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Abstract

This paper proposes CAMOT, a simple camera angle es-
timator for multi-object tracking to tackle two problems:
1) occlusion and 2) inaccurate distance estimation in the
depth direction. Under the assumption that multiple objects
are located on a flat plane in each video frame, CAMOT
estimates the camera angle using object detection. In addi-
tion, it gives the depth of each object, enabling pseudo-3D
MOT. We evaluated its performance by adding it to various
2D MOT methods on the MOT17 and MOT20 datasets and
confirmed its effectiveness. Applying CAMOT to ByteTrack,
we obtained 63.8% HOTA, 80.6% MOTA, and 78.5% IDF1
in MOT17, which are state-of-the-art results. Its compu-
tational cost is significantly lower than the existing deep-
learning-based depth estimators for tracking.

1. Introduction
Multi-object tracking (MOT) [3, 4, 11, 18, 61, 62] is a

task to detect and track objects in a video across space and
time while maintaining consistent identities. It is utilized in
several applications, such as autonomous driving and video
surveillance. Its standard paradigm consists of two stages:
1) object detection [19,21,29,40,41,65], wherein it detects
individual objects in each frame, and 2) association [7, 62],
wherein it associates detection results over time to form a
track for each object. In this paper, we focus on the appli-
cation of MOT to surveillance.

MOT faces several challenges in real-world scenarios.
One significant problem is that the target object is often
occluded by other objects, resulting in detection failure.
Another problem is that the distance between two objects
cannot be precisely estimated when they are aligned in the
depth direction. This may cause incorrect object associa-
tions between different frames.

These two problems can be addressed if we know the
depth of each object. To this end, Khurana et al. [24]
plugged a depth estimator based on deep learning into the
MOT framework. Although it somewhat solves the occlu-

Figure 1. Illustration on the idea of CAMOT. Under the assump-
tion that multiple objects are located on a flat plane, the camera an-
gle is estimated using object detection. The scale of each bounding
box indicates the depth of each object, whereas the distribution of
the bounding boxes informs us of the camera angle.

sion problem, the imprecise distance problem still needs to
be solved. In addition, the depth estimator may require sig-
nificant additional computational costs.

In this paper, we propose CAMOT (Camera Angle-
aware Multi-Object Tracking), a simple camera angle es-
timator for MOT, to solve these problems. Assuming that
multiple objects are located on a flat plane in each video
frame, it estimates the camera angle by utilizing object de-
tection. Our method provides the depth of each object and
solves the occlusion problem. It additionally measures the
distance in the depth direction and associates objects in dif-
ferent frames more accurately. CAMOT is computationally
efficient and can be used as a plug-in component in various
MOT methods.

We evaluated its performance by adding it to various 2D
MOT methods on the MOT17 and MOT20 datasets and con-
firmed its effectiveness. For example, when applied to Byte-
Track, it achieved state-of-the-art results of 63.8% HOTA,
80.6% MOTA, and 78.5% IDF1 in MOT17 [35]. With re-
gards to its computational cost, on a machine with a sin-
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gle A100 GPU, it achieved a speed of 24.92 FPS, which
is higher than the sub-10 FPS speed of the existing deep-
learning-based depth estimators that are used for tracking.

Overall, the main contributions of this work are summa-
rized as follows:

1. We propose a lightweight camera angle estimator that
leverages object detection locations.

2. We utilize the camera angle and the depth of each ob-
ject to associate objects between frames in 2D MOT.

3. We evaluate our proposed method by adding it to vari-
ous 2D MOT methods.

2. Related Works
2.1. 2D Multi-Object Tracking (MOT)

With the advent of reliable object detection, the stan-
dard approach for MOT is “tracking-by-detection,” which
uses pre-trained detectors and focuses more on data asso-
ciation. Early methods such as SORT [4] and DeepSORT
[52] utilize Kalman filters. In contrast, recent methods try
novel approaches, such as regressing bounding boxes by
frame [3], matching heatmaps in a receptive field [64], or
combining detection and reidentification (Re-ID) in a sin-
gle model [26, 50, 53, 62]. Additionally, the Vision Trans-
former [16] has also made its way into MOT [10,46,54,59],
combining detection and tracking in an end-to-end manner.
A notable recent development in MOT is ByteTrack [61],
which modifies the simple SORT into a two-pass algorithm
that processes low-confidence bounding boxes.

