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Abstract

Vision transformers (ViT) usually extract features via for-
warding all the tokens in the self-attention layers from top
to toe. In this paper, we introduce dynamic token-pass vi-
sion transformers (DoViT) for semantic segmentation, which
can adaptively reduce the inference cost for images with
different complexity. DoViT gradually stops partial easy
tokens from self-attention calculation and keeps the hard
tokens forwarding until meeting the stopping criteria. We
employ lightweight auxiliary heads to make the token-pass
decision and divide the tokens into keeping/stopping parts.
With a token separate calculation, the self-attention layers
are speeded up with sparse tokens and still work friendly
with hardware. A token reconstruction module is built to col-
lect and reset the grouped tokens to their original position in
the sequence, which is necessary to predict correct semantic
masks. We conduct extensive experiments on two common se-
mantic segmentation tasks, and demonstrate that our method
greatly reduces about 40% ∼ 60% FLOPs and the drop of
mIoU is within 0.8% for various segmentation transform-
ers. The throughput and inference speed of ViT-L/B are in-
creased to more than 2× on Cityscapes. Code is available at
https://github.com/FLHonker/DoViT-code.

1. Introduction
Semantic segmentation has been a significant compo-

nent of autonomous driving [17], image editing [41] and
visual scene analysis [6]. As a dense prediction task, it
aims to assign each image pixel to a category label. Thanks
to the development of deep neural networks, especially vi-
sion transformers (ViT) [9], the research for semantic seg-
mentation has achieved great successes at the price of huge
computation. Moreover, the transformer-like segmentor,
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Figure 1. Overview of different algorithms for model acceleration.

e.g., SETR [44], Segmenter [30] and Segformer [34], has
overtaken CNN across the board and shows great potential.
However, the computational complexity of the transformer
architecture makes real-time application of semantic segmen-
tation even more prohibitive. To make these models more
suitable to resource-constrained mobile devices, it is urgent
to reduce the computation cost and accelerate them.

These years have witnessed the great progress in CNN-
type model compression and acceleration brought by
parameter-aware approaches. As shown in Figure 1a, the
majority of current acceleration approaches can be divided
into three categories, including pruning [18, 20], quantiza-
tion [16,32] and knowledge distillation [13,15,33]. They all
focus on reducing the redundant components or parameters
of the networks, so we called them parameter-aware accel-
eration methods. There has been a recent surge of interest
to introduce these parameter-aware acceleration methods
to transformer-base architectures, both in natural language
processing (NLP) [21,29] and computer vision (CV) [22,39].

The core of ViTs is the self-attention module, which is
naturally different from the convolution operation in CNNs.
It works by calculating the relationships among each pair
of image patches or tokens, and then capturing the global
context of the input image. Benefiting from this nature of
self-attention, Rao et al. firstly propose DynamicViT [27]
that prunes the tokens of less importance and only keeps
partial tokens in self-attention for acceleration. A-ViT [35]
improves DynamicViT [27] by introducing halting distribu-
tion of tokens and requires no extra parameters. Recently,
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ATS [10] builds an adaptive token sampler to automatically
select the most important tokens. These data-aware accelera-
tion works point out a new direction for model acceleration.
But they only pay attention to classification tasks, and do
not support dense tasks like semantic segmentation. For
classification ViT, actually only the class token is utilized
to predict the category of the whole image, and most of the
other tokens may be dropped at certain layers. Differently,
each token is necessary to semantic segmentation, and all the
tokens are required to be utilized by the decoder to predict
the categories of pixels. Additionally, the above methods
train the dynamic ViT with a fixed token pruning rate for
each layer/block, making it unable to make an image-wise
trade-off between the input complexity and inference cost.

To this end, we propose a novel dynamic token-pass trans-
formers (DoViT) for semantic segmentation. This is the first
attempt of data-aware ViT acceleration on dense prediction
tasks. Rather than focusing on the patch redundancy in the
input image, we base complexity or learning difficulty of
semantic patches/tokens to adaptively determine their com-
putational cost, which makes the backbone achieve an image-
wise dynamic inference. It’s difficult to automatically select
the more informative or important tokens for self-attention
at each layer. Because the pixel classification may fail if
any semantic token is not fully learned. The most reliable
scheme is to decide whether a token should be preserved
or stopped explicitly based on the early prediction results.
Therefore, we introduce a semantic early-probe scheme that
divides the tokens into two categories, i.e., keeping set and
stopping set. The keeping tokens will involve in the next self-
attention layers while the stopping tokens will be prevented
from the self-attention and directly passed to the decoder via
a short path. The keep or stop of each token is determined
by the semantic prediction confidence provided by the auxil-
iary heads. This scheme makes it possible to adjust a fully
dynamic inference cost for various input images. We claim
that all semantic tokens must be received by the decoder in
their original position after a certain level of self-attention
operations. A separate self-attention module is presented
to optimize the calculation of the keeping/stopping set of
tokens where the stopping tokens bring no computation. To
restore the order of input tokens, we introduce a token recon-
struction module that provides complete and correct feature
maps for the decoder and auxiliary heads. Our proposed
approach significantly cuts down the inference cost — the
FLOPs of SETR on Cityscapes is reduced by 40% ∼ 60%
within 0.8% mIoU drop, and the throughput and FPS is im-
proved to over 2 × on hardware. In summary, our main
contributions are as follows:

• We propose a dynamic token-pass method to reduce
the inference cost of vision transformers for semantic
segmentation.

• We introduce a semantic early-probe scheme to de-
termine the token-pass candidates. The separate self-
attention and token reconstruction modules are respon-
sible for sparse token acceleration.

• We conduct extensive experiments on two public seg-
mentation datasets with various ViT models and demon-
strate that the proposed method reduces FLOPs signifi-
cantly with minor drop in mIoU.

