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Abstract

Current knowledge distillation approaches in semantic
segmentation tend to adopt a holistic approach that treats
all spatial locations equally. However, for dense predic-
tion, students’ predictions on edge regions are highly un-
certain due to contextual information leakage, requiring
higher spatial sensitivity knowledge than the body regions.
To address this challenge, this paper proposes a novel
approach called boundary-privileged knowledge distilla-
tion (BPKD). BPKD distills the knowledge of the teacher
model’s body and edges separately to the compact student
model. Specifically, we employ two distinct loss functions:
(i) edge loss, which aims to distinguish between ambigu-
ous classes at the pixel level in edge regions; (ii) body loss,
which utilizes shape constraints and selectively attends to
the inner-semantic regions. Our experiments demonstrate
that the proposed BPKD method provides extensive refine-
ments and aggregation for edge and body regions. Ad-
ditionally, the method achieves state-of-the-art distillation
performance for semantic segmentation on three popular
benchmark datasets, highlighting its effectiveness and gen-
eralization ability. BPKD shows consistent improvements
across a diverse array of lightweight segmentation struc-
tures, including both CNNs and transformers, underscoring
its architecture-agnostic adaptability. The code is available
at https://github.com/AkideLiu/BPKD.

1. Introduction
Semantic segmentation is a complex computer vision

task that involves assigning unique categories to each pixel
of an input image. In recent years, deep learning models
with large numbers of parameters have achieved remarkable
performance in semantic segmentation [9, 10, 18, 38, 63, 64,
66]. However, such models are impractical for resource-
constrained devices like mobile devices and robotics due to
their high computational complexity [51,55,61]. To address

*Corresponding author. Contact Email: akide.liu@adelaide.edu.au.

A)

W/o Distillation

BPKD(Ours)

Original Image

CWD

B)

(a) Original Image

A)

W/o Distillation

BPKD(Ours)

Original Image

CWD

B)

(b) Student w/o KD

A)

W/o Distillation

BPKD(Ours)

Original Image

CWD

B)

(c) CWD A)

W/o Distillation

BPKD(Ours)

Original Image

CWD

B)

(d) BPKD(Ours)

F
ir
st
-la
ye
rF
ea
tu
re
M
ap
E
nt
ro
py
(m
ea
n)

E
dge

PixelA
ccuracy

(%
)

Raw SKDS[34] CIRKD[57] CWD[47] BPKD(Ours)

49.2
48.0

12

13

14

15

16

17

18

46

48

50

52

54

56

58

50.2
52.9

56.7

First-layer Feature Map Entropy (mean) Edge Pixel Accuracy
Teacher Entropy

(e)

Figure 1. Illustration of contextual information leakage. Above)
The uncertainty maps are generated by computing the mean en-
tropy from first-layer feature maps, employing different distilla-
tion strategies such as the raw student, CWD, and BPKD. Brighter
colors indicate higher certainty. Below) Demonstrates the inverse
correlation between mean entropy and pixel-level accuracy along
edges. When learning edge pixels, the model aggregates contex-
tual information from adjacent class categories. Previous whole-
view distillation methods are affected by contextual information
leakage, leading to high uncertainty in edge low-level features and
low edge pixel accuracy.
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this issue, lightweight base models such as MobileNet [22],
ShuffleNet [40], and EfficientNet [48] have been used for
real-time semantic segmentation.

Designing compression and acceleration techniques for
compact networks is challenging but crucial. Knowl-
edge distillation approaches, such as those introduced in
[19,20,28,62], train a smaller student network to mimic the
complex teacher network by minimizing the soft probabili-
ties distance, typically measured by Kullback–Leibler (KL)
divergence, between the student and teacher. In [31,59,65],
authors have attempted to distill hidden knowledge by uti-
lizing network and data relations, with a focus on classifi-
cation tasks, achieving impressive results.

Pioneering knowledge distillation methods for semantic
segmentation [34, 47, 53, 57] focus more on capturing the
correlational information among pixels, channels, and im-
ages. Liu et al. [34] suggest that hidden knowledge in se-
mantic segmentation is constructed by structured represen-
tation. Structured knowledge is more suitable for pair-wise
similarity reduction and holistic distillation. IFVD [53] pro-
posed to encode the knowledge according to the semantic
masks. In CWD [47], authors refine distillation by empha-
sizing aligning the most salient region of each channel be-
tween the teacher and student.

