
cation and multi-view fusion. Besides object-level details,
researchers have further proved the effectiveness of neural
implicit representations in representing large scenes, e.g.,
NeRF [28], visual SLAM [42, 56, 55] and scene reconstruc-
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tion [44].

Implicit representation in 3D currently presents many
open problems to address, such as effective neural archi-
tectures, multi-view fusion methods and uncertainty repre-
sentations. As described above, this work focuses on iden-
tifying an effective fusion method and providing accurate
uncertainty measures for downstream tasks.

2.3. Uncertainty Modelling in Deep Learning

Modelling uncertainty in deep learning inference has
been well studied in the area of Bayesian Neural Net-
works [26]. Common uncertainty modelling techniques in-
clude sampling methods such as MC Dropout and Deep En-
sembles, Error Propagation and Direct Modelling [10]. MC
Dropout [11] and Deep Ensembles [21] need to run the net-
work multiple times to produce samples from which to es-
timate uncertainty. Directly Modelling [18] can output un-
certainty from a single forward pass and is much more effi-
cient, so we use it to estimate the uncertainty in our work.
Error Propagation [36] can also be run efficiently at infer-
ence time but requires complex modification of network
layers which can affect network performance adversely, so
we leave it as future work.

Direct modelling faces the problem of inaccurate and un-
calibrated uncertainty in classification and regression [20].
Several methods are proposed to evaluate the output cali-
bration, including calibration plot [14], and proper scoring
rules [15] such as Energy Score and Negative Log Likeli-
hood. A recalibration method [14] has been proposed to
rectify the calibration via temperature scaling. We will give
a detailed analysis with proper scoring rules, and a calibra-
tion plot for our uncertainty output.

Very limited work exists for considering uncertainty in
neural implicit representation. Researchers [6, 7, 35] have
investigated learning a distribution of different topology
shapes by changing a low dimensional hyperspace and can
model the correspondences between shapes. Deng et al. [6]
models the correspondence uncertainty inside a shape cate-
gory, instead of the reconstruction uncertainty from image
observations, e.g., occlusion and ambiguity. It is also non-
trivial to propagate the uncertainty for multi-view fusion.
Ours aims to derive from Bayesian formulation and out-
put well-calibrated uncertainty. Most related to ours is [39]
which models uncertainty in the color and density output of
a scene-level neural representation. However, we concen-
trate on the problem of 3D object reconstruction and multi-
view fusion. As far as we know, we are the first to estimate
uncertainty for neural object representation from monocular
images.

3. Methods
3.1. Framework Overview

The system framework is shown in Fig 2. The inputs are
monocular image sequences of an object taken from differ-
ent viewpoints. For each input image, the system outputs a
reconstructed 3D object shape with uncertainty. The system
can fuse multi-view observations in an uncertainty-aware
way to incrementally update the shape.

The system consists of an uncertainty-aware neural ob-
ject representation, and an uncertainty-aware Image En-
coder. The neural object representation learns an object
shape prior in a latent code space. It has a decoder to gener-
ate Signed Distance Function (SDF) values conditioned on
each latent code. Then, the Marching Cubes algorithm [25]
is used to generate a mesh from the SDF values, with un-
certainty represented as an isotropic variance attached to its
vertices.

The uncertainty-aware Image Encoder takes in monoc-
ular images and outputs latent codes with uncertainty. In
this work, we consider a diagonal covariance matrix for all
the dimensions of the latent space. When there are multi-
ple images, the multi-view fusion module fuses each output
through a Bayesian update rule to estimate both the mean
and covariance of the latent code. We now proceed with a
more detailed formulation of our approach.

3.2. Uncertainty-aware Neural Object Model

Building on DeepSDF [34], we propose to expand the
current decoder-based neural object representation to model
uncertainty. It is worth mentioning that the proposed uncer-
tainty modelling and fusion method is generalizable to other
similar neural representations with limited modification.

