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Abstract

Developing a client-side segmentation algorithm for on-
line sports streaming holds significant importance. For in-
stance, in order to assess the video quality from an end-user
perspective such as artifact detection, it is important to ini-
tially segment the content within the streaming playback.
The challenge lies in localizing the content due to the intri-
cate scene changes between content and non-content sec-
tions in popular sports like football, tennis, baseball, and
more. Client-side content detection can be implemented in
two ways: intrusively, involving the interception of network
traffic and parsing service provider data and logs, or non-
intrusively, which entails capturing streamed videos from
content providers and subjecting them to analysis using
computer vision technologies. In this paper, we introduce
a non-intrusive framework that leverages a combination of
traditional machine learning algorithms and deep neural
networks (DNN) to distinguish content sections from non-
content sections across various online sports streaming ser-
vices. Our algorithm has demonstrated a remarkable level
of accuracy and effectiveness in sports broadcasting events,
effectively overcoming the complexities introduced by intri-
cate non-content insertion methods during the games.

1. Introduction

The rapid growth of streaming services has made it im-
portant to quantify the video quality from end-user perspec-
tive. Some of the key metrics include device specific arti-
facts detection such as large scaling or interlacing during
the game broadcasting time. To compute these metrics,
it is important to initially segment the content within the
streaming playback. Today, several computer vision-based
approaches for client-side content detection have been pro-
posed. For instance, in 2005, Hua et al. [29] proposed an
algorithm that first extracted context-based features from a
video and then applied a Support Vector Machine (SVM).

In 2006, M. Covel et al. [9] presented an approach that
used both acoustic and visual cues to detect repeated sig-
nals and then segmented out non-content sections. More
recently, Xu and Du [7] introduced a method that searches
for merchant logos in a video stream using template match-
ing. However, this method requires a collection of merchant
logos of interest. Liu et al. [16] presented an algorithm that
combines hand-crafted features from the visual, textural,
and audio modalities and employs the Tri-Adaboost clas-
sifier to separate non-content segments from content seg-
ments. Despite the rapid development of deep learning in
the computer vision area, most of researches are either fo-
cused on the 2D spatial segmentation, such as the popular
Faster-RCNN [23] and the recent prompt-based SAM algo-
rithm [14], or are in the activity detection or scene change
domain temporal segmentation, such as [6, 30, 32]. only
a couple of DNN algorithms have been built for the con-
tent detection. One of them is the Ad-Net proposed by Mi-
naee et al. [21], which first uses an open-source video shot
algorithm [1] and then applies a pre-trained DNN to clas-
sify segmented video clips. The other work is proposed by
Z. Liu [17], which uses audio data to perform the segmenta-
tion first and then fuses the video and audio data and applies
a DNN to classify each segment.

In client-side based content detection, there are two gen-
eral approaches: intrusive and non-intrusive. The intru-
sive approach intercepts network traffic and parses it to
extract relevant information. However, this method can
be challenging due to the frequent changes in data format
and encryption by service providers. The non-intrusive ap-
proach captures the video and analyzes it using computer
vision technologies. This approach can be divided into two
groups: reference based and non-reference based. In the
reference based approach, a non-content gallery is used to
search for matches in the playback. However, obtaining
and updating the gallery can be difficult. The non-reference
based approach is more applicable to Video Quality Anal-
ysis (VQA) since it relies on analyzing audio and video
features without the need for a gallery. However, this ap-
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proach is also challenging, particularly for popular sports
live streaming videos such as football, baseball and basket-
ball. For example, the league promotion segments during
game breaks can be similar to the game contents, as shown
in Fig.1 (a) and (b). Additionally, there are also many em-
bedded non-content, as shown in Fig.1(c)-(f).

(a) (b)

(c) (d)

(e) (f)

Figure 1. Examples of challenging non-content images include
samples (a) and (b), which are from league promotion segments
aired during game breaks, and samples (c)-(f), which are from in-
game commercial that are seamlessly integrated into the broadcast
of the game. The sample images listed here are publicly available
online.