One problem with MOT is that the distance between two
objects cannot be precisely estimated when they are aligned
in the depth direction. This is because the depth direction is
flattened and combined with another direction (usually the
up/down direction) when a scene is projected onto a camera.
Due to perspective, objects at different depths may appear to
have the same distance in the image. However, none of the
present methods consider perspective distortion in spatial
directions when associating objects.

The most commonly used feature for association is the
Intersection-over-Union (IoU) [3, 4, 61], followed by ap-
pearance features [52, 62]. Transformer-based MOT [10,
33, 59] attempts to unify detection and tracking and per-
forms the association process as part of the model. All these
methods use the distance measured on the 2D image.

A recent alternative to the vanilla IoU is the Distance-
IoU (DIoU) [63], which also considers the relative position-
ing of objects. For two different objects i and j, the DIoU
is defined as

DIoU = IoU−
d2x + d2y
c2x + c2y

, (1)

where (dx, dy) are the horizontal and vertical distances in
the image plane between the center points of i and j, and

(cx, cy) are the width and height of the minimum bounding
box that covers the bounding boxes of both i and j. Previous
studies have applied DIoU to MOT [28, 45, 57]. We base
our own association metric on the DIoU and modify it to
incorporate camera angles.

2.2. Occlusion

Occlusion remains a major problem in MOT. A com-
mon method to handle occlusions is reidentification (Re-
ID), which is used to relink detections before and after oc-
clusions [3, 26, 50, 53, 62, 64]. However, this is a post-hoc
reasoning on the presence of occluded objects; in an online
setting, intelligent agents should reason about occluded ob-
jects before they re-appear [24]. Furthermore, Re-ID cannot
handle longer occlusions (> 3 s) effectively [15] owing to
the widening gap between pre- and post-occlusion features.

A possible solution is to lift the tracking process into 3D
space. It is much easier to track occluded objects in 3D
because trajectories that overlap in 2D are well-separated in
3D space. The most straightforward approach to lifting 2D
information to 3D is to use a monocular depth estimator.

2.3. Depth Estimation

Monocular depth estimation obtains a depth map from a
single image without additional sensors or modalities. This
is an ill-posed problem, as a 2D scene can be projected from
infinitely many 3D scenes. Classical methods [36, 42] rely
on a thorough a priori knowledge of a scene and/or ob-
jects in the scene. In contrast, recent deep-learning-based
methods can reliably infer depth from a single image with-
out requiring geometric constraints or a priori knowledge.
The methods range from hourglass networks [27], encoder-
decoder structures [5, 58], transformers [1, 25, 39], to dif-
fusion networks [43]. Depth estimation is a precursor to
several tasks, including 3D detection and tracking.

Datasets for 3D tasks (e.g., depth estimation, 3D detec-
tion, and 3D tracking) are usually collected for tasks such
as autonomous driving [9, 22, 47]. As a result, there are
currently no available datasets for use cases such as surveil-
lance.

2.4. Depth Estimation for MOT

Plenty of work has been done on monocular 3D object
detection and tracking (i.e., generating 3D bounding boxes)
with only a single RGB image. Early 3D object detection
methods [2, 44, 56, 60] work on point clouds taken by ad-
ditional sensors (e.g., LiDAR, time-of-flight camera, stereo
camera) or generated by monocular depth estimators. In
contrast, recent methods [8, 30, 49] generate 3D bounding
box proposals from a single 2D image. Several 2D MOT
methods [3, 4, 52, 61] can also perform 3D MOT with only
slight modifications. Additionally, dedicated 3D trackers
[12, 51] have also been proposed.
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There also exist studies that use depth information for
2D MOT. However, unlike 3D MOT, these studies still use
2D bounding boxes as input and output; however, internal
processing, such as association and trajectory management,
is performed in 3D. The first study to add 3D reasoning for
2D MOT was Khurana et al. [24], which utilized monocular
depth estimation [27] to generate a depth map and augment
SORT. By modifying the Kalman filter to track in 3D, the
tracker can filter false positives for forecasts that are sup-
posed to be occluded, thus allowing for better occlusion
handling. Another work, Quo Vadis [15], transforms the
entire scene into a birds-eye view using homography trans-
formation and then adds trajectory prediction. Depth esti-
mators are computationally expensive [58]; Quo Vadis [15]
adds other computationally expensive components besides
the depth estimator, making the system too costly to run
in any practical scenario. In comparison, our proposed esti-
mator requires much less computational cost because it uses
readily available bounding boxes.

