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Figure 1. Super-resolution (SR) can be used to improve neural rendering efficiency under a limited training budget. Comparison of
TensoRF, FastSR-NeRF (ours), and MobileNeRF [13] on a consumer-grade MacBook Air M2 laptop. FastSR-NeRF employs a straightfor-
ward SR pipeline (TensoRF+SR), which can enhance rendering times and compress the model size while incurring relatively low training
overhead. While state-of-the-art mobile models such as MobileNeRF can render very quickly, they cannot be trained on consumer devices
under a meaningful time budget.

Abstract
Super-resolution (SR) techniques have recently been pro-

posed to upscale the outputs of neural radiance fields
(NeRF) and generate high-quality images with enhanced
inference speeds. However, existing NeRF+SR methods
increase training overhead by using extra input features,
loss functions, and/or expensive training procedures such as
knowledge distillation. In this paper, we aim to leverage SR
for efficiency gains without costly training or architectural
changes. Specifically, we build a simple NeRF+SR pipeline
that directly combines existing modules, and we propose
a lightweight augmentation technique, random patch sam-
pling, for training. Compared to existing NeRF+SR meth-
ods, our pipeline mitigates the SR computing overhead and
can be trained up to 23⇥ faster, making it feasible to run on
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consumer devices such as the Apple MacBook. Experiments
show our pipeline can upscale NeRF outputs by 2-4⇥ while
maintaining high quality, increasing inference speeds by up
to 18⇥ on an NVIDIA V100 GPU and 12.8⇥ on an M1 Pro
chip. We conclude that SR can be a simple but effective
technique for improving the efficiency of NeRF models for
consumer devices.

1. Introduction
Neural Radiance Field (NeRF) models [31] have become

integral to many computer vision and computer graphics
tasks, such as novel view synthesis [8, 29, 31], surface
reconstruction [39, 45], camera pose estimation [41, 46]
and 3D image generation [11, 28, 33]. Since the origi-
nal NeRF model cannot render images efficiently, a large
body of research [12, 17, 29, 32, 34, 37, 43] has been ded-
icated to address the rendering efficiency. Many of these
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works achieve impressive gains by decomposing and rep-
resenting the 3D neural radiance field with explicit fea-
tures [12, 13, 17, 21, 29, 32, 37]. However, these methods
often require extended training times and/or specialized ar-
chitectures and kernel support on high-end GPUs. For ex-
ample, MobileNeRF is capable of fast rendering on mobile
devices [13], but uses 8 server-class GPUs for training [6],
which translates to over 15 days (>375h) on a consumer-
grade laptop (Figure 1, right). To improve the accessibility
and personalized use of NeRFs, there is a need to explore
efficient rendering techniques that can also be trained on
consumer-grade devices.

In this paper, we introduce FastSR-NeRF, which demon-
strates CNN-based super-resolution (SR) can be a simple,
low-cost technique for improving the efficiency of NeRF
models on consumer devices. The basic idea is to train a
small NeRF model to generate lower-resolution scene fea-
tures with 3D consistency, and a fast SR model to gener-
ate higher-resolution features. This combination reduces
the number of pixels that need to be computed using the
NeRF’s slow volume rendering process, increasing render-
ing speed. While SR techniques for neural rendering have
been proposed by previous works, these methods either (i)
involve specialized SR modules that use extra input features
such as high-resolution reference images [23]; (ii) employ
expensive training procedures such as distillation [10]; or
(iii) are trained on tens of thousands of images within a gen-
erative modeling framework [11]. None of these methods
can be feasibly trained on low-power, consumer-grade plat-
forms. Whether it is possible to achieve high-quality results
with SR under a limited training budget remains an open
question.

