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Abstract

One of the daunting challenges in federated learning (FL)

is the heterogeneity across clients that hinders the successful

federation of a global model. When the heterogeneity be-

comes worse, personalized federated learning (PFL) pursues

to detour the hardship of capturing the commonality across

clients by allowing the personalization of models built upon

the federation. In the scope of PFL for visual models, on the

contrary, the recent effort for aggregating an effective global

representation rather than chasing further personalization

draws great attention. Along the same lines, we aim to train

a large-margin global representation with a strong general-

ization across clients by adopting the meta-learning frame-

work and margin-based loss, which are widely accepted to

be effective in handling multiple visual tasks. Our method

called MetaVers achieves state-of-the-art accuracies for

the PFL benchmarks with the CIFAR-10, CIFAR-100, and

CINIC-10 datasets while showing robustness against data

reconstruction attacks. Noteworthy, the versatile represen-

tation of MetaVers exhibits a strong generalization when

tested on new clients with novel classes. Code is available at

https://github.com/eepLearning/MetaVers.

1. Introduction

Recently, a massive number of data samples are being
created at distributed devices such as wireless smart devices,
connected self-driving cars, and other edge nodes. Collecting
private data samples from these decentralized nodes to a
centralized server for training models raises serious concerns
about data privacy. As one of the ways to resolve the privacy
concern, federated learning (FL) has been proposed to train a
single yet effective global model by aggregating local models
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from clients [26] while keeping data on the client side.
However, such advances in decentralized learning frame-

work may fail to acquire a generalized model when the data
distribution across clients is widely diverse, so-called hetero-
geneity across clients. To relieve the challenge, personalized
federated learning (PFL) aims to train a personalized model
for each client by leveraging the benefits from the federation
across clients rather than pursuing a single global model.

A group of PFL methods is based on regularizing the
gap between personalized models and the global model. For
instance, pFedMe [9] regularizes the gap in parameters be-
tween personalized and the global model, and FedProto [37]
focuses on the representation space by regularizing the lo-
cally computed per-class averaged features not to diverge far
from the globally computed per-class averaged features.

Another branch of methods aims to devise model-based
approaches. FedPer [2] and LG-FedAvg [23], explicitly
divide learnable parameters into local and global, i.e., the
local parameters are optimized at each client, but the global
parameters are trained via federation across clients. Other
methods called pFedHN of [34] and pFedGP of [1] introduce
auxiliary networks that are trained over clients which facili-
tate the construction of client-specific local models. Most of
the prior PFL algorithms focus on acquiring sufficient per-
sonalization of local models based on the assistance of the
federation that leverages benefits across clients. It has been
believed that the training of a global model is sub-optimal
for handling heterogeneity across clients.

A few recent works [6,25,28] argue the importance of the
successful aggregation of a global model that overcomes het-
erogeneity across clients. FedRep [6] and FedBABU [28] try
to learn a shared representation across clients by decompos-
ing the training of the feature extractor and classifiers, i.e.,
federation takes place only for the extractor, and the classifier
is personalized for each client. In the work of FedRep, au-
thors first claim that the global representation fully leverages
the commonality across clients and can be easily generalized
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to new clients with novel classes. FedBABU [28] reveals
that the federation of the extractor so-called ‘body’ is the key
to federated learning of deep models across clients. Once
the body is trained across clients, further steps of personal-
ization on each client with a personalized classifier achieve
a noticeable performance than a naive case where the feder-
ation takes place for a whole model. Along the same lines,
kNN-Per of [25] adopts k-nearest neighbors as the person-
alized classifiers while a global extractor is learned across
clients. The stream of approaches claims the importance of a
global representation that learns the way of the common fea-
ture extraction of the heterogeneous regime. However, these
works only attempt to decouple the training of representa-
tion and classifiers for federated learning but do not employ
particular learning strategies that are known to be effective
for capturing the commonality across heterogeneity.

In this paper, a method called MetaVers exploits two
powerful methodologies to achieve a versatile representation
via federation: meta-learning and margin-based learning,
which are confirmed to be effective for acquiring strong gen-
eralization for multi-task settings and visual representation
learning, respectively. To tackle the heterogeneity across
clients, MetaVers borrows the concept of distance-based
meta-learning such as ProtoNet of [36], which aims to train
a common feature extractor for different classification tasks.
Each local few-shot episode for each client plays a distinctive
classification task so that the aggregation of local gradients
across clients leads to the meta-learning of the representa-
tion. Along with the meta-training framework, MetaVers
encourages the large margin representation via adopting cen-
troid triplet loss of [15] in computing local gradients. To
prevent dense representation from local episodic training
of scarce data, a server encourages all clients to learn suffi-
ciently large-margin embeddings by sending the increasing
margin values for the centroid triplet loss term that enables
dynamic margins of the representation space.