3D object shape modelling with a neural network. A
neural network fθ can be trained as a function to map any
3D coordinate, X = [x, y, z] ∈ R3, to its SDF value of
s ∈ R:

s = fθ(X) (1)

where θ are the network parameters. Given a 3D grid of
SDF values, the Marching Cubes algorithm can then gener-
ate a mesh. We can model a 3D shape with each parameter
θ. To model a specific class of objects, e.g. chairs or tables,
we make the network conditional on a D-dimensional latent
code, z ∈ RD:

s = fθ(X, z), z ∈ RD (2)

By varying z, the SDF function will also change, as well
as the 3D reconstruction it produces. In this manner, a
single decoder network can be trained to express the SDF
representations of multiple semantically and geometrically
similar objects, based on a latent code associated with each
training object instance.
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Figure 2. Proposed System Framework. It consists of an uncertainty-aware image Encoder and a pre-trained decoder. We fuse multi-view
observations in the latent space under a Bayesian framework. The decoder takes the fused latent space encoding and generates SDF values
and associated uncertainties. Finally, the Marching Cubes algorithm is used to generate a mesh from the SDF values with uncertainty at
each vertex. We visualize the relative uncertainty values with a color bar inside each models in this paper.

Modelling uncertainty into 3D object shape. In Eq.
2, the code z is deterministic. To model uncertainty, we
model the D-dimensional latent code z as a probabilis-
tic variable obeying a multivariate Gaussian distribution
z ∼ ND(µ,Σ). To simplify the problem, we assume each
dimension of z is independent, which leads to a diagonal
covariance matrix Σ. We will train a neural network to out-
put the mean and variance for each dimension of z.

We also model the SDF value at X as a random variable,
s ∼ N (µs, σ

2
s). According to Eq. 2, we can propagate the

code uncertainty in z to the SDF value through the decoder
network. Since the neural network fθ is nonlinear, we can
not directly solve for σ2

s , and must employ some form or
approximation to propagate the uncertainty from code input
to SDF output.

Uncertainty propagation through neural network.
We use Monto Carlo Sampling [16] to propagate the un-
certainty through the nonlinear network. First, we sam-
ple M codes Z = {zm}Mm=1 from the code distribution
z ∼ ND(µ,Σ). For a 3D point X, to get the variance σ2

s

of its SDF, we pass each code zm ∈ Z through Eq. 2 to get
sm. We then calculate the sample variance [2] from the M
SDF values:

σ2
s =

1

M − 1

M∑
m=1

(sm − sµ)
2 (3)

where sµ = 1
M

∑
sm is the sample mean. We then cal-

culate the SDF uncertainty for each of the vertices of the
mesh generated using Marching Cubes. Now we can use
the mean µ and covariance matrix Σ of the latent code dis-
tribution ND(µ,Σ) to represent a 3D object shape and its
uncertainty. The remaining question is how to estimate the
mean µ and the covariance Σ from input images.

3.3. Uncertainty-aware Image Encoder

We propose training a simple encoder network fβ to map
an RGB image m ∈ RH×M×3 with height H and width

W to a D-dimensional latent code z with mean µ ∈ RD

and covariance Σ ∈ RD×D. Since we assume each code
dimension is independent, the covariance matrix is diagonal
and can be represented as Σ = diag(σ2), where σ ∈ RD.

µ,σ = fβ(m) (4)

We use the Direct Modelling [18] approach to output un-
certainty, which is well-established and does not add com-
putational complexity. We leave the comparison of other
uncertainty modelling methods as future work. The En-
coder consists of a feature backbone, ResNet-50, and an
output layer for the mean and variance. The architecture is
straight forward and we concentrate on the choice of proper
losses [15] to generate calibrated and accurate uncertainty.
We consider two common losses, Negative Log-Likelihood
loss (NLL) and Energy Score. We conduct extensive ex-
periments to explore the effectiveness compared with the
baseline model trained without uncertainty. We will briefly
introduce the two losses below. Their advantages and appli-
cations in object detection have been discussed in [15].

NLL loss. The NLL loss can be viewed as a standard L2

loss weighted by uncertainty. Considering a batch of out-
puts {(µi,σi)}Ni=1 directly from the encoder with N data
samples, and the ground-truth codes {zi}Ni=1, NLL can be
written as:

NLL =
1

2N

N∑
i=1

(µi−zi)
⊺Σ−1

i (µi−zi)+log detΣi (5)

where Σi = diag(σ2
i ) ∈ RD×D and σi ∈ RD. The first

term pushes down the error, where the variance, Σi, acts to
reduce the weight of samples in high uncertainty areas. The
second, regularization term avoids uncertainty from grow-
ing too large.