Here, we address this question by exploring a simple
NeRF+SR pipeline that directly combines existing mod-
ules. We hypothesize that the spatial inductive bias of
CNN-based SR is sufficient to generate high-quality out-
puts for low upscaling ratios, even without extra input fea-
tures or complex training procedures. To improve synthe-
sis quality, we propose only a lightweight augmentation
technique called random patch sampling: rather than ex-
tract patches from an image grid for training the SR mod-
ule as done in existing works [23, 40], we extract patches
from random positions to increase the diversity of im-
age patches seen by the SR module. Experiments across
three datasets show, somewhat surprisingly, our simple
NeRF+SR pipeline with low training overhead can achieve
comparable quality and greater rendering efficiency than ex-
isting complex NeRF+SR pipelines. To summarize, the key
results of our study are as follows:

• SR can be a nearly “free” technique for improving
neural rendering efficiency. Our comprehensive ex-
periments across three datasets show that applying SR
to a NeRF model at 2-4× upscaling ratios, without any

complex training procedures or architectural modifica-
tions, can improve inference speeds by up to 35.7× on
an NVIDIA V100 GPU and 12.8× on an M1 Pro chip,
while maintaining peak signal-to-noise ratio (PSNR) in a
0.4-1.2 dB range. Surprisingly, our simple pipeline can
achieve comparable quality to recent and more complex
SR techniques [23,38], while being more efficient in train-
ing and inference.

• Random patch sampling is a crucial lightweight aug-
mentation technique for NeRF+SR. We propose ran-
dom patch sampling, a lightweight augmentation tech-
nique. This augmentation improves the PSNR of the SR
module by up to 0.89 dB for 2× upscaling and up to
1.44 dB for 4× upscaling compared to standard grid-based
patch sampling, outperforming expensive distillation ap-
proaches [10] at a fraction of the time cost.

• FastSR-NeRF is one of the few efficient methods that
can be trained on a low-power device. As shown in Fig-
ure 1, by utilizing a simple NeRF+SR pipeline, FastSR-
NeRF can be trained on consumer devices such as a Mac-
Book Air M2, whereas most other models and existing
NeRF+SR pipelines fail to train with a meaningful time
budget.

Overall, our analysis shows that SR can be a low-cost,
plug-and-play strategy for improving the efficiency of neu-
ral rendering models under a limited training budget. Even
a simple NeRF+SR pipeline can make neural rendering
more efficient and accessible for those with low-power,
consumer-grade hardware.

2. Background
2.1. Neural Radiance Fields

The NeRF model was first proposed in [31]. Given a po-
sition and view angle in a 3D scene, NeRF uses a large MLP
network to map from the 5D input (3D coordinates plus 2D
view angle) to an RGB and a density value. To render a 2D
image, these MLP outputs are integrated along rays passing
through each pixel using volume rendering. The MLP is op-
timized using gradient descent with respect to a photomet-
ric loss over a sparse set of scene-specific images. Due to
its impressive results on static novel view synthesis, NeRF
quickly propelled the state-of-the-art in many other fields,
including 3D image generation [11, 28, 33], 3D scene edit-
ing [19] and landscape reconstruction [44]. However, the
drawback of the original NeRF is that it takes a long time to
render images due to the slow volume rendering process.

To address this issue, many works have since been pro-
posed to improve NeRF’s rendering efficiency. One line
of work [13, 18, 21, 47] maps the learned radiance field to
explicit representations such as octree-based [47] or voxel-
based [21] data structures. These methods achieve faster
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rendering tine at the cost of larger memory and training time
requirements. Another line of work [16, 22, 26, 32] focuses
on improving the sampling algorithm to reduce overall com-
putation, which yields a modest amount of acceleration. An
emerging series of works divides the radiance field into ex-
plicit voxels [29, 34, 37], or some efficient representation
such as matrix decomposition [12], hash table [32], and tri-
plane [9,11,35]. As these models usually make use of a mix
of explicit representations and MLP, they are referred as hy-
brid NeRFs. Typically, hybrid NeRF models can highly ac-
celerate training time and rendering speed, but need a rela-
tively large model size. Among these efficient NeRF meth-
ods, there is a trend to develop customized GPU kernels
to further accelerate the specialized operations designed for
each method. Although using customized kernels can bring
a major speedup, it limits the ability to deploy the model on
different classes of GPUs and consumer-grade devices [10].
Orthogonal to these works, we explore the application of SR
modules for improving NeRF rendering efficiency under a
limited training budget. To maximize flexibility for running
on low-end devices, we consider Python implementations
that do not use customized GPU kernels.

