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Abstract

Single-photon avalanche diodes (SPADs) are detectors
capable of capturing single photons and of performing pho-
ton counting. SPADs have an exceptional temporal resolu-
tion and are thus highly suitable for time-resolved imag-
ing applications. Applications span from biomedical re-
search to consumers with SPADs integrated in smartphones
and mixed-reality headsets. While conventional SPAD
imaging systems typically employ photon time-tagging and
histogram-building in the workflow, the pulse signal out-
put of a SPAD naturally lends itself as input to spiking
neural networks (SNNs). Leveraging this potential, SNNs
offer real-time, energy-efficient, and intelligent process-
ing with high throughput. In this paper, we propose two
SNN frameworks, namely the Transporter SNN and the Re-
versed Start-stop SNN, along with corresponding hardware
schemes for active time-resolved SPAD imaging. These
frameworks convert phase-coded spike trains into density-
and interspike-interval-coded ones, enabling training with
rate-based warm-up and Surrogate Gradient. The SNNs
are evaluated on fluorescence lifetime imaging. The re-
sults demonstrate that the accuracy of shallow SNNs is on
par with established benchmarks. Qur vision is to inte-
grate SNNs in SPAD sensors and to explore advanced SNNs
within the proposed schemes for high-level applications.

1. Introduction

Single-photon avalanche diodes (SPADs) are solid-state
photodetectors capable of detecting single photons [7, 37].
Low timing jitter has made SPAD a popular technology to
measure arrival time of the incident photons with high pre-
cision [26]. Due to successful implementation in CMOS
technology, SPADs are highly reproducible and can be man-
ufactured reliably with high levels of miniaturization [28].
CMOS SPADs may be arranged into large arrays for wide-
field imaging and, thanks to their digital nature, process-
ing may be added on chip near each pixel. Compared to
other single-photon detectors such as photomultiplier tubes

(PMTs) and electron-multiplying charge-coupled devices
(EMCCDs), the low cost and high timing resolution of
SPADs make them suitable for time-resolved biophoton-
ics applications such as fluorescence lifetime imaging mi-
croscopy (FLIM) and positron emission tomography (PET),
but also in machine vision applications, such as light rang-
ing and detection (LiDAR) [31,33]. In recent years, SPAD
sensors gradually entered the consumer market. In 2015,
STMicroelectronics introduced SPAD-based proximity sen-
sors that are now in most smartphones. In 2020, Apple
Inc. first introduced SPAD image sensors into consumer-
grade devices (iPhone Pro and iPad Pro) as part of a LIDAR
system [ 1], and further extended to the latest mixed reality
headset [2]. This year, Sony also announced IMX611, an
affordable SPAD sensor for smartphones [32]. Canon Inc.
announced that it was developing the first interchangeable-
lens SPAD-based camera [8]. These emerging applications
usher in opportunities and challenges of developing com-
puter vision systems and algorithms for SPAD image sen-
sors.

In a SPAD, upon the arrival of a photon, the avalanche
breakdown is triggered within the SPAD, resulting in a
pulse at the output voltage. The pulses are counted in pas-
sive imaging to obtain intensity information or they are
time-tagged in active imaging to obtain timing information.
Figure 1 demonstrates the conventional workflow of active
time-resolved SPAD imaging. Substantial amounts of data
are generated in this processing, posing challenges to data
transfer, processing, and storage on both hardware and soft-
ware levels. While artificial neural networks (ANNs) have
been utilized to process data generated by SPADs, one fur-
ther step could be made to integrate spiking neural networks
(SNNG5) into vision systems, considering that a SNN takes
the spike as input. An SNN can be thus directly connected
to the SPAD, eliminating time-to-digital converters (TDCs)
and histograms as well as enabling end-to-end learning and
inference. Implemented on the SPAD sensor, the SNN-
based processing can reduce latency, bandwidth, and power
consumption, while realizing real-time and intelligent anal-
ysis.
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Figure 1. Workflow of the traditional SPAD TCSPC system and the SNN-coupled SPAD system. In a traditional SPAD TCSPC system, the
laser illuminates the object and sends a reference signal to the time-to-digital converters (TDCs). The object reflects or emits light, which
is detected by the SPAD. Reference pulse signals from the laser and detection pulse signals from the SPAD are directed to time-to-digital
converters (TDCs) for time-tagging. The timestamps are often histogrammed and transmitted to a PC for data processing, where the image

is reconstructed.