In comparison to prior studies, which encompassed a va-
riety of studies including [3, 26, 34, 47, 53, 57, 58], that pre-
dominantly concentrated on transferring knowledge repre-
sentations across the entire image, the importance of dis-
tinct knowledge representations at different spatial loca-
tions has been neglected. When learning edge features, the
model aggregates contextual information between adjacent
class categories, leading to contextual information leakage.
As shown in Fig. 1 b, c, d), current whole-view distilla-
tion methods exhibit high levels of uncertainty, as well as
higher levels of entropy, at edge regions. Following prior
works [1], we quantify the uncertainty by computing a mean
entropy of first-layer features, capturing low-level textual
representations. Fig. 1 e) shows that current methods suf-
fer from higher uncertainties and lower accuracy at edge
pixels, indicating the phenomenon of contextual informa-
tion leakage. The low capacity of compact student networks
further exacerbates this phenomenon, degrading segmenta-
tion details on the boundaries, especially for small object
segmentation. However, delineating object’s boundaries is
mandatory for real-life applications such as localizing road
boundaries for autonomous navigation [42] or segmenting
tumors for treatment planning [33].

To tackle the issue of contextual information learning
in existing methods, we propose a novel approach, termed
Boundary Privileged Knowledge Distillation (BPKD). We
divide the knowledge distillation process into two subsec-
tions: the edge distillation and the body distillation sec-
tions. Our proposed BPKD approach explicitly enhances

the quality of edge regions and object boundaries by de-
coupling knowledge distillation and using teacher soft la-
bels. The edge distillation loss involves spatial probability
alignment and aggregation of contextual information to re-
fine the boundaries. Furthermore, boundaries provide prior
knowledge of the shape of an object’s inner regions, and
the body region can exploit this knowledge to eliminate
high-uncertainty boundary samples and smooth the learn-
ing curves. Consequently, we observed that the object cen-
ter received greater attention due to the implicit shape con-
straints, further improving segmentation in the body area.

Through empirical analysis, we have demonstrated that
our proposed approach effectively guides the student net-
work to learn from the teacher network’s knowledge, re-
sulting in improved segmentation performance. We eval-
uate our method over popular architectures on three seg-
mentation benchmark datasets: Cityscapes [13], ADE20K
[68], and Pascal Context [15]. Experimental results indi-
cate that BPKD outperforms other state-of-the-art distil-
lation approaches. Specifically, we reduce the disparity
in performance between the student and teacher networks
and exhibit competitive results in comparison to specialized
real-time segmentation methods [16].

Our main contributions are summarized as follows:
• We show that current distillation methods suffer from

contextual information leakage problems by analysing
low-level feature uncertainty, leading to non-optimal
segmentation performance at boundaries. To the best
of our knowledge, this is the first paper identifying this
critical problem within knowledge distillation litera-
ture for semantic segmentation.

• We propose a novel knowledge distillation method that
separately focuses on distilling information related to
the body and edge of objects. Our specialized edge
loss function significantly enhances the quality of edge
slices, while simultaneously imposing strong shape
constraints on the body regions. This approach effec-
tively minimizes the uncertainty prevents contextual
information leakage in the distillation process and am-
plifies the focus on the inner region.

• Our method achieves state-of-the-art results on three
popular benchmark datasets. We report an increase
in the mean Intersection over Union (mIoU) by up to
4.02% when compared to the previous SOTA CWD.
Additionally, we observe a remarkable enhancement
in prediction quality in both edge and body regions,
further demonstrating our effectiveness.

2. Related Work
Semantic Segmentation. Recent state-of-the-art ap-

proaches in semantic segmentation primarily leverage Fully
Convolutional Networks (FCNs) [32,39,64]. Notable mod-
els like PSPNet [67] and DeepLab series [4–7] employ ad-
vanced techniques such as pyramid pooling modules (PPM)
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and atrous spatial pyramid pooling (ASPP) to capture multi-
scale contexts. HRNet [51] further innovates with a paral-
lel backbone for high-resolution feature maintenance. De-
spite their performance, these models are computationally
intensive, limiting their applicability in real-time and edge-
device scenarios. Consequently, lightweight models like
ENet [43], SqueezeNet [25], and ESPNet [41] have gained
traction. These models use strategies such as early down-
sampling, filter factorization, and efficient spatial pyra-
mids to reduce computational overhead. MobileNet vari-
ants [22,23,46] are also effective for efficient segmentation.

Edge Detection. Classical edge detection algorithms
like Canny [2], Sobel [27], and Prewitt [44] have been
retrofitted into modern deep learning architectures to
achieve fine-grained segmentation. Deeply-supervised edge
detection methods such as HED [56] and RCF [36] intro-
duce multi-scale edge information directly into the segmen-
tation pipelines. Similarly, models like CASENet [60] have
advanced the state-of-the-art by fusing class-specific edges
into segmentation algorithms, providing a dual benefit of
detailed boundary representation and class differentiation.
In parallel, techniques like edge-attention models [52] in-
corporate edge information by weighting features based on
their boundary importance, enabling finer contour mapping
in semantic segmentation.