In the extensive simulations, MetaVers achieves state-
of-the-art performance on the standard PFL benchmarks
based on the CIFAR-10, CIFAR-100, and CINIC-10 datasets.
Also, we demonstrate the versatility of MetaVers to clas-
sify out-of-distribution data samples by measuring the perfor-
mance of a newcomer client with novel classes that have not
been trained at all. In the privacy perspective, MetaVers
shows the robustness under the popular model inversion
attack such as Deep Leakage from Gradients (DLG) [43].

2. Related Work

After the work of [26] called FedAvg, which is widely
accepted as a baseline of federated learning (FL), immense
efforts have been dedicated to tackling the heterogeneity
across clients. We categorize related works into three parts:
i) FL with heterogeneous clients whose goal is to achieve
higher accuracy on an overall test split with a single global

model, ii) Personalized federated learning (PFL) that pursues
to improve the local performance of each client and iii)

Distance-based meta-learning.

2.1. Federated Learning with Heterogeneity

The heterogeneity across clients, also known as the non-
independent and identically distributed (non-IID) setting, is
shown to hinder the aggregated model from converging to the
optimal global model [18,22,32]. When the heterogeneity be-
comes severe, locally trained model parameters of different
clients largely diverge from each other so that the accuracy of
the FL dramatically deterioates [42]. To solve this problem,
various types of approaches have been proposed by extend-
ing FedAvg baseline [16, 21, 27, 30, 32, 39, 42]. The work
of [42] claims that a small set of shared data is sufficient to
prevent the divergence of local models. FedAvgM [16] con-
siders the momentum of gradients to regularize the dramatic
change in the global model. FedMA [39] aggregates a se-
lected part of parameters, i.e., layer-wise federation inspired
by Probabilistic Federated Neural Matching [41]. These
early works for handling non-IID settings rather focus on reg-
ularizing the local training to guarantee the convergence of
the global model. In contrast, MetaVers explicitly adopts
meta-learning that enables training a common model rather
than regularizing the diversity of local training across clients.
FedAwS [40] aggregates both the model parameters and the
class embeddings. This method utilizes the positive term
of the contrastive loss to update the local model. However,
sharing the class embeddings, which can contain a private
data, contravenes a privacy perspective of FL scenario.

2.2. Personalized Federated Learning (PFL)

PFL allows each client to prepare its own personalized
model by taking the benefits from federation across clients.

Employing auxiliary models: A branch of methods em-
ploys the auxiliary networks, which facilitate the personaliza-
tion of each client’s model. pFedHN [34] learns a globally
federated hypernetwork that aims to generate a personalized
model for each client. Another method called pFedGP [1]
combines Gaussian processes with the PFL framework to
achieve an effective deep kernel function across all clients.

Splitting model architecture: Another group of ap-
proaches tries to split models into parts and handle them
separately in federation. Some prior works [2, 8, 13, 23]
combine a certain part of the aggregated model with local
models. Other works divide the model architecture into local
and global training parts: FedPer [2] locally trains a personal
classifier layer with a globally trained feature extractor. In
contrast, LG-FedAvg [23] locally trains feature extractors
with a global classifier for reduced communication burden.

Using prototypes: A method called FedProto [37] aggre-
gates per-class averaged features, i.e., prototype, instead of
gradients. In this setting, each client trains its personal model
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Method

FedAvg [26] FedRep [6] kNN-Per [25] FedBABU [28] pFedGP [1] Per-FedAvg [17] FedProto [37] MetaVers
Global body

† 7 3 3 3 7 7 7 3
Head type

⇤ Weights Weights Weights Weights Weights Weights Prototypes Prototypes
Fine-tuning

# 7 7 7 3 7 3 7 7
† means whether a method trains a global representation via decoupling body and head.
⇤ ‘Weights’ indicates normal classifier weights, and ‘Prototypes’ indicates per-class averaged features.
# means whether a method requires fine-tuning steps through gradient computation in testing.