In this paper, we present a novel non-reference based
client-side computer vision algorithm for robustly detect-
ing content sections in online sports streaming. The al-
gorithm is composed of two parts: a short-term classifier
that takes in a 10-second video clip and outputs frame-
level estimations, and a long-term predictor that takes in the
full video-playback and generates more accurate segmen-
tation output. Our main contributions include: (i) present-
ing a robust client-side non-reference framework that can
accurately localize challenging content sections from sport
streaming events on various service providers, (ii) present-
ing a standalone short-term frame-level classifier that takes
10 seconds long clip input with processing time only 55
milliseconds, making it suitable for real-time content de-
tection applications, and (iii) presenting a traditional ma-
chine learning based classifier to detect league promotion
segments (Fig. 1 (a)) that is very challenging because they
often exhibit similar visual and audio patterns with the main
games.

The non-content sections can be grouped into intrusive

and non-intrusive, as shown in Fig. 6 in the Appendix. Our
algorithm is specifically designed to detect the intrusive
segments because we need to exclude them in order to mea-
sure the game streaming quality, such as the artifact detec-
tion: large scaling, interlacing, etc. as described in [19]. In
our algorithm, the intrusive non-contents include all video
sections during game breaks and some embedded commer-
cials that visually affect end-user game watching experi-
ence, such as the example shown in Fig. 1 (d).

The paper is organized as follows: in Sec. 2, we provide
a detailed description of the short-term classifier. In Sec. 3,
we describe the structure and workflow of the long term
predictor. In Sec. 4, we present the results of our evaluation
using a large video dataset. Finally, in Sec. 5, we summarize
our findings and suggest future research directions.

2. Short-term Frame-level Classifier
The short-term frame-level classifier is designed for real-

time application. Its input is a 10-second clip, which is pro-
cessed through two pathways: audio and video. Here we
take both video and audio signals as the input because the
previous researches have indicated that adding audio sig-
nal can help improve the temporal event segmentation re-
sults [17, 30]. In the audio pathway, we first re-sample the
signal to 44.1 kHz and then apply the Log-Mel Spectro-
gram transformation [10, 20] to convert it into a 2D im-
age. We then use the PANNs Cnn14 network [15] to ex-
tract audio features. In the video pathway, we first re-
sample the images to 224 × 224 spatially and 4 fps tem-
porally, and then extract features for each frame using the
2D Resnet50 network [12]. The video and audio features
are fused at the frame level by concatenation. As the au-
dio feature space has a different temporal dimension from
the video feature space, we run a 1D convolution on the au-
dio features to match their temporal dimension. The fused
features are then processed by a transformer encoder that
performs self-attention operations [26] and a customized
FFN based on temporal 1D convolutions to output the final
frame-level binary classification result (non-content versus
content). Fig. 7 in the Appendix illustrates the workflow.

In our work, we disentangled the spatial and tempo-
ral feature computation for the video pathway data. We
achieved this by first running the 2D Resnet-50 on each in-
put frame, followed by running the temporal encoder and
FFN across frames. This approach is preferred over using
3D CNNs, as 2D CNNs have significantly lower compu-
tational cost. Specifically, the 3D Resnet-50 has 48 mil-
lion learnable parameters, while the 2D Resnet-50 is less
than half that size with only 23 million learnable parame-
ters. Additionally, a 3D convolution of size T×H×W is
T times slower than its 2D counterpart of size 1×H×W .
Furthermore, Xie et. al [31] found that replacing expensive
3D CNNs with low-cost 2D convolutions can result in better
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performance in terms of both speed and accuracy.
We designed a customized FFN based on 1D convolu-

tion, which differs from most state-of-the-art algorithms
such as the Vision Transformer [11] and the Swin Trans-
former [18]. Our choice of a 1D convolutional network
is because, in order to classify whether a frame is an non-
content or content, we often need to consider its temporally
neighboring frames to make a more reliable estimation, and
1D convolution is better suited for extracting local patterns
and features.

3. Long Term Section Predictor
The long term section predictor takes the output of the

short term classifier, aggregates them, and produces more
reliable results. Figure 2 illustrates its workflow that com-
prises three components: (i) a section creator that aggre-
gates the frame-level classification results into non-content
or content sections, (ii) a league promotion classifier that
identifies non-content sections that closely resemble game
content, as shown in Figures 1 (a) and (b), and (iii) a post-
processing step that utilizes audio data and predefined key-
words to update the segmented sections. We will provide
a detailed description of each component in the following
subsections.