2.2. Super Resolution with NeRFs
Super-resolution (SR) is a recent, still under-explored

method for enhancing NeRF efficiency. EG3D [11] applies
SR on top of volume rendering within a generative adver-
sarial network for 3D faces. The SR module in their net-
work is trained on tens of thousands of images, whereas
we consider scene-specific optimization on much smaller
datasets (e.g., 20-200 images per scene). NeRF-SR [38]
performs sub-pixel sampling to super-resolve outputs, but
this requires more compute and thus a longer training time.
MobileR2L [10] proposes a full CNN-based neural light
field model and uses a SR model in its second stage, but
their method is trained using an expensive distillation pro-
cedure. RefSR-NeRF [23] proposes a specialized SR mod-
ule that uses high-resolution reference image as additional
input, resulting in slower training and inference times. 4K-
NeRF [40] synthesizes ultra high-resolution (4K) outputs
using depth features as additional input and incorporates SR
to achieve feasible inference times. Overall, these existing
works all have high training overhead and are not meant to
be optimized on lower-power consumer devices.

In our work, we approach SR techniques for neural ren-
dering from a different perspective. Rather than develop
a complex pipeline that pushes the limit of reconstruction
quality on high-end GPUs, we ask what efficiency gains, if
any, can be made from a simple NeRF+SR pipeline trained
on consumer-grade hardware. Our experiments show that
a simple NeRF+SR pipeline can achieve comparable qual-
ity to existing complex pipelines, while being lightweight
enough to train on consumer-grade hardware.

3. Method
3.1. A Simple NeRF + SR Pipeline

As shown in Figure 2, our pipeline simply consists of a
NeRF model concatenated with a CNN-based SR module.
Given a ray r = o+ td, where o and d are respectively the
ray origin and direction, NeRF reconstructs the color bC(r)
with volume rendering as follows:

bC(r) =
NX

i=1

Ti · (1� exp(��i�i)) · ci, (1)

where N is the number of sampling points along the ray, �i
is the distance between two point sampled at ti and ti+1,
Ti =

Qi�1
j=1 exp(��j�j), and �i and ci are the density and

color respectively of a position x in the 3D scene. In the
original NeRF model, �i and ci are computed by MLP net-
works F� and Fc given position and viewing direction. In
our pipeline, we use a hybrid NeRF model [12] to achieve
state-of-the-art quality with improved training time and ren-
dering speed. To compute the density and color, we fetch
radiance features from a grid-based decomposition G� and
Gc, and then feed sampled features to MLP F� and Fc:

�i = F�(G�(x)), ci = Fc(Gc(x),d) (2)

Due to the more powerful discrete features, the MLPs F�

and Fc in the hybrid NeRF are smaller than the ones used
in vanilla NeRF.

To train and render with the full NeRF+SR pipeline, we
sample r from a patch of rays at low-resolution (LR) RP

LR,
perform volume rendering based on Equation 1, and up-
sample the output with SR module S to get the final high-
resolution (HR) output H:

8rLR 2 R
P
LR, H = S( bC(rLR;F ;G)) (3)

Note that the sampling here covers a contiguous 2D patch,
which differs from the stochastic sampling of rays used for
training standard NeRFs. The NeRF+SR pipeline is opti-
mized in an end-to-end manner with respect to the loss com-
puted over the high-resolution image patch:

LMSE =
X

rHR,rLR

��C(rHR)� S( bC(rLR;F ;G))
��2
2

(4)

where C is the ground-truth color and rHR is the HR
counterpart of rLR in R

P
HR. In practice, we use bilinear in-

terpolation to downsample R
P
HR and get RP

LR.