Though, in principle, SNNs can be used to process sig-
nals from both active and passive SPAD imaging, they are
essentially different tasks. In an active imaging setup, the
target is repeatedly illuminated by a laser or photodiode.
The information is represented by the difference between
the arrival time of the photon and the reference, which is
basically phase-coded. In a passive imaging setup, spik-
ing generated by incoming photons is a Poisson process,
which is rate-coded. Therefore, from the signal processing
perspective, the SPAD sensor is no more than a traditional
CMOS sensor except for extreme photosensitivity and high
frame rate. The existing algorithms that adopt a Poisson en-
coder are supposed to work for passive SPAD imaging as
well. In this work, we only focus on active imaging with
SPAD sensors.

ANNs take inspiration from neurons and synapses of bi-
ological neural networks and achieve stunning success in
the last decade. By introducing the third factor, i.e. tem-
poral dynamics, the SNN is seen to mimic biological neu-
ral networks and a promising model to supersede ANNSs.
It has been successfully implemented in some vision sys-
tems [11,19,27,35]. To construct an SNN, several aspects
must be considered, including the encoder, spiking neuron
model, network topology, decoder, and training methods.
Aiming at in-sensor and near-sensor implementation, the
former four aspects cannot be chosen arbitrarily due to hard-
ware limitations. Dedicated hardware is needed for spe-
cific coding schemes and spiking neurons. Training SNN
is a challenging problem due to the non-differentiability
of the firing function [10, 24]. Most existing methods set
constraints on the coding scheme or the firing behavior.
ANN-to-SNN conversion assumes rate-based coding while
backpropagation through spike time assumes latency cod-
ing and often limits the number of firings [4, 5, 9, 23, 29].
Recently, surrogate gradients have emerged as a promis-

ing training method that is applicable across various coding
schemes [14,20,22,25].

Despite the difficulty of efficient training, SNNs have
been used in several applications. ANNs are transformed
into SNNs to reduce energy consumption and running time
[13,21]. SNNs have been used for detectors such as elec-
troencephalogram (EEG) [34] and event cameras [12,18,27]
for various applications. The community, however, focuses
more on classification than regression [ 1 1,27], more on still
images than sequences, and more on rate-based coding than
other coding schemes, while SPAD-based applications are
more of phase coding, sequential processing, and regres-
sion. Only a few studies have been performed on the SNNs
for SPAD and other single-photon detectors. In [35] it was
first proposed to use SNNs to process single-photon signals;
the authors use SNN to process LiDAR raw data for ob-
ject detection. However, it is assumed that all the spikes
come within one repetition period, which is not applicable
to other tasks such as FLIM. [30] implemented SNNs with
SPAD sensors, but only works on handwritten digit recog-
nition with simulation data as passive imaging. To this date,
there still lacks a general framework for constructing SNNs
for active SPAD imaging.

In this paper, we present two general SNN frameworks,
Transporter SNN and Reversed Start-stop (RS) SNN, de-
signed specifically for active time-resolved SPAD imaging.
With ring oscillator-based hardware, Transporter SNN folds
the time domain across multiple repetition periods. Phase-
coded spike trains are converted into density-coded spike
trains, reducing the sparsity and length of the spike trains
and thus facilitating training and inference processes. With
flip-flop-based hardware, RS SNN converts phase-coded
spike trains into interspike-interval (ISI) -coded ones, com-
bining the advantages of phase and rate coding and en-
abling more efficient training and inference. Surrogate gra-
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dients and rate-based warm-up are utilized to train the SNN.
These frameworks are evaluated through experimentation
on a classic application of SPAD image sensors, namely flu-
orescence lifetime estimation.

2. Problem Formulation

Active SPAD imagers naturally produce phase-coded
spike trains, making them an ideal input for SNNs. Un-
like event cameras or passive SPAD imagers that primarily
encode spikes based on rate, the phase-coded spike input
presents a greater challenge for SNNs. While one can select
encoding methods and data preprocessing schemes arbitrar-
ily on the PC, the hardware limits such flexibility. Hence,
it is crucial to consider hardware feasibility when choosing
the encoding method and data preprocessing scheme.