Knowledge Distillation. Knowledge distillation (KD)
aims to condense the learnings from one or more ex-
pansive teacher models into a streamlined student model
[17, 20]. Predominantly employed in basic vision tasks,
KD techniques can be taxonomized into response-based,
feature-based, and relation-based paradigms. Response-
based methods, chiefly initiated by Hinton et al. [20], mini-
mize Kullback-Leibler divergence to convey implicit, high-
value knowledge [19, 28, 62]. Feature-based approaches
like FitNet [45] align internal feature activations between
teacher and student, whereas relation-based methods [31,
59, 65] delve into inter-layer or inter-sample relationships.
Nonetheless, traditional KD is largely skewed towards im-
age classification, offering limited utility in pixel-level seg-
mentation tasks.

Recent advancements have seen KD methods tailor-fit
for semantic segmentation. Strategies such as structural
knowledge distillation [34, 35] define segmentation as a
structured prediction task, employing pair-wise similarities
and holistic adversarial enhancements for knowledge trans-
fer. Channel-wise distillation [47] concentrates on salient
channel regions. Additional innovations include intra-class
feature variation distillation [53], which amalgamates pixel-
level and class-wise variation, and Cross-Image Relational
distillation [57], which optimizes global semantic intercon-
nections. Masked Generative Distillation [58] leverages
teacher guidance for feature recovery. Recent work [3] sug-
gests Pearson correlation as a viable KL divergence alterna-

tive. Empirical validation corroborates the efficacy of these
specialized KD techniques in boosting semantic segmenta-
tion performance.

3. Methods
In this section, we first provide an overview of the work-

flow of the Boundary Privileged Knowledge Distillation
(BPKD) framework (Section 3.1), followed by a detailed
description of two key implementation aspects of our ap-
proach. Specifically, Section 3.2 outlines the edge knowl-
edge distillation process, which involves pre-mask filtering
and post-mask filtering. Section 3.3 introduces the distilla-
tion loss for body enhancements.

3.1. BPKD Framework

Existing feature distillation techniques [47, 57] transfer
the whole-view representations from the teacher while over-
looking the effects of noisy edge features on the distilla-
tion process. In this framework, we carefully consider the
sensitivity of edge representations and introduce the novel
boundary-privileged knowledge distillation (BPKD) that
transfers the knowledge in the body and the edge regions
separately. Distilling edge regions individually enhances
the quality of object boundaries explicitly. Furthermore, the
edge distillation loss provides prior shape knowledge for
the object’s inner regions. For instance, given a vehicle’s
boundary constraint, the model can easily determine pixel
categories for its inner region. The body distillation loss
has two key benefits from the prior boundary knowledge:
(1) reducing learning difficulty by mimicking the teacher’s
logit probability distribution since high-uncertainty bound-
aries are removed, and (2) leveraging higher attention on the
object center through implicit shape constraints.

Our approach uses an edge detection technique to gener-
ate edge masks ME for each class by processing the ground
truth and the segmentation logit map. Let Z ∈ RH×W×C

denote a network’s logit map, where C corresponds to the
number of channels and H ×W represents the spatial res-
olution. The edge masks ME are applied to separate the
logit map Z into two components: the body component ZB

and the edge component ZE , which adhere to an additive
rule, denoted by Z = ZB + ZE . Our BPKD framework
separately transfers the edge and body knowledge encoded
in these two components to the student. As the edge slices
have less amount of knowledge representations, we intro-
duce a categorized awareness to balance the importance of
different special perspectives. Together, these techniques
play a crucial role in improving the overall performance of
the model.

In this study, we propose a novel approach for decom-
posing the distillation loss into two distinct components,
namely the body loss ℓB and the edge loss ℓE , as expressed
by Equation 1. We include the body loss weight λb and
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Figure 2. Illustration of our proposed Boundary Privileged Knowledge Distillation framework and architecture. (a) demonstrates the
decoupling process that involves the edge detection on the ground truth to generate GTEdge Mask, followed by applying the mask filter to
obtain the Teacher and Student logits masks. This step ensures that the information from the boundary region is isolated and appropriately
conveyed to the Student. (b) shows that distillation comprises two terms: body loss and edge loss. The body loss term captures the
categorized similarities, whereas the edge loss term concentrates on the boundary regions’ transfer. ZE and ZB is short terms for ZEdge

and ZBody . In ZS,T , S and T standard for student and teacher, respectively. (c) shows edge loss calculation is performed in two stages:
pre-mask filtering and post-mask filtering. The pre-mask filtering step shapes the probability distribution to contain only edge information.
Subsequently, the post-mask filtering step aggregates contextual information between adjacent categories to produce the final edge loss.