3.1. Section Creator

To process an entire input video playback, we first di-
vide it into a list of temporally adjacent clips, each 10
seconds in length. For each clip, we apply the short-
term frame-level classifier as described in Section 2, re-
sulting in T probability outputs. Here, T is set to 40
as shown in Fig. 7. We concatenate all frame-level
outputs for the input video to form a long prediction
sequence, PSfps=4=(P11, P12, ..., P1T , P21, P22, ..., P2T ,
..., PK1, PK2, ..., PKT ), where K is the total number of
clips. We then perform a 1D temporal average pool using a
window size of five seconds and a stride length of one sec-
ond, resulting in a second-level (1 fps) prediction sequence
PSfps=1 = (P1, P2, ..., PN ). Here, N is the duration of
the input video playback in seconds.

We have observed that text can be used to distinguish be-
tween non-content segments and content segments. For in-
stance, certain keywords such as “highlights”, “gameday”,
and channel logos (e.g., “Foo Channel”) typically appear
only in a specific area of the screen (e.g., top left or top
right) during game segments. To leverage this observation,
we developed a regional keyword detector as part of our al-
gorithm. The detector first decodes the input video into a
list of frames at a sampling rate of 1 fps. For each frame,
we apply the AWS OCR algorithm [2] to extract its text. We
also use a logo detector based on the faster R-CNN archi-
tecture [23] to search for TV station logos and stopwatch
regions. The output is another sequence WSfps=1=(W1,

W2, ..., WN ), where Wi contains the text and logo re-
gions for frame i. Note that WS is temporally aligned
with the prediction sequence (PS) described above because
they share the same sampling rate. For each Wt, we use an
empirically-built rule engine to search for keywords in spe-
cific regions. If a match is found, we update the correspond-
ing value (Pt) in the prediction sequence. For example, if
the word “highlights” appears at the bottom right corner of
the screen in Wt, we update Pt to 0 (indicating content).
Note that this rule engine is generic and can be applied to
videos captured from any station.

To create non-content/content sections from the updated
prediction sequence PSfps=1, we first apply a pre-defined
threshold to binarize each Pi. Next, we create sections
from the connected components of the positive class: non-
content (NC), and the negative class: content. Addition-
ally, we perform a 1D temporal morphological closing
operation on the non-content sections to eliminate small
fragments. The output of the section creator is a list
of sections (SecNC(1), SecContent(1), ..., SecNC(M),
SecContent(M)), where each section is represented by its
starting second (t1) and ending second (t2), denoted as
Sec(i) = (t1, t2).

3.2. League Promotion Classifier

Separating league promotion segments from sports con-
tent segments is challenging because they often share sim-
ilar visual and audio patterns, as illustrated in Fig. 1 (a)
and (b). In our algorithm, we use a novel video encoder
based on camera shot change features, implemented via a
classifier. Our approach relies on the observation that non-
content segments typically have more shot changes than
content segments. We will perform an empirical study on
this hypothesis in Appendix Sec. A. To encode features, we
first split each input section (generated by the Section Cre-
ator) into a list of overlapping video clips, each of which
is 10 seconds long with a hop size of 2 seconds. We then
apply a shot change detector using the Transnet V2 [25] al-
gorithm, which is a DNN-based approach that computes the
frame-level probability sequence at 15 fps. Since each clip
is 10 seconds long, we obtain 150 probability values, where
each value Pshot indicates whether the corresponding frame
contains a shot change or not. To obtain clip-level features
regarding shot change frequency, we first filter out frames
with Pshot less than a pre-defined threshold Tshot, which
is set to 0.3 in our algorithm. The remaining frames are
then summarized using a 9-bin histogram of frame count
based on Pshot. Each bin in the histogram corresponds to
a specific value range of Pshot, such as [0.3, 0.35), and has
a height equal to the number of frames with Pshot in that
range. This way, clips with more shot changes will have a
right-skewed distribution represented by the histogram fea-
ture, while clips with fewer shot changes will have a left-
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Figure 2. The workflow of the long-term section predictor involves segmenting a lengthy video playback into non-content (NC) and content
sections. It consists of a section creator that aggregates the frame-level classification, a league promotion classifier that identifies non-
content sections that closely resemble game content, and a post-processing step that utilizes audio and text signals to improve the accuracy.
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Figure 3. The workflow of the League Promotion Classifier on a sample input section of content type. In the output, the header segment is
updated to non-content (NC) section type.

skewed distribution. We also append the count of frames
with Pshot > Tshot so that the output histogram feature per
clip has 10 values.