2.5. Camera Pose Estimation Methods

Traditional camera pose estimation methods, e.g.,
RANSAC [20] and PnP [31], require handcrafted features
to match between images. In contrast, deep-learning-based
monocular camera pose estimation methods [6, 23] (which
also produce camera angles) have produced good results
with only a single image. However, most camera pose es-
timation methods require a video from a dynamic moving
camera or require a well-defined structure as a reference.
Unfortunately, many MOT scenes are captured with a static
camera and contain large crowds, which may obscure the
reference structure.

Our proposed method estimates camera angles with ob-
ject detection output without requiring a reference structure
or a dynamic camera. In addition, it can estimate camera-
relative 3D points of every object without any additional
training.

3. Camera Angle Estimation
3.1. Outline

Here, we describe our method for estimating the cam-
era elevation angle θ and the set of object 3D coordinates
P. CAMOT simultaneously estimates the angle and object
depths by regressing a common plane for all object detec-
tions.

Object detections, among other things, inform us where
objects are distributed on an image, whereas their distribu-
tions inform us of the camera angle. For example, an im-
age taken from a ground-level angle will have its objects
concentrated in a horizontal line, whereas an image with a
higher angle will have its objects distributed more evenly.
We can use object detections to estimate the depth of an ob-

Figure 2. 2D planar side view of the system. Black parts show
the part of the system shared by all objects, whereas blue and red
parts show different objects.

ject, which can then be used to estimate the camera angle.
An outline of our algorithm is as follows:

1. Select bounding boxes to use in the current frame t.
2. While θt is not optimal

(
ε(t,u) > τε

)
, advance the it-

eration u← u+ 1 as outlined below:

(a) Set a θ(t,u) value for the current iteration.
(b) Estimate the 3D object points P (t,u)

i using θ(t,u).
(c) Regress a plane with the normal vector n(t,u)

from P
(t,u)
i and calculate the plane angle θ

(t,u)
n .

(d) Evaluate the angle estimation process error ε(t,u)

for this iteration.

3. Apply angle smoothing for θt.
4. Use the optimal θt value to calculate P t

i for all objects
in the current frame.

3.2. Assumptions and Problem Formulation

For our intended use case (surveillance, crowd analysis,
etc.), we limit the scenario to tracking the movements of a
crowd (of humans) in a public space. We set the following
assumptions regarding the scenario:

1. The camera parameters (e.g., θ) are unknown, except
for the focal length f .

2. At least three objects are detected in each frame of the
video.

3. An object is assumed to be in contact with the ground,
i.e., the bottom edges of all objects lie on a common
plane (ground plane).

4. The change of camera angles is smooth over time.

We model a human object as a cylinder in 3D space with
a centroid Pi = (Xi, Yi, Zi), height H , and an aspect ratio
A. We model the height H as constant, but the aspect ra-
tio A can vary. We use pinhole camera optics with a focal
length f .
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Under the pinhole camera model, we formulate the prob-
lem as finding the optimal θ value that minimizes the re-
gression error ε for the best-fit plane between all detected
objects. Figure 2 illustrates the problem, where an object i
is represented as a line segment PitPib passing through Pi,
with Pit, Pi, and Pib as the top, middle, and bottom points
of an object, respectively.

3.3. Bounding Box Selection

Not all bounding boxes produced by the object detection
process can be used for the plane estimation process. Let i
be an index for all detected objects in the current frame. We
first need to select nplane objects, where nplane is the target
number of objects to use in the plane estimation process.