Energy Score. Energy Score (ES) can be generalized to
any distribution. It concentrates on optimizing the result of
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high uncertainty data samples to improve performance dur-
ing training. For computation efficiency, we use a Monte-
Carlo approximation version [15], which is represented as:

ES = 1
N

∑N
i=1

(
1
M

∑M
m=1 ∥zi,m − zi∥

− 1
2(M−1)

∑M−1
m=1 ∥zi,m − zi,m+1∥

) (6)

where zi,m is the mth i.i.d sample from N (µi,Σi). We
take M = 1000 with very little computational overhead.

3.4. Multi-view Bayesian Fusion in Latent Space

Bayesian Fusion. Consider N input images and the cor-
responding outputs {(µi,σi)}Ni=1 from the encoder. Since
we assume each of the D code dimensions is independent,
the covariance matrix is diagonal Σi = diag(σ2

i ). We fol-
low Gaussian Inference [1] to get a fused latent code z. It
follows the Gaussian distribution z ∼ ND(µ,Σ), where:

µ = Σ

N∑
i=1

Σ−1
i µi, Σ =

(
N∑
i=1

Σ−1
i

)−1

(7)

Then, we can use Monto Carlo Sampling to propagate z
through the decoder to get the mean and variance of the
SDF value for each 3D point as described in Sec. 3.2.

Outlier rejection. When facing extreme situations such
as highly occluded objects, experimentation revealed that
performance improves by treating them as outliers and fil-
ter them out of the fusion process, instead of incorporating
them with high uncertainty. We define a modified inference
strategy, “Bayesian-N”, which only selects the N observa-
tions with the lowest uncertainty for Bayesian fusion. When
N = 1, we simply select the lowest uncertainty viewpoint.
When N = Nmax, we use all available measurements with-
out rejection, referred to as “Bayesian” by omitting N .

4. Experiments
4.1. Implementation and Training Details

Our system consists of an encoder and a decoder. For
the decoder, we follow the implementation and training of
DeepSDF [34] on ShapeNet [3]. For the encoder, we use
ResNet-50 pretrained on ImageNet as the feature backbone,
modify the output layer to the dimensions of the code N ,
and further add K dimensions for the uncertainty. We take
N = K = 64 in the experiments.

We need monocular images and ground-truth latent
codes to train the encoder. We use the images from ShapNe-
tRendering dataset [5] which contains rendered images of
24 different views from the CAD models in ShapeNet [3].
After training the decoder, we get optimized latent codes

Methods Shape IoU ↑ EMD ↓ CD ↓
3D-R2N2 [5] Voxel 0.136 0.211 0.239
PSGN [9] Points N/A 0.216 0.2
3D-VAE-GAN [50] Voxel 0.171 0.176 0.182
DRC [46] Voxel 0.265 0.144 0.16
MarrNet [49] Voxel 0.231 0.136 0.144
AtlasNet [13] Mesh N/A 0.128 0.125
Sun et al. [45] Voxel 0.282 0.118 0.119
FroDO [37] Mesh 0.302 0.112 0.103

FroDO* w/ GT Mask Mesh 0.319 0.107 0.109
FroDO* w/ Seg Mask Mesh 0.285 0.120 0.121
FroDO* w/o Mask Mesh 0.257 0.127 0.123

Ours w/ GT Mask Mesh 0.335 0.102 0.102
Ours w/ Seg Mask Mesh 0.293 0.116 0.116
Ours w/o Mask Mesh 0.268 0.122 0.118
Table 1. Single-view reconstruction of the chairs category on
the Pix3D dataset. Metrics include Intersection of Union (IoU),
Earth Moved Distance (EMD) and Chamfer Distance (CD). GT:
Groundtruth. Seg: Semantic Segmentation algorithm. * Our own
implementation.

Input Image GT Baseline Ours
Ours 

w/ uncertainty

Figure 3. Qualitative results of single-view reconstruction on
chairs of Pix3D dataset. The models are trained on ShapeNet
dataset. Ours has fewer artifacts than the baseline FroDO*, and
can further output uncertainty for each object part. Our uncer-
tainty highlights the areas with errors, indicating information for
downstream tasks.

for each CAD models, and we use them as the ground-truth
latent codes for the training and evaluation of the Encoder.