The feature embedding for each clip is input into a binary
league promotion classifier. In our algorithm, we chose the
traditional Support Vector Machine (SVM ) [8] with a lin-
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ear kernel over a DNN due to its faster computation and
the difficulty of obtaining a diverse set of league promo-
tion segments data required to train a DNN. The predic-
tions from all clips are concatenated into a sequence, and
a 1D convolution with a kernel of 11 seconds and padding
of 5 seconds is applied to smooth out outliers. The result-
ing prediction sequence is then binarized where segments
with frequent shot changes are labeled as league promo-
tion non-content type. However, we must exercise caution,
as some non-content/content segments may also have infre-
quent/frequent shot changes. To address this issue, we reset
a segment with frequent shot change to non-content type
only when it is temporally adjacent to another non-content
section. And we also incorporate a validation step that uti-
lizes a keyword-based rule engine, as described in Section
3.1. For instance, if the classifier re-labels a segment of a
content-type input video section as league promotion type,
but many frames in this segment contain the “Foo channel”
logo in the top left region, then the segment will not be up-
dated but will be kept as content type.

The figure shown in Figure 3 shows a sample workflow
of the league promotion classifier. In this example, we be-
gin with a video input of type content. After performing
video cropping and shot change feature extraction, the clas-
sifier identifies a head segment and a tail segment as league
promotion type. The keyword validator then removes the
tail segment part from re-labeling, resulting in only the head
segment being updated as an non-content type in the output.

3.3. Post Processing

The post-processing step is designed to further improve
the quality of the non-content/content type sections created
earlier. It consists of two parts. The first part is section fil-
tering, where we perform both audio and video checks. In
the audio check, we select every section with a duration of
less than 25 seconds, compute its audio features using the
SpeakerID based algorithm presented in [17], and compare
it with the features of its neighboring sections. If they are
similar, we update this section to have the same type as its
neighbors. In the video check, we select every section of
content type with a duration of less than 30 seconds, com-
pute the ratio of frames that contain keywords as described
in Sec. 3.1. If the ratio is too low, we update the type of
this section from content to non-content. Here both 25 sec-
onds and 30 seconds are empirically set using the data as
described in Sec. 4.

The second part of the post-processing step is section
boundary fine-tuning. For each section Sect, we com-
pare its audio features with its temporally adjacent neigh-
bor sections Sect−1 and Sect+1 using the same algorithm
as described above. If Sect has similar audio features with
Sect−1 as measured in Euclidean distance, it indicates that
the section boundary frame (fb) is inaccurate. In such

Table 1. The number of video clips we used in the short-term
frame level classifier training process. The content clips are broad-
casting sport games. Each clip has a duration between 10 to 60
seconds.

Class Train Test Validation
Non-content 5484 290 290

Content 5040 264 264

cases, we use the probability sequence produced by the shot
change detector as described in Sec. 3.2 to find the frame f ′

b

that has the local maximum shot change likelihood near fb,
and reset the boundary frame to f ′

b. We also repeat this step
if Sect has similar audio features with Sect+1.

4. Experiments and Performance

4.1. Training Data and Process

Non-content

Content

Input Pair (10 Seconds)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Label 1

Label 2

Data 1

Data 2

Output Pair (10 Seconds)

1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

Data 1

Interlace

Label 1

Label 2

Data 2

Figure 4. An example of interlacing a pair of clip data (10 seconds
each) and their labels.

Our algorithm consists of several models, with the train-
ing process mainly focused on two in-house built classifiers:
the short-term frame-level classifier, as described in Sec. 2,
and the league promotion classifier, as described in Sec. 3.2.
For the remaining parts, such as the OCR model and the
TransNet v2 model, we use them off-the-shelf.