edge loss weight λe to control the contributions of each loss
term. This decoupling strategy allows us to examine the
sensitivity of edge learning in the knowledge distillation
process, which has been overlooked by the literature. The
loss objective is defined as:

ℓ = λb · ℓB
(
ZS

B ,ZT
B

)
+ λe · ℓE

(
ZS

E ,ZT
E

)
. (1)

3.2. Edge Knowledge Representation.

Our framework minimizes the discrepancy between the
teacher’s and the student’s features on the edge areas. To
achieve this, we extract an edge knowledge representation
by using soft edge masks. This edge mask is applied on the
logit map to produce a masked feature representation for
teachers’ and students’ edge regions. The edge map ME

is created through two stages: Pre-Mask Filtering (PRM),
which captures edge discrepancy for all classes, and Post-
Mask Filtering (POM), which extracts edge discrepancy for
each individual class. This approach allows a model to
extract a more accurate and precise representation of the
edge knowledge, leading to improved performance in de-
tails classification.
During the edge detection process, we employ an adjustable
Trimap algorithm [50] to extract edge representations de-
noted by ZE from the ground truth (GT). Although the
teacher’s predictions could serve as an alternative source for
generating an edge mask, they offer slightly reduced accu-

racy compared to using GT directly. To generate the binary
edge mask GTedge, we compute the difference between the
dilation and erosion operations applied to the GT, formally
expressed as GTedge = dilation(GT ) − erosion(GT ). The
resultant binary mask GTedge ∈ RC×H×W undergoes av-
erage pooling to produce ME ∈ RC×H′×W ′

, which shares
the same shape as the logits prediction Zpred. The dimen-
sions of ME are governed by the output stride S of the seg-
mentation network, specifically W ′ = W/S.

Pre Mask Filtering (PRM). To obtain the logits map,
we apply ME to both student and teacher logits: ZE =
Zpred ·ME . Specifically, we apply the edge mask for each
channel C so that we can concentrate the logits for the over-
lap edge regions. An intuitive example is if there is a frame
that displays a dog and a cat standing nearby, only the log-
its activation of the dog and the cat class will be considered
and all other activation will be suppressed. Such an opera-
tion forces the student to focus more on the correlations be-
tween the adjacent ambiguous classes. A spatial-level KL
divergence loss is applied to the filtered logits ZS

E and ZT
E :

φ(ZT
E ,ZS

E) =

C∑
c=1

ϕ(ZT
E,i) · log

ϕ(ZT
E,i)

ϕ(ZS
E,i)

, (2)

where ϕ is the softmax operation for each pixel. φ(ZT
E ,ZS

E)
represents the edge-masked KL distances for all spatial lo-
cations.
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Post Mask Filtering (POM). We further separate the
edge loss for each class and perform normalization based
on the edge area by Post Mask Filtering (POM). Let ZT

E,i,c

and ZS
E,i,c denote the logits for the c-th class at pixel i in

the teacher and student models, respectively. Let ME,c be
the soft mask obtained by average-pooling the ground truth
binary edge mask for the c-th class, and nc denotes the num-
ber of non-zero pixels in ME,c for this class. Our POM term
can be formulated as follows:

ℓE =

C∑
c=1

αc

nc

W ·H∑
i=1

φ(ZT
E,i,c,ZS

E,i,c) ·ME,c, (3)

By re-weighing the loss based on the edge area of each
class, we prioritize the center of the edge, where the most
important information is often located. This approach en-
sures that the student model focuses on learning the correct
edge positions and shapes for each class.
The Soft Edge Masks ME play a critical role in the Edge
Loss, and our approach to generating them involves two
specialized designs: 1) converting binary GTE into a
weighted discrete space, and 2) generating masks per chan-
nel instead of a unified mask. Directly applying binary
masks may include unconfident bias, so we use average
pooling to generate softer masks. We also carefully con-
sider overlapping masks to minimize noise and uncertainty.
Our mask design aims to exclusively include unconfident
bias for minimizing knowledge distributions.
In summary, the proposed PRM and POM stages in the edge
region refine the knowledge distillation process by identi-
fying edge discrepancies for each class and applying a re-
weighting to the loss based on the edge area. This method
guarantees that the student model learns the correct edge
positions and shapes for each class, and provides the shape
prior knowledge for body knowledge representation.