For training the Encoder, we use the same dataset split as
FroDO [37]. We augmented the training data with random
resize and horizontal flip, and random background clip from
SUN dataset [51]. We set a learning rate of 0.1, a batchsize
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Input Image GT Baseline Ours
Ours 

w/ uncertainty

Figure 4. Qualitative results of single-view reconstruction of ta-
bles on ShapeNet dataset. The models are both trained and tested
on ShapeNet dataset. Compared with the baseline Frodo*, Ours
further outputs uncertainty and has fewer artifacts.

of 64, and a random seed of 1000. We use a polynomial
learning rate scheduler, and trained for 50 epochs.

To verify that our model can generalize to different cat-
egories, we test on both chairs and tables categories on
ShapeNet dataset. To verify the performance in real sce-
narios, after training on the sythetic Shapenet dataset, we
directly evaluate on the Pix3D dataset without finetunning.

4.2. Metrics and Baselines

Metrics. For the reconstruction, we calculate the metrics
of Intersection over Union (IoU), Chamfer Distance (CD),
and Earth Moved Distance (EMD) on the voxelized mesh
with a resolution of 323 following [45]. For the uncertainty,
we use Negative Log Likelihood (NLL) and Energy Score
(ES), which evaluate the error of the regression, and the cal-
ibration and sharpness of the estimated uncertainty.

Baselines. We train our model with Energy Score and
denote it as Ours. We also compare the choice of the two
training losses, Energy Score and NLL in the ablation study.

FroDO [37] is a baseline closest to ours with an encoder
trained with L2 loss and a DeepSDF decoder for reconstruc-
tion but without uncertainty. It averagely fuses multiple la-
tent codes to get the final reconstruction. It also supports
pose estimation and optimization with both shape and pose
together. Since pose estimation is out of the scope of the
paper, we compare with the Encoder parts to investigate the
effectiveness of uncertainty. Note that the results on Pix3D
dataset of the origin paper do not use the pose module so
it is a fair comparason. Since FroDO is not open-sourced,
to fully investigate the performance, we implemented it by
ourselves and denote it as FroDO*. We compare our im-
plemented version with origin published version on Pix3D
dataset. We also fully compare our models with other pub-
lished state-of-the-art models for the reconstruction accu-
racy on Pix3D dataset.

4.3. Single-view reconstruction

We show the results on the chairs category of Pix3D
dataset in Fig. 3 and Table 1. When using the origin RGB
image as input (see Ours w/o Mask), Ours outperforms the

Views Methods IoU %

FroDO* 1 Single-view 0.3225 0

10 Average 0.3456 0

Ours

1 Single-view 0.3373 4.6

10

Average 0.3750 8.5

Bayesian-1 0.3719 7.6
Bayesian-2 0.3828 10.8
Bayesian-3 0.3874 12.1
Bayesian-4 0.3902 12.9
Bayesian-5 0.3867 11.9
Bayesian-6 0.3867 11.9
Bayesian-7 0.3836 11.0
Bayesian-8 0.3828 10.8
Bayesian-9 0.3822 10.6
Bayesian(-10) 0.3816 10.4

Table 2. Multi-view fusion IOU performance on the chair category
of the Pix3D-MV dataset. Ours with uncertainty can higher IOU
than the deterministic baseline. % denotes percent improvement
over baseline single/multiview.

Min Scale

Methods 1.0 0.8 0.4 0.2 0.1

FroDO* 0.346 0.343 0.338 0.323 0.318

NLL - Bayesian 0.327 0.326 0.318 0.302 0.301
NLL - Bayesian-4 0.346 0.349 0.335 0.330 0.341

Ours - Bayesian 0.382 0.362 0.345 0.332 0.322
Ours - Bayesian-4 0.390 0.381 0.374 0.369 0.365
Table 3. Multi-view reconstruction (IoU) on the Pix3D-MV chair
set when the input images are cropped to a randomly selected area
between [Min Scale, 1.0]. As Min Scale decreases, the fusion task
becomes more difficult. Ours with uncertainty gets better robust-
ness in difficult tasks.

baselines PSGN, DRC, AtlasNet and our implementation
of Frodo, but still has a gap with the published state-of-
the-art performance from Frodo. We trained the Encoder
on the synthetic dataset ShapeNet and inferred on the real
Pix3D dataset. The domain gap of the real texture and back-
ground limits the performance of the encoder, which is only
a vanilla ResNet originally designed for classification.