Straightforwardly, the reference and detection signals
can be connected to the SNN directly, or the sum of them,
as shown in Figure 2. It is worth noting that the latter is a
special case of the former, as the OR gate can be modeled
as a spiking neuron with the same synaptic weights for the
reference and detection signals. Nevertheless, this scheme
gives rise to two challenges: the ultra-long sequences and
the variance in spike density.

In active time-resolved SPAD imaging, achieving higher
temporal resolution is always desirable to enhance preci-
sion, resulting in an increased number of timesteps within
a repetition period. Besides, hundreds to thousands of pho-
tons are typically necessary to construct a comprehensive
event picture. Thus the total timesteps can easily reach the
magnitude of millions. In practice, the ratio between photon
rate and repetition frequency is kept low to avoid the pile-up
effect, which means that there are many repetition periods
where no photon is detected. These additional “blank” in-
puts will further lengthen the already long sequence by sev-
eral orders of magnitudes. The number of total timesteps is
given by
NT X N, C

¢ )
where N7 is the number of timesteps in one repetition pe-
riod, N¢ is the number of desired photons, and ¢ is the ratio
between photon rate and repetition frequency. The ultra-
long sequence results in inefficiency and excessive compu-
tation during the inference and makes it impossible to train
the neural network through backpropagation through time
(BPTT) due to the gradient exploding/diminishing problem.

The probability of photon reception within a single rep-
etition period varies across pixels and cases, which leads
to the variation in the number of “blank” inputs. When
employing spiking neuron models with temporal dynamics
such as membrane potential decay and input decay, it would
be challenging for the SNN to handle inputs with such a
high temporal dynamic range.

N = (1)

reference >

detection >

(@)

reference
OR >
detection

(b)

Figure 2. Intuitive input coding for single-photon detectors. (a)
The SNN has two input nodes, which take the reference signal and
the detection signal as input separately. (b) The SNN has only one
input node, which takes the sum of the reference and detection
signals as input.

In order to implement the SNN for active time-resolved
SPAD imaging on hardware, it is essential to employ a
hardware-feasible encoder to convert the dense-coded spike
trains from SPADs to denser and more informative ones,
where the “blank” inputs are eliminated and the encoded in-
formation is easier to learn. Tailored training techniques are
also required for supervised learning on regression tasks.

3. Methods
3.1. Architecture
3.1.1 Neuron Model

We adopt Leaky Integrate-and-Fire (LIF) model to keep the
balance of the trade-off between the simplicity and capabil-
ity of the neural network. Considering that subtraction is
easier than multiplication in hardware implementation, we
assume that the membrane potential decays linearly instead
of exponentially. The membrane potential U of neuron ¢ in
layer [ at timestep n with soft reset is given by:

U0 = UPn — 1] - Taecay } decay
_‘/thresi(l) n —1] } reset
Nioi (1-1) o(i— .
+2 520 w]( 1)5]( 1)[n] } input
2

where Tyecqy 1s the decay constant, V. is the firing thresh-
old, NV; is the number of neurons in the layer [, w is the
synapse weight, and S is the output of spiking neurons. The
spiking neuron fires when the membrane potential exceeds
the threshold:

3

otherwise

1 if UV[n] >
Sfl)[n]:{o’ if U7 [l 2 Vinre
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Figure 3. Schematic of the simplified leaky integrate-and-fire
(LIF) spiking neuron model.

When the hard reset is adopted, the membrane potential
Uz-(l) is simply reset to 0 when it exceeds the threshold. Hard
reset is used for Transporter SNN, and soft reset is used for
RS SNN.

The simplified LIF model requires minimal hardware re-
sources to implement. The necessary electronic building
blocks are two adders for integration and decay, one com-
parator for firing detection, and one memory for membrane
potential storage. The schematic is shown in Figure 3. The
simple structure allows it to be implemented massively on
the sensor [0].

The spiking neurons and networks are built with Spik-
ingJelly', an open-source deep learning framework for SNN
based on PyTorch. To realize the simplified LIF model, the
perfect integrate-and-fire model (IF) neuron.IFNode in
SpikingJelly is used, and a bias is added along with synaptic
weights, serving as a constant current into the IF model. It is
worth noting that the bias can be either positive or negative.