To train the short-term frame-level classifier, we col-
lected non-content video playbacks from various sources.
And all the content videos are the broadcasting sport game
playbacks. Each video playback was divided into small
video clips with duration ranging from 10 to 60 seconds,
to increase the diversity of the data. In order to balance
the dataset, we performed downsampling so that the ratio
between the number of non-content type clips and the num-
ber of content type clips fell within the range of [0.9, 1.1].
Subsequently, we split the dataset into training, testing, and
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Table 2. The number of video clips we used in the league promo-
tion classifier training process. The video clips are created from
the same source used in the short-term classifier as listed in Ta-
ble 1

Class Train Test Validation
Non-content 6292 700 58

Content 4687 521 112

validation sets with a ratio of 90%, 5%, and 5%, respec-
tively, as listed in Table 1. During the training process, we
created batches with an equal number of non-content type
clips and content type clips, and randomly sampled 10 sec-
onds of data from each of them. To help the classifier learn
the state transitions (Non−content ⇐⇒ Content) in real-
time, we employed an interlacing data augmentation step as
shown in Figure 4. This ensured that each clip contained
one or more state transitions.

To initialize the neurons of the short-term classifier as
shown in Figure 7, we used pre-trained weights from [27]
and [15] for the 2D Resnet-50 model and the PANNs Cnn14
model, respectively. For the remaining neurons, we ap-
plied the Kaiming initialization method provided by Py-
Torch [22]. With regard to the loss function, we computed
the cross-entropy loss for each prediction output and then
averaged it across all (40) samples of a (10 seconds long)
input clip, as defined in Equation 1.

L(X,Y ) = 1
40

∑40
i=1(−yilog(xi)− (1− yi)log(1− xi))

(1)
where X = (x1, x2, ..., x40) and Y = (y1, y2, ..., y40) are
the model predicted probability and the binary ground truth
label for one input clip, respectively.

To train the league promotion section classifier, we uti-
lized the same set of cropped clips used to train the short-
term frame-level classifier, splitting the training and testing
data in a 9:1 ratio. While the training dataset include all
non-content types, the validation dataset only consists of
league promotion segments in order to better evaluate the
accuracy. Table 2 lists the size of each dataset. It is worth
noting that this classifier does not require weight initializa-
tion since we opted for the traditional machine learning ap-
proach of using SVM .

4.2. Algorithm Performance Evaluation

The evaluation dataset comprises 63 video playbacks of
online broadcasting sport games streamed on different sta-
tions. The duration of each clip ranges from 30 to 120
minutes. Human annotators manually labeled the starting
and ending times (in seconds) for each non-content and
content type segment. Since our algorithm is designed to
detect intrusive insertion segments, non-intrusive insertion
segments like the image shown in Fig. 1 (e) are labeled as

content type. In this dataset, there are around 850 mins
of non-content segments and 2350 mins of content seg-
ments. Note that some embedded commercials are diffi-
cult to label as intrusive or non-intrusive, such as the image
shown in Fig. 1 (c). As only a tiny portion of the evaluation
dataset (< 1%) are in this case, we exclude them from the
performance computation to reduce human error.

Since our algorithm’s output has a temporal resolution
of second, we report the performance at the second level.
This means that for each second of playback, we compare
the algorithm’s output with the manually labeled type. We
used popular metrics: precision, recall and the f1 score,
to quantify the accuracy performance. The detailed defini-
tion of these metrics is described in Appendix Sec. C. Ta-
ble 3 summarizes our algorithm’s performance on the eval-
uation dataset. We can see that it achieves very promising
results, with a precision rate above 98% and a recall rate
above 95%.

Table 3. The performance of our algorithm in terms of precision
rate and recall rate, both of which are measured in seconds. The
evaluation dataset consists of 63 online sports video playbacks
such as football with duration ranging from 30 minutes to 120 min-
utes.

Class Predicted Ground Precision Recall
Truth

Count Count Rate Rate
Non-content 50795 50741 96.7% 95.6%

Content 140708 140762 98.4% 98.8%

4.3. Generalization to Sport Types Excluded from
the Training Dataset.

To evaluate the generalization of our algorithm, we in-
tentionally exclude some types of sport events from our
training dataset, such as the baseball games and the bas-
ketball games. These broadcasting events also feature nu-
merous non-content segments that are challenging to de-
tect, including league promotion and embedded commercial
segments, as depicted in Fig. 5. Specifically, we collected
four basketball playbacks and four baseball playbacks, each
ranging from 30 to 70 minutes in length. Subsequently, we
applied our algorithm to these playbacks and reported the
performance in Table 4.