Table 1. Comparison between MetaVers and the existing PFL methods

by utilizing the aggregated global prototype to regularize
local prototypes closer to the global one.

Adopting multi-task training: When interpreting the
training of each local client as ‘task’, then the learning strate-
gies to handle multiple tasks can be borrowed to improve
PFL methods. For instance, MOCHA [35] and FedU [10]
adopt multi-task learning while training distinct but similar
personal models. Another group of methods interprets PFL
as transfer learning, so they aim to transfer knowledge from
the global model to local models [5, 20]. By expanding the
multi-task learning viewpoint to meta-learning which pur-
sues to extract the generalized knowledge from the given task
distribution, the optimization-based meta-learning is utilized
to tackle PFL [4, 11, 17]. Among them, Per-FedAvg [11]
understands the objective of PFL as closely related to the bi-
level optimization setting of Model-Agnostic Meta-Learning
(MAML) of [12]. Our MetaVers and Per-FedAvg are rel-
evant in view of meta-learning, but they show significant
differences in both technical and philosophical viewpoints.

Pursuing global representation: In very recent works
of [6, 25, 28], researchers emphasize the importance of the
shared representation in the following perspectives: i) The
successful federation of a global model over heterogeneity
fully captures the commonality across clients [6]. ii) The
global representation enables rapid personalization via a
small number of updates [28]. iii) Moreover, the representa-
tion can work well even for a newcomer client who has never
participated in the federation [6, 25]. Their strategies are
based on decoupling the training of the representation part
and the classifier part, which are called ‘body’ and ‘head’,
respectively. FedRep of [6] freezes locally-trained classi-
fiers while training the feature extractor, then the parameters
of the extractor are aggregated across clients. FedBABU
of [28] never learns the classifiers but only trains the feature
extractor during the federation. kNN-Per of [25] adopts
k-nearest neighbors as the classifier and trains the global
feature extractor across clients.

2.3. Novelty of MetaVers over Relevant Works

Comparison to prototype-based method: In the view
of utilizing prototypes, FedProto [37] seems to be closely
related to our work, but there is a significant difference, i.e.,
FedProto does not aggregate model parameters but collects

the global prototypes as the tool for regularizing local train-
ing so that FedProto cannot obtain a meta-trained model.

Comparison to Per-FedAvg: Per-FedAvg [11] is built
upon the concept of optimization-based meta-learning which
requires fine-tuning steps. Due to the nature of optimization-
based approaches, Per-FedAvg requires further fine-tuning
of the global model to work successfully on the client side.
When comparing with our MetaVers, the global model of
Per-FedAvg cannot work as a generalized representation be-
cause it relies on local fine-tuning. In contrast, MetaVers
is based on distance-based meta-learning such as Prototypi-
cal Networks of [36], which focuses on the training of the
global feature extractor so that the shared embedding of
MetaVers is capable of acquiring the sufficient personal-
ization at each local client without an additional update.

Comparison to global representation method: As the
prior works including FedRep [6], kNN-Per [25] and Fed-
BABU [28], MetaVers never trains local classifiers but
computes prototypes for each local episode as the classifiers
so that the federation is focused on finding a global repre-
sentation. The main difference is that MetaVers employs
two explicit methodologies to fully aggregate the common-
ality across clients, i.e., the meta-learning framework and
large-margin loss. As a result, MetaVers outperforms the
existing methods in the PFL benchmarks and shows notice-
able performance for a newcomer client who contains novel
categories that have not been trained before. We emphasize
that MetaVers offers the advanced method to train a strong
global representation across clients.

Table 1 shows the comparison between MetaVers and
the existing PFL methods from three different viewpoints:
the federation of a global body, head classifier type, and
fine-tuning steps for personalization in testing.

2.4. Distance-based Meta-Learning

When saying the relevant method, Prototypical Networks
[36] train a representation across widely-varying classifica-
tion, where the features from the same class are concentrated
to the class-specific averaged features so-called prototype.
MetaVers extends the concept of Prototypical Networks
into the PFL settings to train a representation across varying
episodes from different clients. Each client of MetaVers
processes its episodes that resemble Prototypical Networks,
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and the computed gradients are aggregated at the server.