3.3. Body Knowledge Representation.

This section investigates the body knowledge distilla-
tion. Prior works consider whole-view distillation, which
dilutes body knowledge with noisy representation on the
edge. To overcome these challenges, we utilize the reversed
edge binary mask to extract body masks. By removing the
edge region, we exploit implicit shape constraints and re-
duce uncertainty, which allows the body loss to focus on
assigning the large inner regions of objects to their corre-
sponding categories. To achieve this, we propose a region
alignment approach that synthesizes channel-level activa-
tions to obtain semantically rich sections. As we prede-
fined that Z = ZB + ZE . The body logits is obtained
by ZB = Z × (1 − ME). As shown in the previous
work [34, 47], a pixel-wise loss for the body region will
bring in unexpected noise due to the hard constraints. Thus,
we employ a loose constraint of the channel-wise distilla-
tion [47] for the body part. Body enhancement loss (BEL)

is defined as:

ℓB =
T 2

C

C∑
c=1

W ·H∑
i=1

ϕ(ZT
B,c,i) · log

[ϕ(ZT
B,c,i)

ϕ(ZS
B,c,i)

]
, (4)

4. Experiments
4.1. Experimental Setup

Dataset. We conduct the experiments on three benchmark
datasets for semantic segmentation: Cityscapes [13], Pascal
Context 2010 [15], and ADE20K [68].
ADE20K [68] contains 20k/2k/3k images for train/val/test
with 150 semantic classes. It is constructed as the bench-
mark for scene parsing and instance segmentation.
Cityscapes [13] is an urban scene parsing dataset that
contains 2975/500/1525 finely annotated images used for
train/val/test. The performance is evaluated in 19 classes.
Pascal Context [15] provides dense annotations, which
contain 4998/5105/9637 train/val/test images. We use 59
object categories for training and testing. Our results are
reported on the validation set.
Implementation Details. Our implementation is based on
the open-source toolbox MMSegmentation [11, 12] with
PyTorch 1.11.0. We employ the standard data augmenta-
tion, including random flipping, cropping, and scaling in
the range of [0.5, 2]. All experiments are optimized by
SGD with a momentum of 0.9, and a batch size of 16. We
use the crop of 512 × 512, 512 × 1024, and 480 × 480
for ADE20k, Cityscapes, and Pascal Context, correspond-
ingly. We use an initial learning rate of 0.01 for ADE20K
and Cityscapes. In addition, we use an initial learning rate
of 0.004 for Pascal Context. The number of total training it-
erations is 80K. Following the previous methods [7,67], we
use the poly learning rate policy and report the single-scale
testing result. We conduct all experiments on 4 NVIDIA
A100 GPUs. All the distillation methods are trained with
the same configurations.
Metrics. We set up a fair comparison by assigning identical
parameters for each method with the same dataset. Mean
Intersection-over-Union (mIoU), Trimap mIoU and pixel
mean accuracy (mAcc) are employed as the main evalua-
tion metrics. GFLOPs, FPS and No. Parameters are also
reported for various student networks that we tested. All re-
ported computational costs are measured using the fvcore. 1

4.2. Compare with State-of-the-arts Methods

To ensure a fair comparison, we have re-implemented
a number of previously proposed knowledge distillation
methods, including those by [34, 47, 53, 57]. Subse-
quently, we benchmarked our BPKD method against var-
ious compact networks, such as PSPNet with ResNet18

1https://github.com/facebookresearch/fvcore
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Table 1. Performance comparison of different distillation methods with state-of-the-art techniques. We test these methods on various
segmentation networks for both student and teacher models, using datasets including Cityscapes [13], ADE20K [68], and Pascal Context
[15]. The FLOPs and FPS are obtained on 512 × 512 resolutions. Our BPKD outperforms all previous methods in large margins across
multiple datasets and network architectures. DLab refers to Deeplab architecture. HRV2P refers to HRNetV2p. MV2 refers to MobileNet
v2.

ADE20K Cityscapes Pascal Context 59
Methods FLOPs(G) Param(M) FPS(S) 80k 512*512 80k 1024*512 80k 480*480

mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%)
T: PSPNet-R101 [67] 256.89 68.07 2.68 44.39 54.75 79.74 86.56 52.47 63.15
S:PSPnet-R18 [67] 54.53 12.82 15.71 33.30 42.58 74.23 81.45 43.79 54.46
SKDS [34] 54.53 12.82 15.71 34.49(▲1.19) 44.28 76.13(▲1.9) 82.58 45.08(▲1.29) 55.56
IFVD [21] 54.53 12.82 15.71 34.54(▲1.24) 44.26 75.35(▲1.12) 82.86 45.97(▲2.18) 56.6
CIRKD [57] 54.53 12.82 15.71 35.07(▲1.77) 45.38 76.03(▲1.80) 82.56 45.62(▲1.83) 56.15
CWD [47] 54.53 12.82 15.71 37.02(▲3.72) 46.33 76.26(▲2.03) 83.04 45.99(▲2.20) 55.56
BPKD(Ours) 54.53 12.82 15.71 38.51(▲5.21) 47.70 77.57(▲3.34) 84.47 46.82(▲3.03) 56.29
T:HRV2P-W48 [51] 95.64 65.95 6.42 42.02 53.52 80.65 87.39 51.12 61.39
S:HRV2P-W18S [51] 10.49 3.97 23.74 31.38 41.39 75.31 83.71 40.62 51.43
SKDS [34] 10.49 3.97 23.74 32.57(▲1.19) 43.22 77.27(▲1.96) 84.77 41.54(▲0.92) 52.18
IFVD [21] 10.49 3.97 23.74 32.66(▲1.28) 43.23 77.18(▲1.87) 84.74 41.55(▲0.93) 52.24
CIRKD [57] 10.49 3.97 23.74 33.06(▲1.68) 44.30 77.36(▲2.05) 84.97 42.02(▲1.40) 52.88
CWD [47] 10.49 3.97 23.74 34.00(▲2.62) 42.76 77.87(▲2.56) 84.98 42.89(▲2.27) 53.37
BPKD(Ours) 10.49 3.97 23.74 35.31(▲3.93) 46.11 78.58(▲3.27) 85.78 43.96(▲3.34) 54.51
T:DLabV3P-R101 [6] 255.67 62.68 2.60 45.47 56.41 80.98 88.70 53.20 64.04
S:DLabV3P-MV2 [46] 69.60 15.35 8.40 31.56 45.14 75.29 83.11 41.01 52.92
SKDS [34] 69.60 15.35 8.40 32.49(▲0.93) 46.47 76.05(▲0.76) 84.14 42.07(▲1.06) 55.06
IFVD [21] 69.60 15.35 8.40 32.11(▲0.55) 46.07 76.97(▲1.68) 84.85 41.73(▲0.72) 54.34
CIRKD [57] 69.60 15.35 8.40 32.24(▲0.68) 46.09 77.71(▲2.42) 85.33 42.25(▲1.24) 55.12
CWD [47] 69.60 15.35 8.40 35.12(▲3.56) 49.76 77.97(▲2.68) 86.68 43.74(▲2.73) 56.37
BPKD(Ours) 69.60 15.35 8.40 35.49(▲3.93) 53.84 78.59(▲3.30) 86.45 46.23(▲5.22) 58.12
T:ISANet-R101 [24] 228.21 56.80 2.35 43.80 54.39 80.61 88.29 53.41 64.04
S:ISANet-R18 [24] 54.33 12.46 17.34 31.15 41.21 73.62 80.36 44.05 54.67
SKDS [34] 54.33 12.46 17.34 32.16(▲1.01) 41.80 74.99(▲1.37) 82.61 45.69(▲1.64) 56.27
IFVD [21] 54.33 12.46 17.34 32.78(▲1.63) 42.61 75.35(▲1.73) 82.86 46.75(▲2.70) 56.4
CIRKD [57] 54.33 12.46 17.34 32.82(▲1.67) 42.71 75.41(▲1.79) 82.92 45.83(▲1.78) 56.11
CWD [47] 54.33 12.46 17.34 37.56(▲6.41) 45.79 75.43(▲1.81) 82.64 46.76(▲2.71) 56.48
BPKD(Ours) 54.33 12.46 17.34 38.73(▲7.58) 47.92 75.72(▲2.10) 83.65 47.25(▲3.20) 56.81

Table 2. Performance comparison of transformers-based archi-
tecture vs. different distillation strategies. Standard mIoU and
Trimap mIoU of Swin Transformers [37] and DeiT [49] with ViT
Adapter (DeiT-Ada) [8] on ADE20K with UPerNet [54] decoder
for 80K iterations. Distillation forward speed (DFS.), training
time (TT.) and GPU memory footprint (GMem.) light our method
have negligible computational cost. (DFS.) and (TT.) estimated
on DeiT-Adapter with batch size = 16 with 4 GPUs and (GMem.)
standard for per sample video memory allocation.