We first filter out objects whose corresponding bounding
boxes clip the edge of the frame. We then divide the image
into nplane regions width-wise. For each region, we add to
Iplane at most one object with the highest detection confi-
dence whose centroid lies in that region. It is possible for a
region to be empty (i.e., does not contain any detection). In
that case, |Iplane| may be less than nplane.

3.4. Initial Elevation Angle Setting

We define the camera elevation angle θ as the angle be-
tween the camera principal axis (i.e., the z-axis) and its pro-
jection on the ground plane. Given the set of 3D points
P = {Pi}, it is trivial to obtain θ (see Section 3.6). How-
ever, as both θ and P are unknown at the beginning, we
first assume an initial θ value and iteratively obtain a final θ
value through optimization (see Section 3.7).

In the first frame, θ is initialized according to the pa-
rameter θ0. In later frames, θ is initialized as the previous
frame’s value.

3.5. Depth Estimation Using Detection Results

This process is first performed in each optimization it-
eration over the selected objects Iplane to obtain the set of
selected points Pplane = {Pi}. After the optimal value for
θ is obtained, one last pass is performed over the set of all
objects I to obtain the set of all 3D points P.

Using the angle θ, we can find the distance di from the
origin point to Pi, Pit, and Pib. We use the top and bottom
points for calculation since they are the nearest and furthest
points an object has from the camera origin point, respec-
tively.

We first convert 2D coordinates into 3D rays originating
from the camera focal point, defined as

ri = κ−1
c

[
xi yi 1

]T
, (2)

where the ray ri = (ai, bi, 1) is the ray passing through the
pinhole camera origin point, the relevant point in the image
plane, and the actual point in the 3D camera coordinate,
and κ−1

c is the inverse of the camera intrinsic matrix. For

L

ll

ll

Figure 3. 2D planar side view for one object. Black parts show
part of the system shared by all objects, while blue parts show
components unique for the object i. Green parts show derived
points, angles, etc., for calculation.

every object i, we obtain the rays to the top point rit and
the bottom point rib by using the top-middle and bottom-
middle 2D positions (xi, yit), (xi, yib) of a bounding box,
respectively, as illustrated in Fig. 2.

We then define the following: for each object i, the angle
αi is defined as the angle between the principal axis and the
rit, whereas the angle γi is defined as the angle between rit
and rib.

In Fig. 3, we can use the angle properties in the trian-
gles formed by the object and in the rays to calculate the
distances from the origin point to the object. Using the tri-
angle △OPitPi, the distance to the head point dit can be
obtained as follows.

dit =
H cos

(
θ + αi +

γi

2

)
2 sin γi

2

(3)

Then, using△OPitPib, the distance to the bottom point dib
can be obtained as follows.

dib =
2dit sin

(
γi

2

)
sin

(
θ + αi +

γi

2

)
cos (θ + αi + γi)

+ dit (4)

Afterwards, using the rays (rit, rib), the centroid point
Pi is calculated following Eq. 5.

Pi =
ritdit cosαi + ribdib cos (αi + γi)

2
(5)

Applying this to the selected objects Iplane, we obtain the
set of 3D object points Pplane to use in the plane estimation
process. In the final pass, applying this to all objects I, we
obtain the final set of all 3D object points P.

3.6. Plane Estimation

Pplane is fit to a plane (n, Pplane), with n being the plane
normal unit vector and Pplane = (0, 0, zplane) being the inter-
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section of the z-axis and the plane.
Finally, the plane is used to obtain the angle of the plane

θn. Provided that n = (nx, ny, nz) is a unit vector, θn is
obtained with

θn = arccos(nz) (6)

Note that plane estimation in 3D requires at least three
points. If there are too few objects in the frame (i.e.,
|Pplane| < 3), then we keep the plane from the previous
frame (i.e., (n, Pplane)

t = (n, Pplane)
t−1)

3.7. Error Calculation

We aim to find the elevation angle value θ that minimizes
the error ε. We calculate three error terms: 1) the perpendic-
ularity constraint εn, in which an object should stand per-
pendicular to the plane, i.e., n and the vector vi = Pit−Pib

should be parallel (Eq. 7); 2) the plane angle error εθ, which
is the normalized angle difference between the assumed θ
and the angle of the regressed plane θn in radians (Eq. 8);
and 3) the regression error εregr, which is the root mean
squared error (RMSE) for the distance between Pi and the
regressed plane (Eq. 9).