We further use Mask2Former, an off-the-shelf semantic
segmentation method [4], to filter the background (see Ours
w/ Seg Mask), and notice an obvious improvement on the
reconstruction accuracy. When using groundtruth masks
to filter all the background (see Ours w/ GT Mask), ours
achieves an IoU of 0.335 and outperforms all the baselines,
which demonstrates the accuracy upper bound of our de-
sign of an image encoder and a shape decoder. It demon-
strates that the decoder learns a powerful category-level
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Figure 5. Qualitative results of multi-view fusion on the Pix3D dataset. After fusing 1 to 10 corrupted observation images, Ours reduces the
shape uncertainty based on Bayesian Fusion and outputs a more accurate final reconstruction compared with the baseline FroDO*. Note
that our method can fuse observations without knowing the camera poses and can work even when the objects have different textures.

prior distribution of the objects shape even from the syn-
thetic dataset, and can transfer to real objects.

Further training and fine-tuning with background aug-
mentation, e.g., randomly sampled texture images, has
been shown to make the network adapt to varied back-
grounds [40]. However, the evaluation of the background
invariance is out of the scope of this paper.

We concentrate on the performance improvement
brought by the uncertainty both in single-view and
multi-view scenarios. We implemented the Encoder in
FroDO [37] which outputs deterministic latent code as base-
line, and keep the same decoder. We show the performance
when using different masks (w/o Mask, w/ Seg Mask and
w/GT mask). Ours gets better performance for all the mask
types, thanks to the introduction of uncertainty during train-
ing which makes the network more robust to the domain gap
so that it does better on difficult reconstruction tasks.

Our implementation (FroDO w/o Mask) has a mod-
erate gap compared with the published result of FroDO.
However, when using GT mask (FroDO w/ GT Mask),
it achieves higher performance than the published result,
which indicates the validity of the accuracy upper bound.
Despite extensive experiments in data augmentation and
training methods, we were unable to recreate the published
performance of Frodo, and the authors of that work have
not released their code. In the following experiments, we
highlight the effectiveness of uncertainty during multi-view
fusion by comparing our work to our own implementation
of FroDO*.

4.4. Multi-view Reconstruction

The Pix3D dataset contains real images and groundtruth
CAD models but has no splits for instances and their multi-
view observations. To evaluate the multi-view performance,
we group the images of the chair category into separate in-
stances according to their GT models, and keep 10 views as

one instance, which results in a multi-view dataset with to-
tally 1490 images from 149 instances. We denote this multi-
view dataset as Pix3D-MV which is a subset of the original
Pix3D dataset. We show the results of multi-view fusion on
Pix3D-MV chair set in Fig. 5 and Table 2. We consider the
following methods as multi-view fusion baselines: Average
equally fuses each estimated latent code; Bayesian fuses
with uncertainty according to Bayesian Fusion in Equa-
tion 7; Bayesian-K keeps the top-K observations with the
lowest uncertainty evaluated by taking the trace of the co-
variance matrix, and then fuses with Bayesian.

Compared with the deterministic baseline, Ours with un-
certainty achieves an IoU of 0.3816 vs. 0.3456 with a mar-
gin of 10.4%. When using Bayesian-4 to filter the outliers
and keep the first 4 observations, ours can further boost up
to an IoU of 0.3902 with a margin of 12.9% compared with
the baseline. The experiment demonstrates that uncertainty
can effectively help the system to trust the observations that
contain more valid information, and make the system more
robust to outliers in the multi-view observations.