DFS.(S)↑ TT.(H)↓ GMem.(G)↓ Swin↑ Trimap ↑ DeiT-Ada.↑ Trimap ↑
T:Base 9.52 11.26 8.32 50.13 40.10 48.80 39.72
S:Tiny 12.80 8.44 3.87 43.57 32.78 41.10 32.15

SKDS 8.72 11.36 4.45 43.58 33.04 41.90 32.25
IFVD 6.06 16.45 8.97 43.75 32.90 41.16 32.11
CIRKD 7.70 16.35 10.70 43.32 32.68 41.64 32.23
CWD 8.76 11.15 4.45 44.99 33.73 44.25 33.49
BPKD 7.84 13.49 5.49 46.13 38.11 45.25 37.05

backbone [67], HRNet-W18 [51], Deeplab-V3+ with Mo-
bileNetV2 backbone [46], ISANet with ResNet18 [24],
Swin Transformers [37] with UPerNet [54] and DeiT [49]-
Adapter [8] with UPerNet [54].
Performance. Table 1 reports our method’s performance

on the ADE20K validation set, where the proposed BPKD
achieves state-of-the-art (SOTA) performance across multi-
ple student networks. The distillation process enhances the
mean Intersection over Union (mIoU) for student networks
by up to 24.33%. Notably, BPKD consistently outper-
forms the current SOTA, CWD, by 3.87% across all eval-
uated network architectures. Additional results on the Pas-
cal Context validation set indicate an average performance
increase of 2% over SOTA methods. Further experiments
presented in Table 2 reveal the method’s efficacy on pop-
ular Transformer architectures like Swin and DeiT, where
it outperforms CWD by up to 2.53%. These findings un-
derscore the architecture-agnostic nature of our approach.
In terms of computational efficiency, BPKD achieves a dis-
tillation forward speed up to 29.3%, training duration re-
duction of 21.2% and 21.9%, and a memory consumption
(GMem.) reduction of 94.8% and 63.4%, compared to pre-
vious methods such as CIRKD and IFVD. Additionally, we
register a 13% improvement in Trimap metrics over CWD
on the Swin architecture, emphasizing the method’s cost-
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Method
Teacher: PSP-ResNet101 79.74%
Student: PSP-ResNet18 Standard: 68.99% Trimap: 55.34%

Channel Wise Distillation [47] Standard: 74.29% Trimap: 57.34%
Pixel Wise Distillation [34] Standard: 69.33% Trimap: 53.82%

Body(C) Body(P) Edge(P) Edge(C) Ours

mIoU(%) Standard 74.17 (▲5.18) 72.70 (▲3.71) 71.63 (▲2.64) 66.83 (▼2.16) 75.94 (▲6.95)
Trimap 56.20 (▲0.86) 54.12 (▼1.22) 61.37 (▲6.03) 51.76 (▼3.58) 62.91 (▲7.57)

Table 3. The effectiveness of the decoupling whole-view knowledge representation. The results show knowledge representation for differ-
ent spatial locations should be considered, separately. C and P denote channel-wise and pixel-wise knowledge distillation, respectively.

effectiveness with SOTA performance.

4.3. Ablation Study

In this section, we comprehensively evaluate our BPKD
under different settings. All ablation experiments are con-
ducted on the Cityscapes dataset with T: PSPNet-R101 and
S: PSPNet-R18. To decrease computational costs, we adopt
a streamlined training configuration, including crop size re-
duced to 512 × 512, and training schedule to 40k iterations.
More experiment results are shown in the supplementary.
Effectiveness of Decoupled Knowledge. To verify the
effectiveness of the proposed knowledge distillation ap-
proach, we evaluate the segmentation performance in the
edge region in Table 3. We evaluated the Trimap mIoU met-
ric [7] when using channel-wise and pixel-wise normaliza-
tion for network distillation. Channel-wise normalization
led to a decline in both standard mIoU by 2.16% and Trimap
mIoU by 3.58%, indicating its sensitivity in edge regions.
Conversely, pixel-wise distillation enhanced Trimap mIoU
by 6.03%, benefiting from our specialized Edge loss design
that refines boundary quality [29, 30]. The Body loss func-
tion shows an increase in standard mIoU by 5.18% when
uses channel-wise and 3.71% when spatial-wise, emphasiz-
ing its effectiveness for body regions. However, it had a
limited impact on Trimap’s performance. In summary, our
optimal approach, BPKD, achieved the best mIoU scores
of 75.94(+6.95)% and 62.91(+7.59)% on standard and
Trimap evaluations, respectively. This highlights BPKD’s
capability to refine semantic boundaries and body regions
through pixel-level alignment and context aggregation.
Compare Edge Filter Locations. From Table 4, the nu-
merical results demonstrated the effectiveness of our pro-
posed method. We further analyzed the impact of apply-
ing the edge filter for different locations. Applying the Pre
Mask filter, the performance slightly improved by 1.98%
compared to the student without distillation. In contrast,
Post Mask filtering improves the performance by 2.64%,
because POM extracts edge discrepancy specifically for
each type of class. The Body Enhancement Module takes
care of non-edge information during our distillation setting,
and the performance is raised by 5.18%. Afterwards, we ex-