3.1.2 Network Topology

Considering the limited resource on the hardware and see-
ing this work as proof of concept, we only adopt one-
hidden-layer SNNs and two-hidden-layer SNNs. More
complex topologies, such as recurrence and convolution,
will be studied in the future [36].

Transporter SNN uses the two-hidden-layer architecture.
Both input and output layers have only one node. The first
and second hidden layer has 256 and 128 neurons respec-
tively. RS SNN uses the one-hidden-layer architecture due
to its long sequence. Both input and output layers have only
one node. The only hidden layer has 512 neurons.

3.1.3 Decoding and Loss Function

The potential decoders and loss functions have been well
summarized in the literature [10]. This work uses a vari-
ation of mean square spike rate (MSSR) and mean square
membrane (MSM). The mean of the output along timesteps

Uhttps://github.com/fangweil23456/spikingjelly/tree/master
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Figure 4. The proposed Transporter SNN model. The detected
spikes are injected into an RO, whose period equals the repetition
period of the laser. When the RO is synchronized with the laser,
the incoming arrival times are folded into one spike sequence,
which is read out after the acquisition. The density of sequence
is basically proportional to the histogram, which is an ideal input
for SNNs.

is interpreted as the prediction:

1
=—> yln] )
T n=0

The output node can be modeled as an IF neuron with an
infinite threshold and no leakage, where the prediction  is
proportional to the membrane potential when Ny is fixed.

Mean absolute percentage error (MAPE) is used as the
loss function for the experiment, which is defined as

Np

D=

where Np is the batch size and y; is the label of the sam-
ple <. However, common loss functions such as L1 loss and
L2 loss can be used as well.

Yi — Ui
Yi

Lyrape = MAPE(y, &)

3.2. Transporter SNN
3.2.1 Hardware Structure and Encoding

After Captain Montgomery Scott experienced a crash at
Dyson sphere, he rigged the Transporter and left himself in
the diagnostic loop indefinitely until a rescue vessel could
come and “rematerialize” him (Star Trek S6E4). Inspired

8150



by this “Transporter suspension”, we propose Transporter
SNN, creating a loop to store temporal information in time
instead of memory until “rematerialization” for processing.

The schematic of Transporter SNN is illustrated in Fig-
ure 4. The spike generated by a SPAD is injected into a
ring oscillator (RO), with delay elements of, if any, a few
ps. The injected spikes would start circulating indefinitely
until “rematerialization” by a readout circuit. The RO is
supposed to synchronize with the reference signal, keeping
the same period. After running for thousands of periods
until the required information is collected, the spikes are
read out sequentially, where the differences among arrival
times are maintained. The resulting sequence is exactly the
binarized sum of all repetition periods, thus the density of
the spike through time is basically the histogram of arrival
times.

The number of timesteps is reduced by several orders of
magnitude, significantly improving the efficiency and facil-
itating the training. Since the delay element can only store
binary information, several spikes falling into the same de-
lay element can cause information loss and distortion. Thus
one has to balance the trade-off between hardware imple-
mentation difficulty and information fidelity in practice.

3.2.2 Training

Transporter SNN is trained with Surrogate Gradient [20),

]. With the folding of the time domain by the RO, mil-
lions of timesteps of the sequence are compressed into thou-
sands to tens of thousands of timesteps, which makes it pos-
sible to train the SNN with BPTT.

Surrogate Gradient smoothes the SNN and helps the gra-
dients “flow” backward during BPTT. The firing function
(Eq. 3) is non-differentiable at U = V.. and has deriva-
tives of Os elsewhere, which makes it impossible to use
BPTT directly. To overcome this, the non-differentiable fir-
ing function is replaced by a differentiable surrogate func-
tion, e.g. Sigmoid and arctan functions, in the backward
path. Arctan is used here for the training:

S(U) = %arctan (ga(U — Vthre)) + % (6)

where « is a scaler. Its derivative is given by:
a5 _ 3
U 9 (1 + (2 (U - V}hre))z)

)

which is everywhere defined, continuous, and non-zero.
05/0U reaches the maximum at U = Ve