εn =
1

n

n∑
i=1

[
1− vi · n
∥vi∥ ∥n∥

]
(7)

εθ =
2

π
|θ − θn| (8)

εregr =

√√√√ 1

n

n∑
i=1

∥[n · (Pi − Pplane)]× n∥2 (9)

We calculate the final error ε as a weighted sum of the
three error terms:

ε = λnεn + λθεθ + λregrεregr (10)

We use the Nelder–Mead optimization algorithm [37]
with the error ε as the minimization objective when find-
ing the optimal angle. The optimization process stops when
ε is smaller than the convergence threshold τε.

The final product is the optimal elevation angle θ.

3.8. Angle Smoothing

To enforce the assumption that depth estimates (and thus
angles) are smooth over time, we apply weighted moving
average smoothing with a window of w = fps/2.

θt =
2

w(w + 1)

t∑
i=t−w+1

[
(i− t+ w)θi

]
(11)

Using the smoothed angle θt for frame t, we recalculate
the set of all points Pt to obtain the final representation for
frame t.

The camera angles and object depths produced may not
be accurate with the ground truth; however, as long as the

angles and depths are consistent (i.e., smooth over time)
throughout the video, our method does not require them to
be accurate.

4. Angle- and Depth-aware MOT
4.1. Tracking in 3D Camera Coordinates

Many MOT methods [4, 52, 61] employ the Kalman fil-
ter to predict the location of objects and reconcile it with
the detected object positions. The state space of a Kalman
filter used in tracking typically includes the position (x, y),
aspect ratio (a), height (h), and their velocities (ẋ, ẏ, ȧ, ḣ).
We add an inverse depth term 1/z to this state space, which
gives the state vector

(
xi, yi,

1
zi
, ai, ẋi, ẏi, ḣi

)
[24]. The

values of (xi, yi, zi) are obtained from the 3D centroid point
Pi produced in Section 3.5.

To account for variations in depth, following [24], we
scale the Gaussian noise by the inverse depth, resulting in a
constant velocity model, as shown in Eq. 12. This leads to
smoother tracks for objects that are far away.

xt ≈ xt−1 + ẋt−1 + f
ϵx
zt−1

(12)

To account for camera motion, following [3, 24], we
apply camera motion compensation (CMC) by aligning
frames via image registration using the Enhanced Correla-
tion Coefficient (ECC) maximization introduced in [17].

4.2. Track Association

To account for the camera elevation angle, we modify
the similarity matrix K = [kij ] based on the Distance-IoU
[63]. From the original formula in Eq 1, we add the camera
angle factor ϕ to the y-axis terms (dy and cy). The modified
similarity measure is defined as

k′ij = kij −
d2x + ϕd2y
c2x + ϕc2y

, (13)

ϕ = 1 + cos2 θ, (14)

where i and j are the detection and track, respectively, kij
is the original similarity measure (2D IoU), and k′ij is the
modified similarity measure (DIoU with angles).

Low elevation angles cause ϕ to have a large value and
k′ij a smaller value, thereby reducing the similarity between
two objects if they are positioned above or below each other.
This discourages searching in the image’s vertical direction,
as objects typically do not move vertically when the camera
is at ground level. For high elevation angles, where objects
have more freedom of movement around the vertical axis,
ϕ has less effect and Eq. 13 degrades to the normal DIoU
similarity.

The resulting similarity matrix K ′ = [k′ij ] incorporates
camera angle information and is used in the object associa-
tion step.
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4.3. Assumptions and Limitations

CAMOT also relies on the assumptions stated in Sec-
tion 3.2. Particularly, for tracking in 3D coordinates, we
assume that the camera focal length f is known (Assump-
tion 1). In practical applications, it is possible to cali-
brate the camera to satisfy this assumption. However, most
videos found on the Internet (e.g., YouTube, etc.), includ-
ing the videos in MOT evaluation datasets, do not come
with camera intrinsics. Thus, we tune the value of f on
the training set and select a single f value that best fits our
dataset. We observe that the value of f can be generalized
sufficiently for typical video sequences.