Comments on Efficiency. For a high-resolution NeRF
model, the number of rays computed by Equation 1 will
be RHR, and will also require N in the order of thousands to
millions to reconstruct details. In contrast, in a NeRF + SR
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Figure 2. Overview of FastSR-NeRF. The SR module in our pipeline directly takes the RGB output from NeRF model, and therefore
makes our pipeline easy to implement, model agnostic and flexible to run on different devices.

pipeline, the NeRF only needs output a low-resolution out-
put, which reduces the number of rays to RLR. N can also
be reduced as there are fewer details in the lower-resolution
image. In addition, we can reduce the grid and feature size
of the hybrid NeRF to further improve NeRF efficiency, and
still maintain the output quality at LR. As a result, we can
greatly lower the computation overhead in Equation 1 and
reduce the memory usage by letting NeRF output at LR.

The addition of the CNN-based SR module S does not
present much of a computational bottleneck. With many
years of progression on deep learning, the convolution op-
eration is highly optimized and can efficiently run on mod-
ern commodity hardware such as GPUs [14], CPUs [5] and
specialized accelerators [2, 7]. Furthermore, CNNs are pa-
rameter efficient by design [20, 25]. The memory savings
from down-scaling the NeRF to LR are much more than the
parameters overhead induced by the SR model, which re-
duces overall model size.

3.2. Random Patch Sampling
As discussed in Section 3.1, SR-based NeRF models

need to be trained in a patch-style sampling instead of the
tradition stochastic ray sampling. Previous works handle
the patch sampling by dividing the rays of an image into
equal-size patches following rigid grid lines which are de-
termined by the given grid size. These ray patches are then
shuffled and fed into the SR-based NeRF pipeline for super-
vision – we call this grid-based patch sampling. The prob-
lem of the grid-based patch sampling is that the sampling
algorithm will cut the ray space strictly with a certain grid
size. When the model gets trained on individual patches,
there will be some variations that are never seen by the con-
volutional kernels as they sit between each grid boundaries.

To solve this issue, we propose random patch sam-
pling. Instead of having a rigid grid lines and restricting
sampling to the grid, we randomly sample a region in the
ray space, and use that patch to train the model. In this way,
we can still have a fixed patch size, but the content of each
patch will be different regions of the input. After many it-

erations, the convolutional kernels in S will cover all of the
patterns appeared in the training data and lead to a better
training results.

In general, CNN-based models are prone to over-fitting
and typically require large-scale datasets [15] to be trained.
However, NeRF datasets usually only have tens to hundreds
of training images, which is orders of magnitude smaller
than a typical CNN pre-training dataset. Existing SR-based
NeRF models tackle the overfitting issue by rendering ex-
tra data from a teacher model, or guiding training with ad-
ditional features from high-resolution reference image or
depth maps, but these significantly increase training over-
head. Random patch sampling is a lightweight data aug-
mentation technique that enables the convolutional kernels
of the SR module to see more diversity in the training set.
This crucial augmentation allows us to achieve high-quality
results without the more complex architectures or training
procedures of previous works. We provide ablation results
of random patch sampling versus baselines in Section 4.5.

4. Evaluations
4.1. Datasets

We use the following three datasets for experiments.
NeRF Synthetic dataset. The NeRF Synthetic dataset was
collected along with the origin NeRF [31] paper. It con-
tains 8 different synthetic scenes with 360� degree views
produced from the Blender [3] 3D computer graphics cre-
ation framework. Each scene in this dataset contains an ob-
ject with complicated details. The object is placed in the
middle of the 3D space and the backgound is white. For
each scene, it has 100 training images and 200 testing im-
ages of the object from different views. The resolution of
the collected images are 800⇥800.
NSVF Synthetic dataset The NSVF Synthetic dastaset was
released with the NSVF [29] paper. It has a similar setting
as NeRF Synthetic dataset with gradually more complex ge-
ometry and lightening on the main object. The resolution is
also at 800⇥800.
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Method
NeRF-Synthetic

