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Abstract

Recent advancements in Transformer-based human mesh
reconstruction (HMR) are commendable. However, these
models often lift 2D images directly to 3D vertices without
explicit intermediate guidance. In addition, the global at-
tention mechanism tends to spread attention across larger
body areas and even unrelated background regions during
human mesh estimation, rather than focusing on critical lo-
cal regions such as human body joints. This tendency leads
to inaccurate and unrealistic results for complex activities.
To address these challenges, we introduce the Progressive
Hypothesis Transformer, which employs 2D and 3D pose
predictions to progressively guide our model. Moreover,
we propose a mechanism that generates multiple plausible
hypotheses for both 2D and 3D poses to mitigate poten-
tial inaccuracies arising from intermediate pose estimations.
Our model also incorporates inter-intra attention to capture
correlations between joints and hypotheses. Experimental re-
sults demonstrate that our method surpasses existing image-
based approaches on Human3.6M [13] and 3DPW [36] with
fewer parameters and relatively lower computational costs.

1. Introduction
Estimating a 3D human mesh from a 2D RGB image is

a long-standing and pivotal challenge, primarily due to its
widespread applications in virtual reality, augmented real-
ity, motion capture, and interactive gaming. In recent years,
Transformer-based architectures [6, 21, 22] have gained sig-
nificant attention among researchers due to their prowess
in modeling long-range dependencies. This shift is partly
attributed to the limitations of CNN-based methods: while
they have made considerable advancements, their designs
primarily focus on local feature extraction, which constrains
their ability to capture non-local correlations. Existing 3D
human mesh estimation methodologies can be broadly cate-
gorized into parametric [3,14–16,19,30] and non-parametric
[6,7,17,28] approaches. The former primarily gears towards
estimating parameters from established human body models,

Figure 1. (a) Prior Transformer-based methods [6] that directly
lift 2D images to 3D vertices by global attention might distribute
attention across body areas and unrelated backgrounds, leading to
incorrect poses. (b) Our method progressively generates 2D/3D
pose hypotheses and captures the inter-intra relations of body joints.

such as the Skinned Multi-Person Linear (SMPL) model [25].
On the other hand, the latter aims to directly regress the 3D
coordinates of human mesh vertices without relying on any
predefined model. Even with the promise of Transformers,
however, there are inherent challenges in their application to
HMR, necessitating further exploration and refinement.

Fig. 1 sheds light on the challenges encountered by previ-
ous Transformer-based human mesh reconstruction (HMR)
endeavors. Two primary issues stand out. First, even with
the glocal attention inherent in Transformer architectures,
there is a tendency to prioritize holistic relationships. While
they inherently possess a broad field of view, in the absence
of proper guidance, they might overlook crucial localized
features. This can cause them to spread attention across
larger body areas and even unrelated background regions
during human mesh estimation, rather than focusing on lo-
cal regions such as specific body joints. The second issue
pertains to the intrinsic complexities of the task: achieving
a direct transformation from an image to a 3D human mesh
is far from straightforward. For instance, addressing depth
ambiguity and complex human pose rotations is challenging
due to the significant representational differences between
2D images and 3D meshes. Because of this, some existing
methods may experience difficulties when estimating com-
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plex human poses or activities. Moreover, without utilizing
geometric insights from models like SMPL, these methods
could even generate unrealistic results. While attempts have
been made to include additional SMPL regressor heads to en-
hance pose predictions, such modifications can occasionally
compromise performance [6, 17]. In light of these findings,
the primary objective of this work is to progressively guide
the Transformer-based human pose and shape estimation
and model the correlations of body parts to ensure a more
gradual and concentrated focus on essential local specifics.