Another important assumption is that the change of cam-
era angles (and thus depth estimates) is smooth over time
(Assumption 4). Once again, our method works even
though the values are not accurate, as long as they are con-
sistent.

In addition, CAMOT benefits when more objects are de-
tected in the current frame, as the plane estimation would
be more stable. However, as mentioned in Section 3.6,
CAMOT only works if there is a minimum of three objects
at any time in the frame.

Although these assumptions and limitations may not al-
ways hold in real-world scenarios, our empirical results
show that our method is applicable to different scenarios.

5. Experiments
5.1. Experiment Setup

Datasets. We evaluate our method on the MOTChallenge
[14, 35] (i.e., MOT17 and MOT20) datasets. As standard
protocols, CLEAR MOT Metrics [35] and HOTA [32] are
used for evaluation.

Implementation details. We implemented our proposed
method in PyTorch [38] and performed all experiments on
a system with 8 NVIDIA Tesla A100 GPUs. We used Byte-
Track [61] as a baseline and built our method on its top.
Most hyperparameters that are used for tracking are kept
the same, with the detection thresholds τhigh, τlow kept as
0.6 and 0.2, respectively. Lost tracklets were kept for 30
frames before being discarded.

For object detection, we used YOLOX-x [21] pre-trained
in COCO. The model was trained on a mix of MOT17,
MOT20, CrowdHuman, Cityperson, and ETHZ for 80
epochs with a batch size of 48. We used SGD as an opti-
mizer with a weight decay of 5× 10−4 and a momentum of
0.9. The initial learning rate is 10−3 with a 1 epoch warm-
up and cosine annealing schedule.

For angle estimation, we excluded all objects with
bounding boxes partially outside the frame. We set f =
50mm and nplane = 40. For objects clipped on the top or
bottom edges, we used the 3D object height H defined in

3.2 to extrapolate the clipped side in relation to the visi-
ble side. For objects clipped on the left or right edges, we
extrapolated the clipped bounding box points using the av-
erage aspect ratio. We empirically set the initial input angle
θ0 to 0°, the error weights [λn, λθ, λregr] to [0.6, 0.3, 0.1],
and the convergence threshold τε to 10−4.

Following [21], FPS was measured using FP16 precision
[34] and a batch size of 1 on a single GPU. We use a ma-
chine running an AMD EPYC 7702 1.5GHz with 256GiB
RAM and one NVIDIA A100 GPU.

5.2. Results

Benchmarks. Table 1 and Table 2 present a comparison
of our tracker with the other mainstream MOT methods
on the test sets of MOT17 [35] and MOT20 [14], respec-
tively. Since detection quality significantly affects over-
all tracking performance, for a fair comparison, the meth-
ods in the lower block use the same detections generated
by YOLOX [21], with YOLOX weights for the MOT17
and MOT20 datasets provided by ByteTrack [61] and OC-
SORT [11], respectively. We also list the methods in the top
block for reference, which may use better or worse detec-
tions than ours.

Our method outperforms all previous approaches in
HOTA, MOTA, and IDF1, while being slightly inferior on
FP, FN, and IDSw. On MOT17, our method exhibits the
least identity switch (IDSw) errors compared with other
methods using the same detection, whereas on MOT20, we
narrowly come second. Our method improves on the orig-
inal ByteTrack [61] baseline and generally outperforms all
other methods.

Compared to the baseline (ByteTrack [61]), we have ob-
tained less #FP and #IDSw, but introduced more #FN. The
3D tracking approach we employ results in better separa-
tion of trajectories, leading to a smaller amount of viable
detection-track pair candidates.

Inference speed. We also demonstrate that our method can
operate in real time without significantly reducing inference
speed. As shown in Table 3, although incorporating angle
and 3D point estimation do have a slight impact on speed,
it is not significant. The benefits of improved performance
more than offset any modest decrease in speed.