PSNR" SSIM" LPIPS# Train Render Model#
Time# Time(s)# Size(MB)

NeRF [31] 31.01 0.947 0.081 ⇠35h 20 5
TensoRF [12] 33.14 0.963 0.049 18m 1.4 71.8
FastSR-NeRF (2⇥) 32.53 0.961 0.052 1.5h 0.309 20
FastSR-NeRF (4⇥) 30.47 0.944 0.075 30m 0.077 13
FastSR-NeRF (8⇥) 27.27 0.902 0.142 16m 0.030 8
MobileR2L [10] 31.34 0.993 0.051 >35h 0.026‡ 8.3
NeRF-SR [38] 28.46 0.921 0.076 >35h 5.6 -

Method
NSVF-Synthetic

PSNR" SSIM" LPIPS# Train Render Model#
Time# Time(s)# Size(MB)

NeRF [31] 30.81 0.952 - ⇠35h ⇠20 ⇠5
TensoRF [12] 36.52 0.959 0.027 15m 1.4 74
FastSR-NeRF (2⇥) 35.39 0.979 0.032 1.5h 0.302 26
FastSR-NeRF (4⇥) 32.04 0.958 0.059 30m 0.075 12
FastSR-NeRF (8⇥) 27.93 0.911 0.119 16m 0.030 9

Method
LLFF

PSNR" SSIM" LPIPS# Train Render Model#
Time# Time(s)# Size(MB)

NeRF [31] 26.5 0.811 0.250 ⇠48h 33 5
TensoRF [12] 26.6 0.832 0.207 28m 5.9 188
FastSR-NeRF (2⇥) 26.20 0.822 0.241 2.5h 0.786 26
FastSR-NeRF (4⇥) 25.41 0.784 0.297 57m 0.165 15
FastSR-NeRF (8⇥) 21.30 0.584 0.475 15m 0.040 8
MobileR2L [10] 26.15 0.966 0.187 >48h 0.018‡ 8.3
NeRF-SR [38] 27.26 0.842 0.103 >48h 39.1 -
RefSR-NeRF [23] 26.23 0.874 0.243 - 8.5 38

Table 1. Quantitative and efficiency results on NeRF-Synthetic, NSVF-Synthetic and LLFF datasets. We compare the results of applying
SR to the baseline NeRf model, TensoRF [12], and also list vanilla NeRF as a reference. For NeRF-Synthetic and LLFF, we also include
the results of other SR-based models from their paper. The results are highlighted in red when there is a clear disadvantage of a method. ‡
The rendering time is for iPhone13, while other time is on GPUs.

LLFF dataset. LLFF dataset was collected along with the
LLFF [30] paper. The scenes in this dataset were captured
in the real world with foward-facing angle. It also has a
major object placed roughly in the middle of each scene.
However, different from the NeRF Synthetic dataset, the
scenes in LLFF dataset have complex background depend-
ing on the captured environment. The original resolution
of the collected images are 4032⇥3024, and it also provide
images at 4⇥ and 8⇥lower resolution. Due to the practical
usage, most of the NeRF works including us evaluate this
dataset on 4x lower resolution at 1008⇥756. Each scene in
the LLFF dataset has 20 to 40 images, and 7/8 are used for
training and 1/8 are used for testing.