To address the aforementioned challenges, this paper in-
troduces a new framework distinguished by three primary
innovations. First, we present a progressive pose-guided
learning approach. Rather than regressing directly to the
final 3D human mesh, this technique utilizes 2D and 3D
poses as intermediate representations, and predicts them in
a stepwise manner before deriving the final SMPL parame-
ters. During this process, the intermediate representations
are used as guidance to extract joint-related features, and the
predictions evolve and progressively mature from their initial
2D form to a refined 3D understanding. This strategy offers
two salient benefits: (1) it enables progressive refinement of
features supervised by 2D/3D pose ground truths, and (2) it
emphasizes the extraction of localized, joint-centric features
that are largely invariant to background distractions. Our
second innovation further facilitates the learning of these in-
termediate representations, which revolves around the 2D/3D
pose hypothesis generation. Recognizing potential inaccu-
racies from intermediate pose estimations, our framework
generates multiple plausible hypotheses for both 2D and 3D
poses, instead of a single pose. By predicting and then sam-
pling from a distribution of potential poses, our framework
harnesses information from multiple possible poses, thereby
enhancing the robustness of its final prediction. The final
innovation is our Inter-Intra Joint-Hypothesis Transformer.
By leveraging the joint features generated by pose-guided
sampling, this Transformer integrates both inter and intra
joint attentions to capture body part correlations and aggre-
gate our pose hypotheses. Experimental evidence reveals
that our proposed methodology is able to outperform exist-
ing image-based approaches on the Human3.6M [13] and
3DPW [36] datasets with much fewer parameters and com-
putational costs. This not only substantiates the effectiveness
of our methodology but also demonstrates how the synergy
of these innovations significantly elevates the overall per-
formance of the framework. Our primary contributions are
summarized as follows:

• We introduce a progressive pose-guided learning ap-
proach that leverages 2D/3D poses as intermediate rep-
resentations. This approach ensures that pose learning
evolves progressively, maturing through continuous in-
termediate supervision with ground truths.

• We propose a mechanism that generates multiple plau-
sible hypotheses for both 2D and 3D poses. This is
achieved by estimating pose distributions and subse-
quently sampling potential poses from the distributions.

• We present the Inter-Intra Joint-Hypothesis Trans-
former, which integrates both inter and intra joint atten-
tions. This is designed to capture correlations between
body parts and aggregate pose hypotheses, which en-
ables the framework to enhance its overall performance
notably.

2. Related Work

2.1. Single Image 3D Human Mesh Reconstruction

The field of HMR from single images can be broadly
categorized into two main approaches: parametric and non-
parametric. Parametric methods focus on estimating shape
and pose parameters of models like SMPL [25]. SMPLify [3]
fitted the SMPL model to 2D body joints with constraints
from body priors. The authors in [14] introduced an end-to-
end HMR framework using a CNN and iterative regression,
incorporating re-projection and adversarial losses. SPIN [16]
augmented [14] by combining end-to-end regression models
with optimization loops. The authors in [38] used pyra-
midal mesh alignment feedback to refine spatial learning.
PARE [15] utilized a segmentation map to learn part attention
masks enabling feature aggregation. Non-parametric meth-
ods directly regress images to non-parametric body shapes
like voxels [34] or 3D vertices [17, 22, 28]. GraphCMR [17]
captured the adjacent relations of vertices using Graph-CNN.
I2L-MeshNet [28] used lixel-based heatmaps for vertex esti-
mation. Transformer-based methods [6,21,22] captured non-
local image-vertex relationships for vertex localization. Un-
fortunately, Transformer-based non-parametric approaches
often led to unrealistic results and could become computa-
tionally intensive due to the large quantity of vertices.

2.2. Transformer-based 3D Mesh Reconstruction

Originally designed for natural language processing,
Transformers have excelled in computer vision tasks [2, 4, 5,
8,20,24,35,39]. They leveraged self-attention to grasp long-
range connections, which proved valuable for HMR tasks.
METRO [21] pioneered Transformer usage for modeling ver-
tex interactions and 3D mesh generation. The work in [22] in-
troduced a graph-convolution-reinforced Transformer, blend-
ing global and local vertices relationships. FastMETRO [6]
resolved computational inefficiency by designing an encoder-
based architecture. Nevertheless, these methods often lacked
detailed local focus since they directly map 2D images to
3D vertices with broad global attention on image features.
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2.3. Intermediate Representations

The task of HMR from a single image is challenging. Sev-
eral methods introduce intermediate estimations into their
networks to alleviate the difficulty. The authors in [33]
employed the detected 2D keypoint coordinates for body-
skeleton disentanglement via a bilinear transformation tech-
nique. HoloPose [10] trained a multi-task network compris-
ing 2D, 3D, and dense pose estimation with a part-based
regression. DaNet [37] leveraged UVI maps to bridge the
2D-3D mapping. Pose2Mesh [7] estimated 3D mesh ver-
tices from 2D poses via GraphCNN. HybrIK [19] converted
3D joints to body-part rotations for HMR via the twist-and-
swing decomposition. While these methods employ such
representations to bridge the gap between 2D images and 3D
meshes, inaccuracies in the representations may accumulate.