5.3. Ablation Studies

Component analysis. Table 4 shows the results of the
ablation studies conducted using the MOT17 dataset. We
test for four variables: whether angle estimation is per-
formed on the entire video or just on the first frame (Varθ);
whether the depth forecast is used in the Kalman Filter
(DF); whether the angle-aware association is performed
(AA); and whether camera motion compensation (CMC)
is used. The results show that each component improves
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Method HOTA ↑ MOTA ↑ IDF1 ↑ FP (104) ↓ FN (104) ↓ IDSw ↓
FairMOT [62] 59.3 73.7 72.3 2.75 11.7 3303
GRTU [48] 62.0 74.9 75.0 3.20 10.8 1812
MOTR [59] 57.2 71.9 68.4 2.11 13.6 2115
TransMOT [13] 61.7 76.7 75.1 3.62 9.32 2346
MeMOT [10] 56.9 72.5 69.0 2.72 11.5 2724
UniCorn [55] 61.7 77.2 75.5 5.01 7.33 5379
ByteTrack [61] 63.1 80.3 77.3 2.55 8.37 2196
OC-SORT [11] 63.2 78.0 77.5 1.51 10.8 1950
CAMOT (ours) 63.8 80.6 78.5 1.85 8.96 1843

Table 1. Results on the MOT17-test dataset with private detections. Methods in the gray block share the same detections.

Method HOTA ↑ MOTA ↑ IDF1 ↑ FP (104) ↓ FN (104) ↓ IDSw ↓
FairMOT [62] 54.6 61.8 67.3 10.3 8.89 5243
TransMOT [13] 61.9 77.5 75.2 3.42 8.08 1615
MeMOT [10] 54.1 63.7 66.1 4.79 13.8 1938
ByteTrack [61] 61.3 77.8 75.2 2.62 8.76 1223
OC-SORT [11] 62.1 75.5 75.9 1.80 10.8 913
CAMOT (ours) 62.8 78.2 76.1 2.09 9.13 945

Table 2. Results on the MOT20-test dataset with private detections. Methods in the gray block share the same detections.

Method FPS ↑
TrackFormer [33] 10.0
ByteTrack [61] 29.6
CAMOT (ours) 27.9

Table 3. Comparison of the detection/tracking speeds generated
by CAMOT and other existing methods. For CAMOT, all compo-
nents listed in the ablation study (Table 4) are active here.

Varθ DF AA CMC MOTA ↑ IDF1 ↑
✓ 73.2 74.3

✓ 72.9 72.3
✓ ✓ 74.4 76.1
✓ ✓ 73.9 74.2
✓ ✓ ✓ 76.2 79.2
✓ ✓ ✓ ✓ 78.4 81.2

Table 4. Ablation study on the MOT17 validation set. Varθ indi-
cates whether angle estimation is performed on the entire video or
just on the first frame; DF indicates whether the depth forecast is
used in the Kalman Filter; AA indicates whether the angle-aware
association is performed; and CMC indicates whether camera mo-
tion compensation is used.

tracking performance. In addition, we note that CMC sig-
nificantly improves the performance, perhaps due to the
number of moving camera sequences in the MOT17 dataset.

Per-sequence analysis. To test the effect of camera angles

on tracking performance, based on the qualitative camera
angle in the first frame, we divided the MOT17 validation
set into low-angle (θ ≤ 15°) and high-angle (θ > 15°)
sequences. The results are shown in Table 5.

In lower-angle scenarios, both tracking in 3D camera co-
ordinates and the angle-aware association significantly im-
pact the tracking performance. By operating in 3D camera
coordinates, the tracker better understands object trajecto-
ries, mitigating identity switches and improving accuracy,
particularly in occlusion cases. The angle-aware associa-
tion further enhances the tracking process by discouraging
unlikely trajectory associations based on the current camera
angle.

The angle-aware association module becomes less influ-
ential in higher-angle scenarios than in lower-angle cases.
However, tracking in 3D camera coordinates remains highly
effective in higher-angle scenarios. The elevated camera an-
gle reduces occlusion and perspective distortion caused by
objects in the foreground, providing a wider field of view
and improved visibility.

Using depth estimators for tracking. We also tried re-
placing our proposed bounding-box-based depth estimation
method with several off-the-shelf monocular depth estima-
tors to evaluate its performance as a tracking component.