3. Proposed Method

3.1. Problem Setting of PFL

In the PFL setting, the number of distributed clients is
n. Each client contains the local dataset Di, which fol-
lows the data distribution Pi. The embedding model for
feature extraction is f( · ; ✓) with model parameter ✓, and
the classifier weight is �i for client i. The local loss com-
puted at i-th client is L(f(x; ✓i),�i, y). Then the objec-
tive function of PFL is to find the client-specific model
parameters {⇥⇤

,�⇤} = {✓⇤i ,�⇤
i }ni=1 that minimizes av-

eraged local loss values across clients. For the purpose
of finding a shared representation across clients, the fea-
ture extractor weight should be a single global model,
i.e., ✓

⇤ = ✓
⇤
i for all i 2 [n]. In addition, MetaVers

does not require training classifier weights, so we can fur-
ther drop the classifier weights in the objective function:
✓
⇤ = argmin✓

1
n

Pn
i=1

1
|Di|

P
(x,y)⇠Pi

L
�
f(x; ✓), y

�
.

3.2. Proposed Algorithm: MetaVers

Our proposed algorithm, MetaVers, handles repetitive
communication rounds in the same way as FedAvg of [26].

Intialization: At the beginning of round ⌧ = 1, · · · , T ,
a client receives a global embedding network f( · ; ✓(⌧))
parameterized by ✓

(⌧). Also, the central server transmits the
round-specific distance margin value m(⌧)

global to every client.
Local update at each client: In each round, each client

constructs its own training episode E(⌧)
i . The episode is

generated by sampling N local classes and their labeled
samples. First of all, the support set S with K samples
per class and the query set Q with Q samples per class are
sampled. The prototype ck for local class k is computed by
taking the average of feature vectors from support samples:

ck =
1

|Sk|
X

x2Sk

f(x; ✓(⌧)), (1)

where Sk is the subset of S whose label is k 2 {1, ..., N}.
Each client calculates the Euclidean distance-based cross-

entropy loss LS by measuring the distance between the fea-
ture vectors of query samples and the class prototypes, i.e.,

LS =
1

|Q|

NX

k=1

X

x2Qk

h
d(f(x; ✓(⌧)), ck)

+ log

NX

l=1

exp (�d(f(x; ✓(⌧)), cl))
i
. (2)

To promote a well-clustered representation, MetaVers
employs a particular aggregation of margins values. First,

each client computes the class centroid ak which is the per-
class averaged features of the samples in its local episode,
including supports and queries. The average distance be-
tween different centroids, so-called local distance margin
m(⌧)

i is then computed:

m(⌧)
i =

1

(N � 1)2

X

k

X

l 6=k

d(ak,al) (3)

The client-specific margin value m⇤
i for the triplet loss is ob-

tained by taking the larger value among the local and global
margins, i.e., m⇤

i = max{m(⌧)
global,m

(⌧)
i }. For centroid triplet

loss, the centroid ak is used as the anchor point. The posi-
tive points are sampled from the features of the support and
query samples from class k. The negative points are samples
from the feature vectors of supports and queries from other
classes. Then for a triplet (ak, xp 2 Sk [Qk, xn 2 Sl [Ql)
where l 6= k, the loss can be calculated:

LT (ak, xp, xn) = max
n
d
�
ak, f(xp; ✓

(⌧))
�

� d
�
f(xp; ✓

(⌧)), f(xn; ✓
(⌧))

�
+m⇤

i , 0
o
.

(4)

By considering all cases, the triplet loss term LT is obtained:
LT =

P
k

P
(xp,xn)

LT (ak, xp, xn). The computational
overhead of centroid triplet loss for MetaVers is: O(cN2),
where c is the number of classes and N is the number of
samples. It seems to be burdensome at a glance, because it
is square of the number of the sample. The reason why we
adopt triplet-based loss is that triplet loss is directly designed
to enlarge the margin between classes in a sample-by-sample
way. Also, using a single anchor point, which is the per-class
centroid, reduces the number of pairs to be considered when
compared with conventional triplet loss of [33]. Our triplet
loss computation is similar to the triplet-center loss proposed
in the work of [15]. The difference is that we consider entire
feature vectors from different classes in the negative pair
terms but the triplet-center loss of [15] utilizes different
class centroids as negative points. That makes MetaVers
enlarge the margin more strongly.
MetaVers makes each client adopt a larger margin than

the local distance. The round and client-specific margin
value guides each client to acquire better representation, i.e.,
when the local embedding is already well-separated and clus-
tered than the global margin, then the client adopts its own
local distance mi as the margin, otherwise, the client takes
the global margin value mglobal from the server to promote
the local embeddings to show the larger margin separation.