We further push the limit of the robustness brought by
the uncertainty during multi-view fusion in Table 3. In
real applications like robots, the input images are heavily
corrupted because of occlusions, errors in segmentation or
sensor noise. We simulate challenging situations by ran-
domly cropping images into a specific size range [c, 1.0],
so that only part of the origin image is kept. By changing
the value of the min scale, c, we vary the difficulty of the
experiments. As is visible in Table 3, when the min scale
decreases, the task becomes more difficult. In the most dif-
ficult task, where images can be cropped to only 10% of the
origin images, the deterministic FroDO model suffers from
the occlusions obviously and decreases to an IoU of only
0.318 while Ours w/ uncertainty remains robust to the crop-
ping and maintains an IoU of 0.366, with an improvement
of 15.1%. The experiments prove the effectiveness of using
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Chairs TablesMethods Views Easy Mid Hard Easy Mid Hard
FroDO* 0.388 0.341 0.326 0.403 0.321 0.300
Ours 1 0.383 0.343 0.326 0.410 0.321 0.300
FroDO* 0.410 0.375 0.359 0.446 0.376 0.350
Ours 10 0.400 0.391 0.385 0.446 0.399 0.378

Table 4. Single- and multi-view reconstruction results of the
Chairs and Tables on the ShapeNet dataset. Ours shows obvious
improvements when the task becomes hard for multi-view fusion,
showing the robustness to corruption brought by uncertainty.

uncertainty in multi-view fusion to select valid information
from a group of corrupted input images.

4.5. Ablation Study

Loss function. We compare two options for uncertainty
training loss: NLL (NLL) and ES (Ours) in Table 3. Even
though training with NLL can improve the performance in
difficult tasks, it presents lower accuracy in general than
when training with ES.

Selection of K in Bayesian. With uncertainty, we can
detect outliers and take active actions to deal with them. As
in Table 2, when decreasing K, the performance increases
since the outlier codes are filtered out. The highest IOU
performance of 0.39 is achieved with k = 4, which has an
improvement of 12.9% compared with the baseline. When
further decreasing the number, the system has too few ob-
servations to fuse and the performance begins to drop. An
interesting finding is that, with 1 best views we get better
performance than the Average Equal of FroDO. In real ap-
plications, we have the option of adjusting the parameter K
to better suit the data.

4.6. Evaluation on ShapeNet

Our network architecture, including the uncertainty
framework, is not specifically designed for any categories.
If the training data is available, we can support the new cat-
egories. We show more experiments results on the Chairs
and Tables categories on ShapeNet dataset in Table 4. We
also show the results of Tables in Fig. 4. We train each
categories separately. During inference, we consider two
tasks, Easy for taking origin rendered images in Shapenet,
and Mid/Hard for randomly croping the images into a range
of [c,1.0] (c = 0.1 for Mid and c = 0.01 for Hard). For
the multi-view fusion method, we use Bayesian Fusion for
Ours and Average for FroDO*. In the Easy task, we get
comparable but slightly lower IOU performance on Chairs,
but higher IoU performance on Tables. Since our model,
with the same architecture, requires a part of the model ca-
pacity to regress uncertainty. It is notable that uncertainty
is not very helpful in easy tasks where each input image
contains enough information for reconstruction. In the Mid
and Hard task, the effectiveness of uncertain becomes more
pronounced, as Ours gets higher multi-view accuracy than

the baseline. Especially on Hard task, we got an IoU of
0.385 v.s. 0.359 on Chairs, and 0.378 v.s. 0.350 on Tables.
This result demonstrates that uncertainty can robustly find
and fuse the valid data from a set of input data of varying
quality.

5. Conclusion
We propose an uncertainty-aware 3D object reconstruc-

tion framework that can take in both monocular and multi-
view images. Based on the neural shape models, we intro-
duce a method to model and estimate uncertainty in latent
space and a method to propagate uncertainty into 3D ob-
ject space, so that we can output 3D object shape with un-
certainty awareness. Our proposed method can be trained
on a purely synthetic dataset and directly evaluated on real
datasets. It achieves higher reconstruction performance
than deterministic models, and in particular demonstrates
better robustness and accuracy in multi-view fusion when
the input image sequences are corrupted.

In future work, we plan to scale up to multi-classes ob-
jects reconstruction and uncertainty estimation. Also, it
will be interesting to leverage the uncertainty-aware shape
model for down stream tasks related to objects such as de-
tection, segmentation, tracking, and object-level SLAM.
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