4.2. Experiment Setup

We choose TensoRF [12] as our NeRF backbone as it
achieves state-of-the-art results on both quality and effi-
ciency, without requiring customized CUDA kernels, and
therefore aligns with the goal of this paper. For our SR
model, we chose EDSR [27] due to its accessible imple-
mentation and wide adoption in the computer vision com-
munity [4]. Although we choose TensoRF and EDSR as
our NeRF and SR model, both of them can be replaced with
other methods, as our pipeline is model agnostic. Since our
SR module solely relies on the RGB output of the NeRF,
we are able to leverage pretrained SR models. To train
our pipeline, we first warm up the TensoRF model at LR
using its default hyperparameters (inherited from the offi-
cial implementation) for 5K iterations. After warming up,
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we plug a pretrained EDSR model with desired SR ratio
into our pipeline and start training end-to-end using random
patch sampling. For the training hyperparameters, we fix
the learning rate at 0.0001, patch size at 256 and 128 for
SR-2⇥ and SR-4⇥. We use Adam optimizer [24] and train
the pipeline for 150 epochs. For each iteration in a epoch,
we only feed one patch to the pipeline. We run our experi-
ments on a machine that is equipped with a single NVIDIA
V100 GPU with 16GB memory unless we specify the hard-
ware platform.

4.3. Evaluation on Quality and Efficiency

Efficiency gains of utilizing SR. Here we evaluate the qual-
ity and efficiency gains of our simple NeRF+SR pipeline.
We list peak signal-to-noise ratio (PSNR), structural sim-
ilarity (SSIM) and perceptual similarity (LPIPS) [48] for
quantitative quality measurements, and provide training
time, rendering time and model size for efficiency evalu-
ations. For LPIPS, we use VGG [36] as the backbone. The
results can be found in Table 1.

As shown in Table 1, comparing to the backbone Ten-
soRF [12] model, applying SR can generally maintain qual-
ity at the 2x ratio and enjoy efficiency benefits in render-
ing time and model size. For example, our pipeline with
SR-2⇥ only has a small 0.61dB, 1.13dB and 0.4dB PSNR
drop and has near no loss on SSIM and LPIPS compared to
the baseline model. Our pipeline at SR 2⇥ even achieves a
slight improvement on SSIM for NSVF-Synthetic. For ef-
ficiency, using 2x SR rate can improve rendering time by
4.5⇥, 4.6⇥ and 7.5⇥ and reducing model size by 3.6⇥,
2.8⇥, and 7.2⇥ for NeRF-Synthetic, NSVF-Synthetic and
LLFF respectively. For SR-4⇥, we observe a more notable
quality loss to the baseline compared to SR-2⇥. However, it
can still achieve qualified results such as over 30dB PSNR
on synthetic datasets and just a small 1.19dB PSNR loss
on LLFF dataset. At the mean time, with 4⇥ SR rate, it
can further improve the rendering time speedup to 18.2⇥,
18.6⇥ and 35.7⇥, achieve model size reduction at 5.5⇥,
6.2⇥, and 12.5⇥ for NeRF-Synthetic, NSVF-Synthetic, and
LLFF. Furthermore, the training time for SR-4⇥ is down to
30 min for synthetic datasets and 1hr for LLFF as the model
run and converge faster at this rate. For SR-8⇥, although the
efficiency is further improved, our pipeline can not maintain
a good quality at this upscaling rate.
Comparing to existing SR-based NeRFs. We compare
our simple pipeline to three existing SR-based model, which
are MobileR2L [10], NeRF-SR [38] and RefSR-NeRF [23].
Notice that MobileR2L is light field based model and is not
based on radiance field. However, they still utilize SR to
enhance rendering speed so we include it for comparison.

Comparing to them, our simple pipeline with only
lightweight techniques in training achieves a very clear ad-
vantage on the training time. At SR-2⇥, our pipeline can

Method PSNR
M1 Pro M2

Train Render Train Render
Time Time Time Time

TensoRF 33.14 2h 54s 2.5h 45.4s
FastSR-NeRF (2⇥) 32.53 22.5h 15.9s 16h 15.2s
FastSR-NeRF (4⇥) 30.47 15.5h 4.2s 13.5h 4s

MobileNeRF 30.9 >375h† 0.016s >375h† 0.017s

Table 2. PSNR and time profiling of running vanilla TensoRF,
FastSR-NeRF (ours) and MobileNeRF [13] on a MacBook Pro
laptop with M1 Pro chip. † The training time is approximated for
training the vanilla NeRF on M-series CPUs, which is only the
first training stage of MobileNeRF.

be trained 23.3⇥ and 19.2⇥ faster than existing SR-based
models on NeRF-Synthetic and LLFF, while achieving ei-
ther on par or better quality.
Qualitative results. We show qualitative results and com-
parison on selected scenes from NeRF-Synthetic and LLFF
datasets in Figure 3. As Figure 3 shows, with 2⇥ upscaling
rate, our pipeline can achieve on-par visual quality as the
baseline TensoRF, while using bilinear interpolation at the
same rate is not enough to get high fidelity results.