Since our algorithm hasn’t been trained on these types
of sports, its accuracy dropped as expected. For instance, it
yielded an non-content precision rate of 87.5% for basket-
ball games. However, this outcome is still highly encour-
aging in terms of the generalization. And we are confident
that further enhancements can be achieved by adding video
playbacks from these sports into the training dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Samples of challenging images from sports that are not
included in the training set. The images listed here are publicly
available online.

Table 4. The generalization of our algorithm on sports excluded
from the training dataset. The accuracy is reported in terms of pre-
cision rate and recall rate, both of which are measured in seconds.
The evaluation dataset four basketball playbacks and four baseball
playbacks with each ranging from 30 minutes to 70 minutes long.

Sport Non- Non- Content Content
content content

Type Precision Recall Precision Recall
Basketball 87.5% 98.2% 99.4% 95.2%
Baseball 94.3% 94.6% 98.0% 97.9%

4.4. Short-term Classifier Window Size Study

Table 5. The performance of the short-term classifier as described
in Sec. 2 in terms of different sampling window size. We used the
same evaluation dataset as Table 3.

Window Non-content Content
Secs f1 Score f1 Score

8 83.6% 93.4%
9 83.6% 94.6%

10 88.7% 96.1%

The short-term classifier’s sampling window size in
Sec. 2 is set to 10 seconds. This choice aligns with the pre-
vailing approach found in leading video activity detection
databases, such as the Kinetic series [5, 13, 24]. However,
given the real-time nature of the short-term classifier’s de-

sign, it becomes interesting to investigate its performance
under the influence of smaller sampling windows. In Ta-
ble 5, we have compared the accuracy achieved using sam-
pling windows of 8, 9, and 10 seconds, respectively. Ev-
idently, as the sampling window size decreases, there is a
corresponding reduction in accuracy. This outcome is con-
sistent with our expectations, as a shorter sampling window
inherently provides a lesser amount of information.

4.5. Short-term Classifier Video/Audio Encoder Se-
lection Study

In the short-term frame-level classifier, we utilized the
ResNet50 and PANNs CNN14 models to encode video and
audio features, respectively. Both of these models are based
on convolutional neural networks (CNNs). As transformer
architectures have shown significant improvement on solv-
ing computer vision problems, we also evaluated their im-
pact on our application. Specifically, we studied two state-
of-the-art image transformers: the Vit model [11] and the
Swin model [18], as well as two state-of-the-art audio trans-
formers: the Wav2Vec2 model [4] and the Data2Vec Audio
model [15]. To gain a better understanding, we changed one
encoder at a time, such as replacing the video encoder with
Vit while keeping the audio encoder as PANNs CNN14.

Table 6 compares the performance of the new encoders
with our encoder (the last row) in terms of memory space
(during inference), running time (during inference), and ac-
curacy. For fair comparison, all encoders are re-trained
where we described the process in Appendix B. We observe
that although our encoder’s accuracy on the regular and
baseball sports is slightly lower than (around 0.5%) the best
model, it demonstrates significantly higher accuracy for the
basketball sport type: surpassing other encoders by 10%
or more. This suggests that our encoder can be more effec-
tively generalized across sport types without requiring addi-
tional training data. Moreover, it also substantially outper-
forms other encoders in terms of memory consumption and
running time. In particular, when compared to the Swin2D
model which achieved the best accuracy for the regular and
baseball sports, our algorithm is approximately three times
faster and only requires 32% of the memory. These advan-
tages make it a superior option for real-time applications.

4.6. Ablation Study

We studied the impact of each component in our algo-
rithm on the overall performance and presented the results
in Table 7. We can observe that the SF classifier already
achieves an accuracy of approximately 87% on the non-
content type and around 95% on the content type. Given
that SF is a real-time classifier that only requires a 10-
second video input, this performance is highly promising.
Combining SF with any component of PAC, RF , and
PP has been found to improve the performance, particu-
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Table 6. The performance comparison between the transformer based encoders and our encoder (the last row) for the short-term classifier
only (SF ) as described in Sec. 2. The regular evaluation dataset (sport types included in the training dataset) is described in Table 3 and
the basketball and baseball evaluation dataset (sport types excluded from the training dataset) are described in Table 4. The accuracy is
measured in terms of the f1 score in percentage for the non-content (NC) and content (CT) sections. All encoders are re-trained with the
process explained in Appendix B.