3.3. Reversed Start-stop SNN
3.3.1 Hardware Structure and Encoding

Inspired by the concept of reversed start-stop TDCs [38],
we apply a similar mechanism to SNNs in order to elimi-

reference > — o

A\

detection

equivalent
input

Figure 5. The proposed Reversed Start-stop (RS) SNN model.
The reference and detection signals are connected to an SR flip-
flop, where the flip-flop is set by the detection signal and reset
by the reference signal. The output of the flip-flop is used to en-
able/disable the SNN. The SNN takes the detection signal as the
only input. The equivalent model is shown below. As for the SNN,
it is equivalent to taking an ISI-coded spike train continuously.

nate “blank” repetition periods, named Reversed Start-stop
SNN. The schematic is illustrated in Figure 5. The fun-
damental idea behind this approach is to pause the SNN’s
internal clock when no photons are detected and resume it
when photons arrive. Since a detector can only determine
if a photon arrives during a repetition period or at its end,
the SNN is designed to be active only when photons are de-
tected. Unlike conventional timers that are triggered by a
reference signal and halted by an event signal, in this case,
the SNN is enabled by the event signal and disabled by the
reference signal. Within the SNN, the clock keeps ticking,
resulting in an exact interspike-interval-coded representa-
tion of the incoming spike train. The interval is determined
by T' — t, where T represents the repetition period and ¢
denotes the arrival time of the photons. To implement this
mechanism in hardware, a Flip-Flop can be employed. The
detection signal sets the Flip-Flop, while the reference sig-
nal resets it. The output of the Flip-Flop is then connected to
the EN pin of the SNN. As a result, all empty repetition pe-
riods are disregarded, and the number of timesteps required
for processing a single photon is reduced.

While neurobiologists are debating on the neural cod-
ing scheme that the brain adopts, ISI coding is often ne-
glected [3]. This coding scheme, however, might carry
more information than rate coding and phase coding [16].
The temporal information in the phase coding is preserved
after the conversion to ISI coding. The spike rate of the ISI-
coded spike trains is linear with the inverse of the average
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spiking time, i.e. the average arrival time of the photons for
SPAD: )

N
where 7' is the repetition period and LSB is the least-
significant bit (temporal resolution). ¢ is an informative pa-
rameter for most active SPAD imaging tasks, which will
facilitate the training of the SNN, as described in Sec-
tion 3.3.2.

3.3.2 Training

Training ISI-coded SNNs poses greater challenges than the
density-coded ones, primarily due to their ultra-long se-
quence. Training with Surrogate Gradient directly would
be excessively time-consuming and computationally inten-
sive, and would suffer from gradient exploding/diminishing
problems. To address these issues, we adopt a two-step
training strategy for RS SNN. We start with training an
ANN, which takes the spike rate as input and makes pre-
dictions, then it is converted to an SNN. This initial training
phase is referred to as the “warm-up” training. After that,
the converted SNN is trained directly on the spike dataset
with Surrogate Gradient.

An ANN of the same topology as the desired SNN is
built first, whose input is the average of the spike train (i.e.
the spiking rate), the output is the label, and the activa-
tion function is Rectified linear unit (ReLU). The ANN is
trained until convergence. Owing to the strong relationship
between the ReLU and the firing rate of IF neurons with the
soft reset, the ANN can be converted to the SNN [29]. The
conversion is realized by the ann2snn module in Spiking-
Jelly. Tt is worth noting that the VoltageScaler cre-
ated by the ann2snn module can be incorporated into the
weights and biases.

The converted SNN is then trained directly with Surro-
gate Gradient, as described in Section 3.2.2. It is expected
that the performance can be improved by learning the tem-
poral information embedded in the ISI-coded spike trains.

4. Experiments
4.1. Data Acquisition

Synthetic datasets are created for training and evaluation.
The modeling of fluorescence is described in [17]. Fluo-
rescence, instrument response, background noise, and dark
counts are taken into account. Timestamps are generated
through the Monte Carlo simulation and are transformed
into spike trains. The fluorescence lifetime ranges from 1
ns to 6 ns. Three background noise (including dark counts)
levels are considered, which are 0, 1%, and 5%. The center
of the instrument response is at 1.968 ns. Other parameters
are kept the same as in [17].

Encoding of Transporter SNN firing rate
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(a) Examples of encoding of Transporter SNNs. There are 256 repetition peri-

ods and 1563 timesteps for each repetition period.
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(b) Examples of encoding of RS SNNs. There are 128 repetition periods and

1000 timesteps for each repetition period.