3. Methodology
In this section, we introduce our methodology. We first

provide the problem definition, followed by an overview of
the proposed framework. Then, we detail the individual com-
ponents within the framework and the training objectives.

3.1. Problem Definition

To set the stage for subsequent discussions, we first intro-
duce the notations specific to our framework and delve into
the SMPL model. SMPL is a parametric model capable of
producing a 3D mesh. Specifically, SMPL defines a mapping,
M(θ, β) that takes an input pose θ and shape β to yield the
human body mesh M . In this representation, M belongs to
RN×3, R represents the real number space, and N = 6, 890
indicates the count of vertices in the standard SMPL model.
For each mesh output M , the body joints, expressed as J3D,
are derived as a linear combination of its vertices. This can
be encapsulated by the equation: J3D = WJM , where WJ

is a pre-trained linear regressor. When presented with a 2D
image I of dimensions H ×W × 3, our framework, denoted
as F (I), aims to predict a tuple of SMPL parameters (θ, β).

3.2. Overview of the Framework

Fig. 2 provides an overview of our proposed framework.
Designed to generate a 3D mesh from a given 2D RGB
input image I , our framework leverages the technique of
pose-guided sampling and operates in a progressive manner.
Instead of directly transforming a 2D image I into a 3D mesh
M , our method unfolds over multiple stages. This multi-
stage process involves generating a 2D pose, progressing to
its 3D counterpart, and eventually leading to the formation
of the 3D mesh. We refer to these progressive outputs as
intermediate representations. At each stage, the framework
evaluates potential distributions for both 2D and 3D poses.
These distributions are utilized to generate plausible hypothe-
ses, which are then employed for performing pose-guided

feature sampling. The sampled features guided by 2D/3D
pose hypotheses are fed into our Inter-Intra Joint Hypothesis
Transformers for deriving the interrelations of body parts.

Diving deeper into the workflow of the framework, it first
processes an image I through both a CNN backbone and a
Transformer encoder. This results in extracted features, rep-
resented as fenc ∈ RH′W ′×C , where H ′×W ′ represents the
dimensions of fenc and C stands for the number of channels.
The extracted fenc is further refined by a convolutional layer
to produce an embedding f2D ∈ RH′W ′×C . This f2D is
then directed into a Hypothesis Generation Module (HGM)
to generate 2D pose hypotheses H2D_heat ∈ RK×NJ×H′W ′

,
where K denotes the number of hypotheses and NJ indicates
the number of joints. Note that H2D_heat is a heatmap rep-
resentation of 2D pose. By leveraging the 2D pose distribu-
tion insights revealed in H2D_heat, the framework conducts
feature sampling on fenc, and results in a sampled feature
embedding denoted as f2D_sampled ∈ RK×NJ×C . Benefit-
ing from the insights encapsulated in H2D_heat, the features
in f2D_sampled exhibit enhanced localization and contain
pertinent joint information. Subsequently, an Inter-Intra
Joint-Hypothesis Transformer (Tinter−intra) captures the
inter- and intra-correlations of f2D_sampled, and aggregates
these features to generate the embedding f3D ∈ RNJ×C .

In the second half of Fig. 2, the framework F transi-
tions to the 3D pose generation stage. The generated 3D
pose acts as guidance to further enhance the learning pro-
cess. This stage starts by feeding f3D into HGM, which
in turn produces 3D pose hypotheses H3D ∈ RK×NJ×3.
It is important to note that for the subsequent 2D fea-
ture sampling, H3D is projected back into 2D coordinates.
Gaussian blobs are then applied to generate 2D heatmaps,
denoted as H ′

2D_heat ∈ RK×NJ×H′W ′
. By leveraging

the distribution information of body joints revealed from
H ′

2D_heat, the framework is able to effectively sample
features from fenc. This yields the feature embedding
f3D_sampled ∈ RK×NJ×C enriched with 3D pose insights.
This f3D_sampled then similarly traverses through an Inter-
Intra Joint-Hypothesis Transformer, to derive our final fea-
ture embedding fHMR ∈ RNJ×C . To enrich fHMR with
3D information, it undergoes an element-wise addition with
the preceding 3D feature f3D. The final stage involves flat-
tening the embedding, after which the framework utilizes a
series of linear layers to finalize the SMPL pose and shape
parameters. These parameters are then processed through an
SMPL [3] model to produce the final mesh M . Furthermore,
a pre-trained linear regressor is employed to generate 3D
body joints, denoted as J3D.