4.4. Training on Consumer Devices.
We run our pipeline on a MacBook Pro with M1 Pro chip

and a MacBook Air with M2 chip to evaluate efficiency on
consumer platforms. The training time, rendering time and
PSNR on NeRF-Synthetic for our pipeline at SR rate 2⇥
and 4⇥ are listed in Table 2. We also list MobileNeRF’s
[13] results for comparison.

As shown in Table 2, using SR can improve the rendering
speed by up to 3.4⇥ and 12.8⇥ for 2⇥ and 4⇥ SR rate on
the consumer-grade M-series CPUs. For MobileNeRF [13],
although it can achieve a much faster rendering time from
its specialized caching mechanism, it needs more than 15
days to be trained on the same device, which is difficult
to make a meaningful NeRF application that run fully on
a consumer-grade platform. In contrast, our pipeline, al-
though can not achieve real-time rendering, it still signifi-
cantly accelerates the rendering process with a reasonable
training time (less than 1 day). Note that our experiments
are run on CPUs because the current Apple Metal Perfor-
mance Shader (MPS) [1] support in PyTorch can not fully
run the operators needed in NeRF and SR on the MPS de-
vice. We expect our training and rendering speed to be
faster once PyTorch has a better MPS operators support.

4.5. The Importance of Random Patch Sampling
We evaluate the effectiveness of random patch sampling,

which we discussed in Section 3.2. To evaluate, we first es-
tablish our model pipeline as we explained in Section 3.1.
We then keep all the settings of the pipeline the same but use
different patch sampling algorithm to train our model. No-
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Dataset Method PSNR
SR-2⇥ SR-4⇥

NeRF-Synthetic Grid-based 31.84 29.28
Random 32.53 30.47

NSVF-Synthetic Grid-based 34.34 30.45
Random 35.39 32.04

LLFF Grid-based 26.2 24.94
Random 26.04 25.41

Table 3. PSNR comparison on using random patch sampling
versus grid-based patch sampling. We highlight the better results
for the same SR ratio in bold.

tice that we fix the patch size and training for the same num-
ber of iterations, so the number of patches seen by the model
is the same for both sampling methods. For grid-based
patch sampling, we randomize the order of the patches fed
into the model to ensure training stability. We report the av-
eraged PSNR for SR ratio 2⇥ and 4⇥ of training our model
with these two patch sampling algorithms in Table 3.

As Table 3 shows, we observe that random patch sam-
pling consistently leads to a higher PSNR than grid-based
patch sampling on synthetic datasets, The highest improve-
ment appear on NSVF-Synthetic when the SR rate is 4⇥,
where random patch sampling records a 1.59 PSNR in-
crease over grid-base patch sampling.

On real-world forward facing LLFF dataset, the PSNR
enhancement is less significant than the synthetic datasets.
We observe a slight PSNR decrease (0.16dB) for SR-2⇥
but a clear PSNR increase (0.47dB) for SR-4⇥. We hy-
pothesize that this is because the real-world scenes typically
contains greater complexity and finer-grained detail than the
synthetic scenes. For example, in a synthetic scene, there is
usually one major object and the space outside of the object
is empty. Although, the object might has some difficult and
fine-grained patterns, the model can focus on learning the
patterns on the object. However, in a real world scene, al-
though it usually still has a major object, the background is
usually messy and contains a lot of small details. Therefore,
using random patches on real world scenes such as LLFF
dataset can not bring a big difference in terms of the total
number of patterns converged in the patches. As a result,
random patch sampling shows a greater improvement on
synthetic datasets but still has the ability to enhance PSNR
on real world scenes dataset when the SR rate is higher, e.g.
4⇥.