Figure 6. Examples of the encoding of the proposed SNNs. Spike
trains for fluorescence TCSPC data with different lifetimes are
shown here. The LSB is 0.016 ns and no background noise is con-
sidered. The shift and FWHM of the IRF are 1.968 ns and 0.1673
ns. For better visualization, different numbers of repetitions peri-
ods and timesteps are used.

The timestamps are transformed into density-coded and
ISI-coded spike trains for Transporter SNN and RS SNN
respectively. Examples of these spike trains are illustrated
in Figure 6. For density-coded spike trains, it is assumed
that the temporal resolution is 0.05 ns, the repetition period
is 50 ns (equivalent to a 20 MHz laser), and 256 spikes are
found in each sequence. For ISI-coded spike trains, it is as-
sumed that the temporal resolution is 0.05 ns, the repetition
period is 12.5 ns (equivalent to an 80 MHz laser), and the
total number of timesteps for one sequence is 50,000.

Experimental data from [17] is utilized to evaluate the
performance of SNNs on real-world data, which contains
the TCSPC data of a fluorescence lifetime-encoded beads
sample. Random distributions are generated from the his-
tograms, from which the timestamps are sampled to ensure
that it has the same form as the training set.

4.2. Training
4.2.1 Transporter SNN

Transporter SNN is trained with Surrogate Gradient. Arctan
with o = 2 is used as the surrogate function. Since we are
training on synthetic data, the training set can be generated
for each batch to avoid overfitting. The batch size is 32 and
the SNN is trained on 200,000 batches. Adam optimizer is
used with an initial learning rate of 0.001, which is halved
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Models . MAPE
No Noise 1% Noise 5% Noise

CMM 0.0507 0.0838 0.3455
cMMT 0.0507 0.0723 0.1410
LST™M 0.0485 0.0503 0.0555
Transporter SNN 0.0542 0.0591 0.0633
ANNTT 0.0602 0.0622 0.0666
Converted RS SNNTT  0.0603 0.0629 0.0674
RS SNN'f 0.0601  0.0610  0.0655

Table 1. Comparison of performance of the proposed models
and benchmarks on fluorescence lifetime estimation. (MAPE) is
adopted as the metric. Three levels of background noise are con-
sidered. The LSB is 0.05 ns. There are 256 repetitions and 1000
timesteps for each repetition.

T CMM with background subtraction, assuming that the background level
is known.

1 250 timesteps are considered for each repetition period, which is equiv-
alent to a 12.5 ns repetition period. In total, there are 50,000 timesteps for
each sequence. A sequence contains 323.6 photons on average. The longer
the lifetime, the more photons in the sequence.

every 10,000 batches. The training takes 38 min on our
workstation (AMD Ryzen Threadripper PRO 3945WX and
NVIDIA RTX A4500).

4.2.2 RS SNN

An ANN is initially constructed and trained, and sub-
sequently converted into an SNN. To maintain the same
topology as of the SNN, an ANN with a single hidden
layer is created, featuring 512 hidden neurons activated by
the ReLU function. The training process involves 50,000
batches, each comprising 128 samples. The parameters are
updated using the Adam optimizer with a learning rate of
0.001. The weights acquired during training are directly uti-
lized as the synaptic weights for the SNN. Furthermore, two
VoltageScaler components are learned from a smaller
dataset consisting of 1,000 samples, with one placed before
the hidden layer and the other after it.

Following the conversion process, the SNN undergoes
training using Surrogate Gradient. The training procedure
is similar to that employed for the Transporter SNN, with
the exception of utilizing 250,000 batches. As a result of
the long ISI-coded sequence, the training process takes 2
hours to complete.

4.3. Evaluation on Synthetic Data

Transporter SNN and RS SNN, as well as benchmarks
including Center-of-Mass Method (CMM) [15] and Long
Short-Term Memory (LSTM) [17], are evaluated on the
synthetic data. All the methods are tested on a dataset com-
prising 100,000 samples. MAPE (Eq 5) is adopted as the

metric. The result is shown in Table 1.