3.3. 2D/3D Pose Hypothesis Generation Module

Fig. 3 illustrates the flow of HGM, which is primarily de-
signed to generate a diverse set of pose hypotheses as our in-
termediate representations. Instead of directly transforming
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Figure 2. Overview of the proposed framework. Our framework estimates multiple 2D/3D pose hypotheses and leverages them for feature
sampling in a progressive manner. Subsequently, our Inter-Intra Joint-Hypothesis Transformer (Tinter−intra) captures the correlations
among body joints. The final enhanced feature is then processed through several FC layers to generate the 3D human body pose and shape.

Figure 3. The proposed Hypothesis Generation Module (HGM).

2D images into 3D meshes, our methodology progressively
estimates the 3D human mesh by leveraging these 2D and
3D pose representations. Nevertheless, such intermediate
representations can be prone to inaccuracies, which might
potentially lead to error propagation that could adversely in-
fluence subsequent results. Recognizing this challenge, our
framework deviates from the traditional method of relying
solely on a single pose prediction. HGM is tailored to learn a
distribution of feasible 2D/3D poses, drawing insights from
the principles of uncertainty and ensemble learning. This ap-
proach ensures that the framework systematically addresses
uncertainties at each stage, and accommodates the inherent
variability and discrepancies of intermediate representations.

For the generation of 2D pose hypotheses, f2D first un-
dergoes several 1× 1 convolutions. This results in a mean
µ2D and a standard deviation σ2D, both with dimensions
H ′W ′ × C based on a Gaussian distribution. Once this
distribution is constructed, HGM samples K latent features
for each joint, implying that K hypotheses are generated.
These sampled latent features are as a whole denoted as

z2D ∈ RK×H′W ′×C . The generation process can be repre-
sented as the following:

µ2D, σ2D = Convs(f2D),

{zi2D}Ki=1 ∼ N (µ2D, σ2
2D),

(1)

where {zi2D}, i = 1, . . . ,K, represent the set of sampled
latent features. The distribution N (µ2D, σ2

2D) is a Gaussian
characterized by mean µ2D and variance σ2

2D. The latent fea-
tures z2D are passed through a series of 1×1 convolutions to
regress the 2D pose hypotheses H2D_heat ∈ RK×NJ×H′W ′

.
The procedure for 3D Pose Hypothesis Generation in

HGM closely mirrors that of the 2D Pose Hypothesis Gener-
ation. The feature embedding f3D is first processed through
a series of 1× 1 convolutions to generate a mean µ3D and
a standard deviation σ3D, both with dimensions NJ × C.
In a manner consistent with the 2D process, K hypotheses
are sampled for each joint. This leads to the formulation of
latent features, denoted by z3D ∈ RK×NJ×C . Following
this, several fully connected (FC) layers regress the 3D pose
hypotheses H3D ∈ RK×NJ×3 using the latent features z3D.

The Progressive Pose-guided Feature Sampling (PFS)
method is designed to extract joint-related localized features
by leveraging the 2D/3D pose hypotheses, which serve as our
intermediate representations. The concept of pose-guided
feature sampling is anchored in our framework’s capabil-
ity of harnessing guidance from the 2D and 3D heatmaps
during feature sampling and aggregation. Specifically, our
approach emphasizes a progressive prediction when transi-
tions from 2D to 3D poses. As depicted in the framework
overview, the method starts with 2D pose-guided feature sam-
pling and subsequently advances to 3D pose-guided feature
sampling. These 2D and 3D intermediate representations
strategically guide the framework to sequentially extract and
aggregate pertinent joint features, and thus ensure a smoother
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and more effective 2D-to-3D transition. With respect to
2D pose-guided feature sampling, our objective revolves
around extracting joint-centric features from fenc, under the
guidance of the 2D pose hypotheses H2D_heat predicted by
HGM. A significant step involves a dot product operation
between H2D_heat ∈ RK×NJ×H′W ′

and fenc ∈ RH′W ′×C ,
resulting in f2D_Sampled ∈ RK×NJ×C . Please note that a
softmax operation is applied to H2D_heat prior to the dot
product operation. The procedure is expressed as follows:

f2D_Sampled = Softmax(H2D_heat) · fenc. (2)