4.6. Ablation Study on Training Strategies.
In Section 4.5, we compare the results of training our

NeRF + SR pipeline with grid-based or random patch sam-
pling. However there are many more configurations possi-
ble. In this section, we compare the results of 1) using bilin-
ear interpolation as the SR method, 2) use out-of-box pre-

Upsample Upsample Train Train PSNRRatio Method Strategy Time(m)

2⇥

Bilinear - 11 29.77

EDSR

Pretrained 11 30.40
Scratch 51 31.64

FT-GridPatch 51 31.84
FT-RandPatch 89 32.53

Distillation 365 32.12

4⇥

Bilinear - 3.5 26.67

EDSR

Pretrained 3.5 27.62
Scratch 19 29.03

FT-GridPatch 19 29.28
FT-RandPatch 30 30.47

Distillation 166 29.94

Table 4. Training time and PSNR of different training strategies
on NeRF Synthetic dataset. Pretrained EDSR model is down-
loaded from HuggingFace website. FT stands for finetuning the
pretrained SR model. RandPatch signifies random patch sampling
(other methods use grid-based patch sampling if not specified).
All experiments are trained for 150 epochs, with the exception of
distillation. For distillation, we generate 1k extra training image
using a pretrained TensoRF as teacher, and train for 100 epochs.

trained SR model without finetuning, 3) training the NeRF
and SR model both from scratch, 4) finetuning the pipeline
with pretrained SR on the NeRF dataset with grid-based
patch sampling, 5) same as (4) but uses random patch sam-
pling, 6) use the distillation method proposed by [10] and
train on a larger training set augmented by a teacher NeRF
at HR.

We train the pipeline on NeRF-synthetic dataset and
show the comparison in Table 4. Using bilinear inter-
polation as SR has the shortest training time (only re-
quires warming up the NeRF backbone) but has a signif-
icant PSNR decrease. Directly using a pretrained EDSR
model can also cut down the training time and has a bet-
ter PSNR than bilinear. However, training on NeRF dataset
still help it to achieve a better accuracy. Among those train-
ing methods, finetuning SR using random patch sampling
achieves the best results while paying a little more training
time (exclude distillation) due to the random sampling over-
head. For training the pipeline, although we see a promising
PSNR increase with 1K extra training images generated by
a teacher TensoRF, the training time becomes much longer
as we need to train the NeRF model at HR first and also need
to render many HR images. Note that the PSNR of distil-
lation might increase if we generate more training images,
but the training time will be even longer. We do not further
optimize our distillation procedure as it’s not the focus in
this paper. To sum up, using random patch sampling and
finetuning a pretrained SR model gives us the best trade-off
between time and quality under our pipeline setup.

6042



Figure 3. Qualitative results on a NeRF-Synthetic and LLFF. While TensoRF and TensoRF+Bilinear fail to recover some details, our
pipeline successfully learn the details back with SR-2⇥ rate.

5. Conclusion

In this work, we study the limit of SR-based NeRF
model. We propose FastSR-NeRF and find a cohesive and
simple NeRF + SR pipeline can actually achieve impres-
sive quality while also being compute and memory efficient.
The key result of this approach is that, although it’s not the
fastest nor the smallest model, it remains efficient for all of
training time, rendering latency and model size. We achieve
this by leveraging the lightweight technique called random
patch sampling and pretrained SR model – both of these
interventions can boost our pipeline’s accuracy without in-

troducing prohibitive computational overhead. Our pure
Python-based approach (without any customized GPU ker-
nels) allows the whole training & inference pipeline to run
on consumer-grade devices such as a laptop with a reason-
able time. We believe this work and comprehensive analysis
will help the development of an end-to-end NeRF applica-
tion that can purely be deployed on personal devices for
improved compute efficiency and user privacy.
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