By combining cross-entropy loss LS and triplet loss LT ,
the embedding network f( · ; ✓(⌧)) is then updated:

✓
(⌧)
i  ✓

(⌧) � ⌘r(�LS + (1� �)LT ), (5)
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Figure 1. Federated learning process of MetaVers

where � is a hyperparameter for balancing the cross-entropy
loss and the triplet loss. The locally updated parameter ✓(⌧)i

and the average distance between centroids m(⌧)
i are then

uploaded to the server when client i is active in this round.
Aggregation process at the server: The average of the

aggregated local models from active clients is set to be the
global model for the next round:

✓
(⌧+1)  1

|C⌧ |
X

i2C⌧

✓
(⌧)
i , (6)

where C⌧ is a set of active clients during round ⌧ . The server
aggregates the local average distance values m(⌧)

i from the
active clients to newly calculate the average distance values
across clients. For a stable update, the server considers the
past global margin values with a fixed interval of W rounds:

m(⌧+1)
global  

1

W

n ⌧�1X

t=⌧�W+1

m(t)
global +

1

|C⌧ |
X

i2C⌧

mi

o
. (7)

Figure 1 shows the learning process. Also, the pseudocode
is in Supplementary material.

Testing: After T rounds, each client utilizes the shared
representation f(·; ✓T ) as a feature extractor without further
optimization. Each client then computes the per-class aver-
aged features, i.e., prototypes of its local classes, and uses
them as classifiers. Queries are classified into the nearest
prototypes by computing the Euclidean distance metric.

3.3. Effect of Increasing Margin on Embedding

Let us recall the triplet loss term of eq. (4). Consider a
triplet (ak, xp, xn) that produces non-zero triplet loss value.
Without losing generality, let us assume that there are two
different classes k and l in the given episode. Then the triplet
loss term for the given triplet (ak, xp, xn) becomes

LT = d
�
ak, f(xp; ✓)

�
� d

�
f(xp; ✓), f(xn; ✓)

�
+m⇤

i

= kf(xp; ✓)� akk � kf(xp; ✓)� f(xn; ✓)k+m⇤
i

(a)
 kf(xn; ✓)� akk+m⇤

i . (8)

The inequality (a) follows the fact that kx � yk � kx �
zk  ky � zk. When the global margin mglobal from the
server is larger than the local average of the distance between
centroids, i.e., mglobal > mi = kak � alk, then the loss is
upper bounded as follows:

LT  kf(xn; ✓)� akk+ kak � alk+�

 kf(xn; ✓)� alk+� (9)

where � = mglobal � mi > 0. To suppress the bound,
the local margin mi should be enlarged to the global margin
mglobal. Moreover, the distance between queries and the cor-
responding prototype should be reduced. It implies that the
clients with less-separated class prototypes are encouraged
to learn a better representation with a sufficient margin.

3.4. Convergence Analysis

Herein, we provide a brief result of the convergence anal-
ysis. The full description including mathematical definitions,
assumptions and proofs are in the Supplementary material.

Basic notations: Ei represents a training episode at client
i. ✓(⌧) indicates the global model parameter at the beginning
of the round ⌧ . ✓

(⌧)
i means the locally updated model pa-

rameter after an episodic-training at client i in the round ⌧ .
Finally, Li(✓; Ei) is the local loss value based on the model
parameter ✓ and the given episode Ei from client i. Also, L
is the L-smoothness of local loss function. ↵ 2 (0, 1] and
�
2 are used for bounding the local gradients. Based on the

notation, following Lemma and Theorem are guaranteed.
Lemma 1. For every client i 2 [1, n], the difference of

local losses at round ⌧ + 1 and ⌧ is bounded:

Li(✓
(⌧+1))� Li(✓

(⌧))

 (�⌘↵+
1
2
L⌘2)

⇣
krL(✓(⌧))k2 + �2

⌘
, (10)

where ⌘ is the learning rate of local update.