The CMM, although initially effective in noise-free envi-
ronments, experiences a significant decline in performance
when faced with even minor background noise, even when
utilizing background subtraction. LSTM demonstrates su-
perior performance across all scenarios. Despite its infe-
rior performance compared to the CMM in noise-free con-
ditions, the Transporter SNN surpasses the CMM by a sub-
stantial margin when confronted with background noise. It
is important to highlight that the Transporter SNN possesses
a remarkably simple structure, and its performance is ex-
pected to be enhanced by using more complex topologies.

Owing to its distinct coding scheme, the RS SNN is
evaluated on a different basis. Nevertheless, the ANN is
supposed to perform slightly better than CMM with back-
ground subtraction since there is a simple relationship be-
tween the CMM and the number of spikes. The RS SNN
converted from the ANN observes a slight drop in accuracy,
but it is restored and improved through BPTT with Surro-
gate Gradient. Hence we believe that temporal information
is learned through the training process. The performance
of RS SNN is expected to be improved by adopting more
complex topologies as well.

Figure 7 illustrates the firing of neurons in the Trans-
porter SNN over time. From timestep 50 when the input
spikes come in, a high rate of firing is observed among some
neurons (e.g. Neuron 15, 24, 34, and 47), exhibiting exci-
tatory behavior, and a decrease of firing rate is also observed
among some neurons (e.g. Neuron 5 and 13), exhibiting
inhibitory behavior. These behaviors are regulated by the
sign and amplitude of the synaptic weights and decay con-
stant. “Dead neurons”, which do not fire a single spike dur-
ing the whole process, are found as well (e.g. Neuron O,
11, 20, and 32). These neurons could be pruned during the
inference to reduce hardware resources and computational
complexity.

4.4. Evaluation on Experimental Data

Transporter SNN and RS SNN, which were exclusively
trained on synthetic data, are tested using real-world data.
In this benchmark, CMM serves as the reference, with the
Least-square (LS) fitting considered as the gold standard.
The result is illustrated in Figure 8. The sample consists of
fluorescent beads with three distinct lifetimes, evident from
the three peaks present in all the histograms. The LS Fitting
histogram displays low-variance Gaussian profiles, which is
expected due to the enhanced statistical accuracy resulting
from a higher number of photons. The histogram profiles
of Transporter SNN, RS SNN, and CMM exhibit similar
characteristics, indicating that the proposed SNNs perform
effectively in real-world scenarios.
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Figure 7. Heatmap of the firing of spiking neurons. The first 48 neurons of the one hidden layer Transporter SNN are shown here.
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Figure 8. Comparison of Transporter RNN, RS RNN, CMM, and LS fitting on experimental data. The data are downsampled for Trans-
porter SNN, RS SNN, and CMM. 256 photons with 0.05 ns LSB are used for Transporter SNN and CMM. 50,000 timesteps, 0.05 ns LSB,
and 12.5 ns repetition period are used for RS SNN. All the available data are used for LS fitting, which serves as the gold standard here.

5. Conclusion and Outlook

In this paper, we present two SNN frameworks, Trans-
porter SNN and RS SNN, for active time-resolved SPAD
imaging, detailing the simplified LIF neuron model and
its hardware, the encoder and its hardware, and the tai-
lored training scheme. We emphasize the necessity of em-
ploying dedicated encoder hardware to convert phase-coded
spike trains from SPADs to denser and more informative
spike trains for more efficient training and inference, and
also eliminate the TDC on the hardware level to release re-
sources. The performance of the proposed SNNs is demon-
strated through testing on synthetic and experimental data,
exhibiting satisfactory results even with simple topologies
such as one-hidden-layer and two-hidden-layer neural net-
works. We hope that this work can serve as a foundational
reference for the broader adoption of SNNs and inspire
the research community to develop more advanced SNN-

based models for active time-resolved SPAD imaging ap-
plications.

The following studies could be carried out on both hard-
ware and software levels. On the hardware level, the ded-
icated encoder and the SNN are going to be implemented
on the FPGA and further on the chip to realize near-sensor
and in-sensor processing, which could reduce power con-
sumption and latency and allow high throughput process-
ing. 3D stacking technology is envisioned to further im-
prove the performance, making it possible to be migrated
to portable devices. On the software level, more complex
network topologies are going to be explored to improve the
performance of SNNs, and they will be further trained for
high-level downstream tasks such as object detection and
image segmentation.
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