In the case of 3D pose-guided feature sampling, the frame-
work employs 3D pose hypotheses to further refine the fea-
tures. Given that our feature sampling inherently takes place
in a 2D space, a preliminary projection from 3D to 2D is
indispensable. As a result, the framework converts the 3D
pose coordinates from 3D hypotheses H3D ∈ RK×NJ×3

into 2D pose coordinates H3D−>2D ∈ RK×NJ×2 using
the predicted camera parameters cam, which are regressed
from fenc via several FC layers. To construct 2D heatmaps
from the deduced 2D coordinates H3D−>2D, the system
adopts Gaussian blobs centered at these coordinates to gen-
erate H ′

2D_heat. Drawing from the methodology of 2D pose-
guided feature sampling outlined previously, a dot product
between the softmax-treated H ′

2D_heat and the extracted
fenc is performed, resulting in f3D_Sampled ∈ RK×NJ×C .

3.4. Inter-Intra Joint-Hypothesis Transformer

With the 2D sampled features captured, the next chal-
lenge lies in deriving their 3D counterparts. This transla-
tion is far from trivial. As the human body joints are inter-
correlated, capturing and accurately estimating both inter-
and intra-joint relations is essential. Towards this end, we
incorporate the Transformer in Transformer architecture [11]
into our model, and name it the Inter-Intra Joint-Hypothesis
Transformer, abbreviated as Tinter−intra. To demonstrate
the operation of Tinter−intra, we use the 2D sampled fea-
tures f2D_Sampled in the derivation of this section, although
the procedure is equally applicable to f3D_Sampled. The
features are divided into NJ patches: f2D_Sampled =

[f1
2D_Sampled, . . . , f

NJ

2D_Sampled] ∈ RNJ×K×C , where each
f i
2D_Sampled denotes the set of hypotheses for the ith joint.

Our Inter-Intra Joint-Hypothesis Transformer block en-
compasses two attention mechanisms: intra-joint and inter-
joint attention, as illustrated in Fig. 4. The intra-joint at-
tention focuses on capturing correlations within a single
joint for effective hypothesis aggregation. During this pro-
cess, each f i

2D_Sampled undergoes a linear transformation
to produce queries Q ∈ RK×dq , keys K ∈ RK×dk , and
values V ∈ RK×dk , where dq and dk denote the channel di-
mensions of Q and K, respectively. The scaled dot-product
attention can then be described by Softmax(QKT

√
dk

)V . Uti-
lizing the multi-head self-attention mechanism [35], our

Figure 4. The Inter-Intra Joint-Hypothesis Transformer structure.
Note that here we employ notation from the first Tinter−intra.

approach divides the channel dimensions of Q, K, and V
into h distinct segments, and performs self-attention on each
separately. Subsequent to this, the output features from each
head are concatenated and flattened. To further refine the
representation, several FC layers are employed to condense
the dimensions from K×C down to C. This transformation
relects that the K hypotheses are aggregated through the
attention mechanism into a singular feature for each joint.

For inter-joint attention, our objective is to capture the
correlations among features pertaining to different joints.
Analogous to the intra-joint attention mechanism, the fea-
tures from disparate joints undergo transformations to form
queries, keys, and values, followed by the application of
multi-head self-attention. The resultant features embody
the 3D characteristics of different joints, and encapsulate
both inter- and intra-joint relationships. Please note that our
framework incorporates two instances of Tinter−intra. The
first one derives f3D from f2D_Sampled, and the second one
produces fhmr from f3D_Sampled, as illustrated in Fig. 2.

3.5. Training Objectives

Our training objective comprises four distinct loss terms:
Lhmr, L2D, L3D, and Lreg. The total loss Ltotal is defined as:

Ltotal = λhmr ·Lhmr+λ2D ·L2D+λ3D ·L3D+λreg ·Lreg. (3)

The term Lhmr encompasses the losses for human mesh re-
construction adopted in the prior work [7, 14, 17], given by:

Lhmr = λpose · Lpose + λsmpl · Lsmpl, (4)

where Lpose measures the L1 distance between J3D and its
ground truth 3D pose, as well as the projected 2D pose and
its ground truth 2D pose. Meanwhile, Lsmpl denotes the L2
loss associated with the SMPL parameters. The last three
terms are used for the intermediate representation, where
L2D computes the L2 losses for the 2D heatmap, and L3D

computes the L1 losses of the 3D coordinates. The final
Lreg is a regularization term, which is used to regularize
the learning distribution to generate hypotheses. This is
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achieved by computing the KL divergence between (µ, σ)
and a standard normal distribution N(0, 1), expressed as:

Lreg = KL ((µdim, σdim)||N(0, 1)) , dim ∈ {2D, 3D}. (5)

4. Experimental Results
In this section, we first detail the experimental setups.

This is followed by an examination of qualitative results and
ablation studies. Finally, we present qualitative comparisons.