Theorem 1. (Convergence) For any client i 2 [1, n]
with a learning rate ⌘

⇤
<

2↵
L , the local loss is a decreasing

function in the number of rounds:

Li(✓
(⌧+t)) < Li(✓

(⌧)). (11)
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CIFAR-10 CIFAR-100 CINIC-10

# clients 50 100 500 50 100 500 50 100 500

Local 86.0 82.9 75.9 51.4 45.6 31.2 60.7 58.3 50.8
FedAvg [26] 57.8 58.1 56.7 25.6 24.1 22.7 49.3 51.2 50.2

LG-FedAvg [23] 87.9 83.6 64.7 43.6 37.5 20.3 59.5 59.9 52.5
pFedMe [9] 86.4 85.0 80.3 49.8 47.7 32.5 69.9 68.9 58.8
FedProto [37] 85.9 79.0 51.0 47.8 17.8 10.9 58.2 40.3 26.0
Per-FedAvg [11] 71.1 79.1 67.7 38.2 34.1 32.8 53.8 53.5 59.6
pFedHN [34] 90.2 87.4 83.2 60.0 52.3 34.1 70.4 69.4 64.2
pFedGP [1] 89.2 88.8 87.6 63.3 61.3 50.6 71.8 71.3 68.1
FedPer [2] 83.8 81.5 76.8 48.3 43.6 25.6 70.6 68.4 62.2
FedRep [6] 82.4 80.7 77.3 45.1 38.8 30.2 67.1 64.7 61.5
kNN-Per [25] 89.6 89.5 84.8 61.8 56.0 38.7 71.8 72.0 69.2
FedBABU [28] 87.2 86.2 85.5 53.4 52.3 49.0 68.7 66.5 67.8

MetaVers (Ours) 90.8 90.2 89.9 66.7 64.8 55.8 73.2 73.2 72.5

The results with SEM (Standard Error of the Mean) are in Supplementary material.

Table 2. Test accuracy over 50, 100, 500 clients on CIFAR-10, CIFAR-100, and CINIC-10.

The mathematical claim guarantees the decreasing behav-
ior of the local loss function, which directly implies the
convergence of the PFL performance of MetaVers.

4. Experiments

MetaVers is evaluated on the various personalized fed-
erated learning (PFL) setups. Also, we run additional ex-
periments to verify the strong generalization of the learned
representation.

4.1. Evaluation on Standard PFL Benchmarks

We compare MetaVers with other methods on the re-
cent PFL settings that are considered in [1, 34]. Among the
existing PFL benchmarks, we select the setting in [1,34] due
to the following two reasons: i) a wide range of the number
of clients and ii) a strongly limited number of active clients.
We believe that the settings can reflect realistic decentralized
training setups. The benchmarks are based on the follow-
ing datasets: CIFAR-10, CIFAR-100, and CINIC-10 [7].
CINIC-10 is a larger dataset that collects samples from two
datasets: CIFAR-10 and ImageNet [31]. In our experiment,
we set the total number of clients to be 50, 100, and 500.
Also, the number of active clients for each round is 5 for
all cases. We set the total number of classes in each client
to be 2, 4, and 10 classes for CIFAR-10, CINIC-10, and
CIFAR-100, respectively. Details for dataset splitting and
the non-IID settings are described in Supplementary material.
In a recent work of [3], a PFL benchmark with CIFAR-10
is suggested by imposing heterogeneity through Dirichlet
allocation. When compared to the Standard PFL benchmarks
of [1, 34], less number of clients are given, i.e., 100 clients,
and more active clients are allowed, i.e., 20 active clients.
However, the degree of heterogeneity can be controlled by

Dirichlet allocation. The evaluation on the benchmark is in
Supplementary material.

Experiment Setups: By following the settings of [1, 34],
we allow 1,000 server-client communication rounds. Five
active clients are selected in each round besides pFedHN.
For ‘Local’ method, each local model is allowed to be
trained with 100 local episodes without communications.
‘LG-FedAvg’ requires extra 200 rounds after pretraining the
FedAvg model via 1,000 rounds. 10 fine-tuning steps are
used for FedBABU in testing.

Implementation: As done in [1, 34], we use a LeNet-
based model [19] with two 2 x 2 convolutional layers where
a 2 x 2 max-pooling layer follows each one. After the second
max-pooling layer, two fully-connected layers and one clas-
sifier layer follow. For MetaVers, the last classifier layer
is not used. Details on the optimizer and learning rates are
in Supplementary material. For demonstrating how the algo-
rithm scales in the size of model architecture, we additionally
demonstrate MetaVers with the ResNet architecture [14]
in Supplementary material.