Table 6 presents the evaluation results of the modified
trackers on the MOT17 validation set. Our proposed depth
estimation algorithm outperforms early depth estimators but
falls short of more state-of-the-art methods. Early depth
estimators often group crowds as a homogeneous blob,
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Sequence MOTA ↑ IDF1 ↑
MOT17-02 46.9 (+4.1) 58.2 (+3.2)
MOT17-05 78.1 (+1.4) 78.3 (+2.1)
MOT17-09 82.8 (+2.2) 79.8 (+2.0)
MOT17-10 68.3 (−1.7) 69.7 (+0.9)
MOT17-11 70.4 (+0.9) 72.8 (+1.0)
MOT17-04 89.7 (+4.8) 92.2 (+2.1)
MOT17-13 78.9 (+1.7) 83.2 (+1.4)

Overall 78.4 (+2.2) 81.2 (+2.4)

Table 5. Per-sequence analysis on the MOT17 validation set. Se-
quences in the white block are low-angle (θ ≤ 15°), whereas those
in the gray block are high-angle (θ > 15°).

Method MOTA ↑ IDF1 ↑ FPS ↑
DPT [39] 74.4 76.2 4.75
GLPN [25] 76.3 77.2 6.24
DepthFormer [1] 78.2 80.3 8.44
NewCRFs [58] 79.1 81.6 7.12
ZoeDepth [5] 80.2 82.3 8.24

Baseline 78.4 81.2 24.92

Table 6. Results of replacing depth estimation with existing
monocular depth estimators on the MOT17 validation set. “Base-
line” refers to our bounding-box-based method.

whereas later depth estimators exhibit some ability to han-
dle such scenarios. Despite relying solely on bounding box
location information, our method remains competitive as a
tracking component and offers significantly faster process-
ing speeds.

We hypothesize that the current limitations of monocu-
lar depth estimators in handling crowded scenes arise from
the training data’s incompatibility. These depth estimators
are typically trained on datasets designed for autonomous
driving, primarily consisting of ground-level camera views
capturing vehicles and pedestrians. Consequently, they are
less suited to handle high-angle scenarios characterized by
densely crowded pedestrians effectively. Utilizing a depth
estimator trained on a more suitable dataset with high-angle
crowds and proper 3D labeling would likely improve per-
formance.

Application on various MOT methods. To evaluate the
versatility of our angle estimation method, we applied it to
several state-of-the-art MOT methods, including JDE [50],
FairMOT [62], CenterTrack [64], and OC-SORT [11] We
used the object detections produced by each tracker and
applied our angle estimation method to estimate camera-
relative 3D coordinates in the Kalman Filter update step.
We also performed angle-aware association, similar to our
method, while keeping other settings, such as training

Method MOTA ↑ IDF1 ↑
JDE [50] 60.6 (+0.6) 65.1 (+1.5)
FairMOT [62] 70.3 (+1.2) 73.2 (+0.4)
CenterTrack [64] 67.4 (+1.3) 67.3 (+3.1)
OC-SORT [11] 78.8 (+0.8) 78.1 (+0.6)

Table 7. Results of adding angle estimation and 3D association to
other state-of-the-art trackers on the MOT17 validation set.

datasets and hyperparameters, the same.
Table 7 presents the evaluation results of the modified

trackers on the MOT17 validation set. The results show
that adding angle estimation and 3D modeling improved
the tracking performance of each method. These results
demonstrate the potential of our method to be integrated
with existing trackers.

6. Conclusion
This paper introduces CAMOT, an angle estimator for

MOT. By estimating the camera angle, the tracker employs
a heuristic to adapt the tracking behavior against the per-
spective distortion of how objects move relative to the cam-
era. In addition, the calculated object depths also enable
pseudo-3D MOT. Applying CAMOT to other 2D MOT
trackers, the evaluation results on the MOT17 and MOT20
datasets demonstrate how CAMOT provides performance
gains over existing methods and achieves state-of-the-art
results. CAMOT is also more computationally efficient
than deep-learning-based monocular depth estimators that
are used for tracking.

Currently, CAMOT uses only a single frame as input
when estimating the camera angle. Our future work will fo-
cus on using multiple frames to estimate the camera angle
for improved stability. We are also interested in applying
CAMOT to general depth estimation problems, where we
can safely assume that the room geometry and the sizes of
objects are fixed.
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