4.1. Experimental Setups

Implementation Details. We employ ResNet-50 [12]
as our backbone for feature extraction, which is further en-
hanced by a 3-layer transformer encoder. Within our Inter-
Intra Joint-Hypothesis Transformer, two layers of inter-intra
joint attention are incorporated. We set the number of joints
NJ to 24, which aligns with the superset of joints across
our training datasets. Moreover, we establish the number
of hypotheses K to 81. A detailed discussion regarding the
choice of K can be found in Section 4.3. We follow the con-
figuration from [6] and utilize the AdamW optimizer [26]
with a learning rate of 10−4, a weight decay of 10−4, β1

set to 0.9, and β2 set to 0.999. We assign the loss func-
tion coefficients as λhmr = 60, λpose = 5, λsmpl = 1,
λ3D = 300, λ2D = 200, and λreg = 10. In the pre-
processing stage, input images are cropped and resized to
dimensions of 224×224 pixels, using the data augmentation
techniques outlined in [6, 16, 21, 22]. The training spans
60 epochs with a batch size of 64. All computations are
performed on a single NVIDIA RTX 3090 GPU. Note that
we have developed the entire framework using PyTorch [29].

Datasets. To ensure a fair comparison, our experimen-
tal setup mirrors that of previous transformer-based ap-
proaches [6, 21, 22]. Initially, our model is pre-trained on
a collection of datasets including Human3.6M [13], UP-
3D [18], MuCo-3DHP [27], COCO [23], and MPII [1].
Following this, we evaluate its performance using the P2
protocol on Human3.6M. The model is further fine-tuned
on the 3DPW [36] training set and then tested on its corre-
sponding test set. It is important to note that Human3.6M
serves as a significant indoor benchmark for 3D pose esti-
mation, where training is conducted on five subjects (i.e.,
S1, S5, S6, S7, and S8) and testing on two (i.e., S9 and
S11). On the other hand, 3DPW stands out as a challenging
outdoor benchmark, which incorporates annotations for 3D
body poses and meshes, and features a vast array of poses
set against dynamic backgrounds and diverse scenarios.

Evaluation Metrics. We assess the performance of our
model using three evaluation metrics: MPJPE [13], PA-
MPJPE [40], and MPVPE [31]. MPJPE (Mean-Per-Joint-
Position-Error) quantifies the Euclidean distance in millime-
ters between the predicted and the ground-truth joint coor-
dinates. PA-MPJPE builds upon MPJPE by first aligning

the estimated joint coordinates to the ground truth using Pro-
crustes Analysis (PA) [9], then computing the error. On the
other hand, MPVPE (Mean-Per-Vertex-Position-Error) mea-
sures the Euclidean distance between the estimated vertex
coordinates and their corresponding ground-truth values.

Baselines. In this work, we evaluate and compare the
experimental results of our method against Transformer-
based methods [6, 21, 22], as well as CNN-based tech-
niques that leverage intermediate representations, includ-
ing [7, 10, 15, 19]. The comparison with [6] is particularly
worth noting, as it represents the current state-of-the-art in
Transformer-based techniques. Specifically, the objective
is to highlight the efficacy of our progressive pose-guided
learning and our Inter-Intra Joint-Hypothesis Transformer.
Furthermore, we compare our method with [7, 19]. The
former employs 2D pose as an intermediate representation,
while the latter employs 3D pose. These comparisons aim to
emphasize the importance of generating multiple hypotheses
as intermediate representations, a strategy introduced in our
framework that can effectively mitigate error propagation.

4.2. Comparison with Image-Based Methods

In Table 1, we compare our method with prior image-
based human mesh recovery methods, spanning both CNN-
based and Transformer-based approaches. Our evaluations
are conducted on the 3DPW and Human3.6M datasets. On
the Human3.6M dataset, our method achieves 49.61 MPJPE
and 36.73 PA-MPJPE. This performance surpasses all pre-
ceding Transformer-based models and other representative
methods when deploying on the same Resnet-50 backbone.
It is worth noting that our method maintains a consistent
performance trend on the 3DPW dataset, a more rigorous
benchmark due to its outdoor setting. Our model achieves re-
sults comparable to the state-of-the-art FastMETRO-L with
merely 70% of its parameters, and even surpasses it in sev-
eral metrics. This trend persists even when adopting the
larger HRNet-W64 backbone [32] across both datasets.