Results: Table 2 shows the test accuracies averaged over
three random seeds. We claim that i) MetaVers achieves
state-of-the-art performance with considerable margins for
all cases. ii) MetaVers are more solid in the case with
more clients when compared to prior methods. We empha-
size that the margins of accuracies between MetaVers and
the runner-up algorithms are considerable when the number
of clients increases, i.e., the gaps for 500-client cases are
+2.3%, +5.2%, and +4.4% for CIFAR-10/100 and CINIC-
100, respectively. In these cases, each client contains a
very small number of samples where the local training suf-
fers from overfitting. MetaVers is robust for this scenario
because each client newly constructs a few-shot episode by
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(a) Local (b) Triplet loss (c) Cross-Entropy (d) MetaVers

Figure 2. t-SNE for (a) Local (no federation) and MetaVers with (b) Only Triplet (w/ fixed margin), (c) Only Cross-Entropy and (d)
MetaVers. Data is sampled from the CINIC-10 test set.

CIFAR-100

Method Client 50 Client 100 Client 500

FedAvg-Proto [26] 62.4 ± 0.3 60.7 ± 0.2 50.1 ± 0.4
FedBABU-Proto [28] 58.9 ± 0.6 57.4 ± 0.6 43.5 ± 1.0
FedRep-Proto [6] 45.3 ± 2.0 42.4 ± 0.8 34.6 ± 0.7
pFedGP-Proto [1] 61.3 ± 0.2 60.3 ± 0.2 52.6 ± 0.1

MetaVers (Ours) 66.7 ± 0.4 64.8 ± 0.3 55.8 ± 0.1

Table 3. Testing with prototype-based classifiers (‘-Proto’)

picking a very small number of samples for each round rather
than fitting to its whole dataset so that it prevents overfitting
of local updates. iii) MetaVers achieves more dominant
performance gains in more complicated datasets when com-
pared to prior methods. MetaVers achieves outperforming
performance in the CIFAR-100 cases with more diverse im-
age categories, i.e., the gaps over the runner-ups are +3.4%,
+3.5%, and +5.2% for 50, 100, and 500 client cases, respec-
tively. This advantage is from the strength of meta-learning,
which is more solid in training the shared knowledge of wide-
range task distribution. iv) When compared with FedProto
of [37], and Per-FedAvg of [11] that utilize prototype-based
learning and optimization-based meta-learning, MetaVers
shows outstanding performance. Also, we note that Fed-
Proto suffers from the limited number of active clients in our
experiments, where the work of FedProto assumes full par-
ticipation of clients at every round. v) For the prior methods
with shared representations, including FedPer of [2], FedRep
of [6], kNN-Per of [25], and FedBABU of [28], MetaVers
is only the method that shows consistent gains for all bench-
marks over the personal model-based PFL methods such as
pFedHN of [34] and pFedGP of [1]. It confirms the superior-
ity of the strong generalization capability of MetaVers to
prior shared-representation-based approaches.

Evaluation with Prototype Classifiers: MetaVers
does not have a learnable classifier, not only in inference but
also in the training process. Instead, MetaVers computes
local prototypes as the classifiers. We tested other methods
with a shared representation, such as FedAvg, FedBABU,
and FedRep, by changing their classifiers into prototype-
based classifiers as MetaVers. We conjecture that the

CIFAR-100 with Client 100

Method nVAR
FedAvg [26] 1022.8
FedBABU [28] 1097.2
FedRep [6] 2031.4

MetaVers (Ours) 769.1

Table 4. Normalized VAR (nVAR) of global representations

prototype-based classification reflects how much the global
representation is intra-class compact and inter-class sepa-
rated. Also, pFedGP is included as a cutting-edge PFL
algorithm with personal models. As shown in Table 3,
MetaVers shows the best performance implying that the
representation capability of MetaVers is outperforming.

Representation Analysis: To quantify how much the
global representation shows well-clustered feature distri-
bution, we computed normalized Variance (nVAR), which
is the mean of per-class variance of features divided by
the squared distance to the nearest interfering prototype:
nVAR = Ek2C [E(x,y)2D[||ck � f(x; ✓)||2/||ck � nk||2]],
where C is the set of classes, i.e, 100 for the CIFAR-100
case, D is the union of test samples across clients, k is the
class index, ck is the prototype of class k, f(·; ✓) is the fea-
ture extractor of the global representation for each algorithm,
and nk is the nearest interfering prototype of class k. A
smaller nVAR value indicates that the feature distributions
are well-clustered and separated, which means a strong gen-
eralization over clients. The results in Table 4 clearly show
that MetaVers acquires a compact and separated repre-
sentation compared to other shared methods with a global
representation.