Method mIoU(%) IMP.(%) mAcc(%)
Teacher 79.74 - 86.56
ResNet18 68.99 - 75.19
+ PRM 70.37 ▲1.98 76.95
+ POM 71.63 ▲2.64 78.47
+ BEL 74.17 ▲5.18 80.47
+ PRM + BEL 74.81 ▲5.92 81.52
+ POM + BEL 74.62 ▲5.63 80.98
+ PRM + POM + BEL 75.94 ▲6.95 82.62

PRM: Pre-Mask Filtering BEL: Body Loss POM: Post-Mask Filtering

Table 4. The different locations apply the mask in the proposed
method. (IMP.) refers to the improvement achieved by the student
network.

plore the performance by applying PRM or POM to BEL.
The combination of three terms archives best mIoU that
75.94% on the Cityscapes validation set.
Impact of Different Edge Widths. Edge width is pivotal
in the Edge Detection Module, intricately influencing both
the quality and the computational demands of the edge de-
tection process. Specifically, a larger edge unit results in a
wider edge, which incorporates more pixels into the edge
loss. While this increase can potentially augment the ro-
bustness of edge detection, it also presents a trade-off: the
wider the edge includes pixels from the body region, which
could dilute the precision of edge-specific features. We sys-
tematically analyze the impact of varying edge widths on
the distillation performance, as summarized in Table 5. Our
analysis reveals that an edge width of 7 units is optimal,
leading to a significant performance improvement of 6.95%.
Impact of Hyperparameters. In the optimization process,
the parameters λb and λe serve as weighting factors for the
body and edge loss functions, respectively. These hyperpa-
rameters are pivotal in balancing the focus between seman-
tic boundary refinement and overall body region accuracy.
A higher value of λe places more emphasis on edge quality,
conversely, a larger λb value makes the model more attuned
to the larger body regions and potentially boosts the stan-
dard mIoU. The edge loss incorporates an internal parame-
ter α, serving as a class-wise balancing factor. This parame-
ter is particularly instrumental in mitigating class imbalance
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Edge Width mIoU IMP. mAcc
3 73.89 ▲4.90 81.24
5 74.26 ▲5.27 82.00
7 75.94 ▲6.95 82.62
10 74.70 ▲5.71 82.13
15 74.36 ▲5.37 82.02

Table 5. Performance comparison for various different
edge width with PSPNet-R18 on the Cityscapes valida-
tion set, for a fair comparison, we rerun the same setting
3 times and measure mean mIoU for evaluation.
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Figure 3. Impact of the (a) Body Loss weight λb and (b) Edge Loss weight
λe and (c) Edge Loss Inner weight α on Cityscape val. We found the optimal
combination by board range study that λb = 20, λe = 50, α = 2.

by intra-adjusting the contribution of each class to the over-
all loss. As shown in Fig 3, we investigate the impact of
loss weights in our BPKD and find λb = 20, λe = 50 and
α = 2 is the best choice.
CAM Visualization Analysis. Figure 4 illustrates the ex-
plicit refinement of semantic boundaries on multiple ob-
jects. The shape constraints are evident, such as the strong
attention given to the pillow outlines. Despite BPKD dis-
tillation, the student network cannot perfectly segment the
horse in the second row, but it has highly attended to the
bone silhouette. This shows that BPKD has tried its best

(a) Image (b) Teacher (c) W/o distillation (d) BPKD(Ours)

Figure 4. Comparison of CAM visualizations among (b) the
teacher model, (c) the student model without distillation, and (d)
the BPKD model. Activation maps were extracted from the last
block of the corresponding ResNet backbones using HiResCAM
[14]. The results indicate that BPKD shows superior refinement
of boundaries and higher attention to semantic bodies. For better
visualization, zoom-in is recommended.

to distill knowledge to the student network, but due to its
limited size and capacity, the student can only learn the
surface-level capacity of the teacher. The body sections
have been smoothly affiliated to a single category, reducing
high-uncertainty edge and incorporating shape prior knowl-
edge from the edge loss pressure. More qualitative seg-
mentation results in supplement visually demonstrate our
BPKD’s effectiveness for both tiny and large objects with
explicit boundaries enhancement.

5. Conclusion
This work presents a novel boundary-privileged knowl-

edge distillation (BPKD) method for semantic segmenta-
tion, which transfers the cumbersome teacher model’s body
and edge knowledge to the compact student model, sepa-
rately. Extensive experiments demonstrate that the knowl-
edge representation in the body and the edge regions should
be considered differently. Due to different intrinsic prop-
erties, the edge region needs to focus on distinguishing be-
tween uncertain classes for each pixel while the body re-
gion needs to focus more on localizing and connecting ob-
ject structures. Experimental results show that the proposed
distillation method consistently outperforms state-of-the-art
methods on various public benchmark datasets. The over-
all mIoU and the performance in the edge region are both
improved by a large margin.
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