The outperformance of our method over Transformer-
based approaches [6, 21, 22] suggests the effectiveness of
the proposed progressive pose-guided learning and the Inter-
Intra Joint-Hypothesis Transformer. Moreover, our method
outperforms contemporary CNN-based approaches. Specifi-
cally, we surpass the method from [7] that uses a 2D pose
as an intermediate representation, as well as the approach
from [19] that utilizes a 3D pose as an intermediate repre-
sentation. These comparisons highlight the significance of
generating multiple progressive hypotheses for intermedi-
ate representations, a strategy adopted by our framework
for mitigating error propagation. Our substantial gains in
MPJPE can be attributed to our progressive usage of 2D and
3D poses as intermediate representations, which provide the
framework with potent cues for accurate joint localization.
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Table 1. Comparison with the state-of-the-art (SOTA) methods for 3D human mesh recovery on the Human3.6M [13] and 3DPW [36]
datasets. Please note that the gray background indicates Transformer-based methods, and best results for each metric are highlighted in bold.

Method Backbone Human3.6M 3DPW

MPJPE (↓) PA-MPJPE (↓) MPJPE (↓) PA-MPJPE (↓) MPVPE (↓)

HMR [14] ResNet-50 88.0 56.8 130.0 81.3 -
SPIN [16] ResNet-50 62.5 41.1 96.9 59.2 116.4
GraphCMR [17] ResNet-50 - 50.1 - 70.2 -
HoloPose [10] ResNet-50 60.3 46.5 - - -
DaNet [37] ResNet-50 61.5 48.9 - 56.9 -
I2L-MeshNet [28] ResNet-50 55.7 41.7 93.2 57.7 110.1
HybrIK [19] ResNet-34 54.4 34.5 80.0 48.8 94.5
PyMAF [38] ResNet-50 57.7 40.5 92.8 58.9 110.1
PARE [15] ResNet-50 - - 82.9 52.3 99.7
METRO [21] ResNet-50 56.5 40.6 - - -
FastMETRO-S [6] ResNet-50 55.7 39.4 79.6 49.3 91.9
FastMETRO-L [6] ResNet-50 53.9 37.3 77.9 48.3 90.6

Ours ResNet-50 49.6 36.7 76.7 48.8 89.9

Pose2Mesh [7] HRNet-W48 64.9 47.0 89.5 56.3 105.3
METRO [21] HRNet-W64 54.0 36.7 77.1 47.9 88.2
MeshGraphormer [22] HRNet-W64 51.2 34.5 74.7 45.6 87.7
FastMETRO-L [6] HRNet-W64 52.2 33.7 73.5 44.6 84.1

Ours HRNet-W64 47.9 33.4 71.6 45.1 83.9

Figure 5. Qualitative comparisons of FastMETRO [6] and the
proposed method on the Human3.6M and 3DPW datasets. Please
note that our model size is comparable to that of FastMETRO-S.

4.3. Ablation Study

In this section, we ablatively analyze the effectiveness
of our framework and validate our design choices. The
framework is trained on the Human3.6M training set, and
the evaluations are conducted on its corresponding test set.

Figure 6. Visualization of the 3D Hypotheses. We visualize the
left/right wrists and the left/right ankles. Various hypotheses are
distinguished using distinct colors. In the case of occlusions, the
model tends to generate a more diverse set of poses.

Table 2. Ablation study of the components introduced in our frame-
work on Human3.6M. The baseline model is FatMETRO-S [6].

Progressive
pose-guided
learning

2D Hypothesis 3D Hypothesis MPJPE (↓) PA-MPJPE (↓)

✗ ✗ ✗ 55.7 39.4
✓ ✗ ✗ 51.69 37.5
✓ ✓ ✗ 50.06 37.28
✓ ✗ ✓ 49.99 37.24
✓ ✓ ✓ 49.61 36.73

Table 3. Ablation study on different number of hypotheses.

Num. of Hypothesis 1 16 49 81 121

MPJPE(↓) 51.69 51.15 50.9 49.61 50.02

Effectiveness of the Components. To demonstrate the
effectiveness of our progressive pose-guided learning and
HGM, we compare the performance across five combina-
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Table 4. Comparison of the computational complexity.