Video Audio Memory Running Regular f1 Basketball f1 Baseball f1
Encoder Encoder Space (Gb) Time (ms) NC CT NC CT NC CT
Vit [11] PANNs Cnn14 [15] 5.45 150 87.8 95.4 44.5 37.9 86.5 95.2

Swin2D [18] PANNs Cnn14 [15] 8.73 170 89.0 96.2 52.2 64.4 91.1 97.0
Resnet50 [12] Wav2Vec2 [4] 4.03 80 88.4 95.6 62.2 76.3 88.0 96.0
Resnet50 [12] Data2Vec Audio [3] 4.09 88 86.6 94.7 50.5 55.4 88.1 96.0
Resnet50 [12] PANNs Cnn14 [15] 3.43 55 88.8 96.0 70.8 85.1 90.2 96.7

Table 7. The Ablation study on each component of our algorithm
in terms of the short-term classifier (SF ) as described in Sec. 2,
the league promotion classifier (PAC) as described in Sec. 3.2,
the region key word detector (RK) as described in Sec. 3.1, and
the post processing (PP ) step as described in Sec. 3.3. We used
the same evaluation dataset as Table 3.

Algo. Non- Content Non- Content
Content Content

Precision Precision Recall Recall
SF Only 90.5% 95.4% 87.1% 96.7%

SF + PAC 94.5% 97.8% 93.8% 98.0%
SF + RK 96.8% 97.3% 92.5% 98.9%
SF + PP 94.0% 96.0% 88.8% 98.0%

Full 96.7% 98.4% 95.6% 98.8%

larly for the non-content types. Specifically, we can see that
the PAC component helps to boost the non-content recall
rate to 93.8%, and the RK component helps to raise both
the non-content precision and recall to 92.5% and 98.9%,
respectively.

4.7. Model Complexity Study

Table 8. The number of parameters of individual models built in
our algorithm. Here SF is the shot term classifier as described
in Sec. 2, PAC is the league promotion classifier as described in
Sec. 3.2, and SID is the SpeakerID model built in the audio check
algorithm as described in Sec. 3.3.

Model SF PAC SID
Parameter Count 334M 206M 1.4M

Running time 55ms 7.3ms 12.8ms

We investigated the complexity of the individual models
used in our algorithm. The space complexity was measured
by the number of parameters in each model, and the com-
putational complexity was measured by running the algo-
rithm on an AWS P3 instance with one GPU of Tesla V100

16G and CPUs of Intel(R) Xeon(R) CPU E5-2686 v4 @
2.30GHz. The results are summarized in Table 8. We can
observe that the short-term classifier has only 334 million
parameters and is able to process a 10 seconds of video in
55 milliseconds. This suggests that the model can be scaled
to run in a real-time application using a machine with only
moderate hardware configurations.

5. Conclusions and Future Study

In this paper, we propose a client-side algorithm for ef-
fectively segmenting contents from live broadcasting sports
events. Our algorithm consists of two components: a short-
term frame-level classifier designed for real-time applica-
tions, processing 10-second video clips, and a long sec-
tion predictor that generates more accurate predictions for
hours-long videos.

To evaluate the algorithm’s performance, we conducted
tests on a dataset containing 63 video playbacks ranging
from 30 to 120 minutes. The results demonstrate a preci-
sion rate of approximately 98% and a recall rate of approx-
imately 95%, indicating high accuracy in segmenting con-
tent sections from non-content sections. Furthermore, we
assessed the individual models employed in our algorithm
in terms of their impact on accuracy, space complexity, and
computational complexity. The findings suggest that these
models can be integrated into real-time applications using
moderate hardware configurations.

We conducted additional experiments to verify its ef-
fectiveness with sports that are excluded from the training
dataset. The results demonstrated consistent performance
across these sports, showcasing the algorithm’s versatility
and applicability to generalize to new types of sports.

When considering future research, one direction is to ex-
plore the prospect of generalizing the algorithm to segment
out content sections in various live streaming events, includ-
ing music concerts, social gatherings, and travel and explo-
ration experiences.
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