Qualitative analysis by t-SNE visualization: We vi-
sualize the learned representation of MetaVers by using
t-SNE of [38] to confirm the large-margin representation
learning of MetaVers. As shown in Figure 2, we com-
pare (d) MetaVers with (a) Local, b) MetaVers with a
fixed-margin triplet loss, and (c) MetaVers with the cross-
entropy loss. In Figure 2, the small dots in different colors
indicate samples in 10 different classes of CINIC-10, and
large points represent the class centroids. We observe that
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CINIC-10

Method Client 50 Client 100 Client 500

Local 60.7 58.3 50.8
Only CE loss 72.8 72.5 71.7
Only Triplet loss 72.6 72.7 71.9

MetaVers (Ours) 73.2 73.2 72.5

Table 5. Performance on CINIC-10 for Client 50 to 500 cases

FedAvg

Ground truth

(with prototype leakage)

Figure 3. Single image reconstruction leakage after 300 iterations.

(d) MetaVers is the only case where the centroids are suf-
ficiently well-separated without any overlapping. Notably,
for cases (a), (b), and (c), some centroids are closely located
to hinder the discrimination between classes. The result
confirms that MetaVers dynamically enlarges the margins.

Ablation Studies on Loss Terms: Accuracies for the vari-
ants of loss adaptation for MetaVers are shown in Table
5. MetaVers with the dynamic margin shows the best per-
formance over the versions of the fixed-margin (m = 0.75)
triplet loss and cross-entropy (CE) loss. Also, we emphasize
that all the versions of MetaVers show a moderate decline
in accuracies as the number of clients increases.

Robustness to Gradient-based Attack A recent ap-
proach called Deep Leakage from Gradients of [43] raises a
crucial threat to the FL framework that aggregates the local
gradients at the central server. DLG optimizes a dummy
input to mimic shared local gradients, gradually approach-
ing the original input sample, and repeatedly rehearses loss
and gradient computations for data reconstruction. For
MetaVers, however, a server cannot access the local class
prototypes which are essential for rehearsing the loss compu-
tation. Therefore, MetaVers can be robust to leakage from
gradients. To prove the concept, we actually carry out the
single image reconstruction experiments for FedAvg [26]
and MetaVers. For further analysis, we tested a variant of
MetaVers that shares the local prototypes with the server
(denoted as MetaVers with prototype leakage). In the ex-
periments on CIFAR-10 and CIFAR-100, we perform 300
iterations for estimating the original image via the L-BFGS
optimizers [24] with a learning rate of 1. As shown in Fig-
ure 3, the attack on FedAvg and MetaVers with prototype
leakage appears to be successful. Surprisingly, MetaVers
is shown to prevent the attacker from reconstructing the im-
ages without any portion of data leakage. MetaVers does

Method CIFAR-100 miniImageNet

FedAvg [26] 51.6 38.8
Fine-tuning via FedAvg [29] 63.2 61.6
Few-Round Learning [29] 72.9 69.3

MetaVers (Ours) 73.6 71.2

Table 6. Generalization for novel clients with novel classes

not share the prototypes so the estimation of local prototypes
is essential for DLG to rehearse the loss computation, and it
is shown to be a very challenging task for the attacker due
to the large dimension of prototypes. Consequently, we con-
firm that MetaVers can train an effective representation
without taking the risk of data leakage.

4.2. Generalization on Novel Classes

We evaluate MetaVers on the other protocol for unseen
class inference from Few-Round Learning (FRL) of [29].
Following the exact setting of FRL, we partition CIFAR-100
and miniImageNet into 64 train, 16 validation, and 20 test
classes. Training is done for the train split with the non-
IID setup, then the model is tested on a newcomer client
with five unseen classes from the test split. We describe
the exact settings in the Supplementary material. Although
few-round learning (FRL) requires a few-round of additional
communications for adapting the model to the novel client,
MetaVers is tested without any further optimization of
model parameters. In Table 6, we can observe the strong
generalization capability MetaVers on even novel clients.

Additional studies for the behavior of dynamic margin
values are presented in the Supplementary material.

5. Conclusions

We propose a meta-learning-based personalized federated
learning (PFL) called MetaVers for versatile and large-
margin representations. We adopt meta-learning for the
PFL setting that aggregates the gradients from varying local
episodes. In addition, a particular dynamic margin learn-
ing promotes better-clustered representations. MetaVers
outperforms other competing methods in PFL benchmarks.
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