Method FLOPs Params MPJPE (↓)

METRO [21] 56.8G 229.2M 54
FastMETRO-S [6] 8.9G 32.7M 55.7
FastMETRO-L [6] 11.8G 48.4M 53.9
Ours 7.3G 33.5M 49.61

Table 5. Ablation study on the design of inter-intra attention.

Method MPJPE(↓) PA-MPJPE(↓)

w/o intra-joint attention 50.54 37.11
w/o inter-joint attention 50.63 37.53
w/ both inter- and intra-joint attention 49.61 36.73

tions of different components as presented in Table 2. We
select FastMETRO-S [6] as our baseline due to its compa-
rable model size and its status as a state-of-the-art model.
As seen in the first and second rows, our progressive pose-
guided approach notably enhances the baseline performance
by reducing the MPJPE from 55.7 to 51.69. This indicates
that the predicted 2D/3D poses bridge the gap between 2D
images and 3D meshes and our HGM generates diverse pose
hypotheses to counter inaccuracies in intermediate represen-
tations. In the third row, it can be observed that incorporating
2D pose hypotheses alone brings a 1.6 MPJPE performance
enhancement. Similarly, integrating 3D pose hypotheses
results in a 1.7 MPJPE improvement. The most optimal
performance is achieved when hypotheses are generated for
both 2D and 3D poses concurrently. Such results highlight
the significant advantages brought about by generating hy-
potheses for both 2D and 3D poses.

Effectiveness of the Attention Mechanism. We next
assess the effectiveness of the two types of attention mech-
anisms within our Tinter−intra. The results are presented
in Table 5. It can be observed that removing the intra-joint
attention and substituting it with several FC layers results in
a decrease in performance by 0.93 MPJPE. A decline is also
observed when we exclude the inter-joint attention. These
highlight the significance of both inter- and intra-joint atten-
tions, as they play a crucial role in capturing the relationships
within each local joint and across different joints effectively.

Computational Cost and Model Parameters. Table 4
compares our approach’s number of parameters and com-
putational costs with several preceding Transformer-based
models. These earlier models employ global attention to di-
rectly convert 2D images into 3D vertices. Such a conversion
necessitates a significant number of parameters and results in
high computational expenses for performance improvements.
Our method requires fewer computational resources and a
smaller model size to achieve performance comparable to
or exceeding previous models. This reveals our capability
to produce competitive outcomes while efficiently reducing
both computational overhead and the model’s overall size,
thus outpacing the prior techniques.

Number Of Hypotheses. In Table 3, we evaluate the
impact of employing different numbers of hypotheses. Since
our approach is based on learning Gaussian distributions, we
have the flexibility to select various quantities of hypotheses.
It can be observed that there is a consistent improvement in
performance as we increase the number of hypotheses, from
1 to 16, 49, and finally 81. Nevertheless, increasing the count
further to 121 leads to a slight decline in performance. As a
result, we select K=81 for our final experimental setting.

4.4. Qualitative Results

Fig. 5 presents the qualitative results of both FastMETRO
[6] and our method on the Human3.6M and 3DPW datasets.
As illustrated in the figure, FastMETRO exhibits artifacts and
yields unrealistic outcomes for certain parts of the human
body. Moreover, it occasionally produces inaccurate poses
for complex activities, such as leg bending, overlapping,
and occlusions. In contrast, our method consistently and
accurately estimates 3D poses across different scenarios.

4.5. Visualization of Hypotheses

In Fig. 6, we visualize the 3D pose hypotheses for the
left/right wrist and left/right ankles. As depicted in the fig-
ure, our HGM produces sets of plausible poses. It is worth
noting that our model exhibits more diverse results in re-
gions impacted by occlusion, indicative of areas with higher
uncertainty. This enables our model to explore a broader
spectrum of possibilities, leading to more precise decisions.

5. Conclusion
In this work, we introduced a multi-stage framework that

progressively transforms 2D RGB images into 3D meshes.
Through the generation of intermediate representations, our
approach evaluates pose distributions and formulates plau-
sible hypotheses. These are further refined by our Inter-
Intra Joint Hypothesis Transformers. We benchmarked
our approach against image-based human mesh recovery
methods across the 3DPW and Human3.6M datasets. The
results revealed that our method consistently outperforms
Transformer-based and CNN-based predecessors even with
fewer parameters. Our ablation study validated the robust-
ness and efficiency of our framework’s components.
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