2. Related Work
2.1. Semantic Segmentation

Fast development of deep neural network has significantly
inspired the exploration of semantic image segmentation. At
the very first, FCN [23] achieves pixel-wise image segmen-
tation by removing the final fully-connected layer. As FCN
focuses on extracting abstract semantic features, multi-scale
feature fusing [1, 25, 28], dilated convolution [2, 3, 38], and
spatial pyramid pooling [4, 5, 42] are proposed to induce
the network to extract more fine-grained features. To further
boost the accuracy of the network, attention mechanisms
are introduced to the network [11, 12, 36, 37, 40, 43]. Re-
cently, considering the excellent performance of transform-
ers, many works try to plug it into the semantic segmentation.
SETR [44] firstly adopts a transformer based network, ViT,
as encoder to extract features, but keep the CNN-based de-
coder. The Segmenter [30] further expands the transformer
architecture to the decoder and designs a pure transformer
encoder-decoder segmentation architecture.

2.2. Model Acceleration

Even transformer has brought great improvement for the
semantic segmentation, the quadratic number of interactions
between tokens increased the computation burdens. To pro-
mote the deployment of transformer-based model on edge
devices, model acceleration become a popular topic. Tra-
ditional parameter-aware model acceleration methods like
knowledge distillation [13,15,33], quantization [16,32], and
pruning [14, 18, 20] have already been introduced to trans-
former [21,22,24,29,39]. Considering the cost of calculating
relations among image patches or tokens in transformer, data-
aware model acceleration is worth being discussed. Some
related works have been studied in image classification, for
example, DynamicViT [27] firstly proposes to prune uninfor-
mative tokens in a dynamic way by adopting a lightweight
prediction module. Then A-ViT [35] improves it by remov-
ing the prediction module and halting the computation of
tokens by a parameter-free adaptively inference mechanism.
EViT [19] reduces computation by progressively discarding
or fusing inattentive tokens in Vision Transformers. Recently,
ATS [10] builds an adaptive token sampler to automatically
select the most important tokens. These methods exhibit
great potential in transformer acceleration of classification
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tasks, but they are not suitable for the semantic segmentation
as each token is meaningful for the pixel-wise prediction.

3. Proposed Approach
3.1. Overview

Figure 2 illustrates the pipeline of our DoViT framework.
Consider a transformer-like segmentation network that takes
an image x ∈ R3×H×W as input to predict a semantic mask
y ∈ RC×H×W (C, H , and W represent number of cate-
gories, height, and width respectively):

y = D ⊙FL ⊙FL−1 ⊙F1 ⊙ E(x) , (1)

where E ,F and D are the patch embedding network, back-
bone layer and segmentation decoder, respectively, L rep-
resents the number of layers. The network E tokenizes the
image patches from x into positioned tokens T ∈ RN×E ,
where N and E are the number and dimension of the tokens,
respectively. Then the tokens forward with multi-head self-
attention (MSA) operations in the backbone layers, which
accounts for most of the computation of the entire segmenta-
tion network. We select certain layers and execute a semantic
early-probe scheme to make a token-pass decision that the
hard tokens are kept in the later MSA layers while the easy
tokens are stopped from MSA and directly passed to the
decoder. To perform an efficient sparse token forwarding in
the backbone and decoder network, we introduce a separate
self-attention strategy and a token reconstruction module.

3.2. Token-Pass Decision

To progressively lessen the tokens in the ViT backbone,
we choose D nonadjacent self-attention layers as “decision
layers” that divide the whole L backbone layers into D + 1
blocks, i.e., {B1,B2, · · · ,BD+1}. The number of layers in
the block Bℓ is Bℓ. Different from classification ViT, it’s a
challenge to determine the importance of each token at cer-
tain layers. Because every token contains specific semantic
information and contributes to the segmentation prediction,
which indicates that it’s unreasonable to roughly drop the
uninformative tokens. We claim that it is crucial to accu-
rately judge whether a token is fully utilized and learned.
A straightforward approach is to evaluate the segmentation
results with the early tokens. To this end, we propose an
early-probe scheme to determine whether a token is kept in
calculating or stopped learning. In particular, we insert a
lightweight auxiliary segmentation head Hℓ following the
block Bℓ. It’s worth noting that the auxiliary head consisting
of one fully-convolutional layer brings tiny extra parame-
ters and computation, which is almost negligible compar-
ing to the whole segmentation network. Assuming that no
token-pass decision is applied, and each MSA block works
normally with total N tokens input and N tokens output.
We reshape the token sequence T ℓ output by the block Bℓ

to a deep feature map f ∈ RE×h×w, where E is both the
dimension of the tokens and channels of the feature map, h
and w represents the width and height of the feature map,
N = hw. We feed the feature map f ℓ into the ℓ-th auxiliary
headHℓ to obtain a probability map pℓ ∈ RC×h×w with the
softmax operation:

pℓ = softmax
(
Hℓ(f ℓ)

)
. (2)

The scalar pc,i,j represents the probability of the token Ti,j

belonging to the c-th semantic category, and the maximum
value qi,j of {pc,i,j}Cc=1 represents the confidence of label
prediction in terms of Ti,j . With these insights, we can
allocate a prediction confidence to each token Ti,j and obtain
a score map

qℓi,j = max
{
pℓc,i,j |c ∈ {1, 2, · · · , C}

}
. (3)

Generally, the tokens with high prediction confidence are
uninformative and easy to segment, while the tokens with
low prediction confidence are complex and hard to learn. So
we can utilize the confidence score to determine a token’s
pass. To align with the original shape of token sequence
T ∈ RN×E , we reshape the confidence map qℓ ∈ Rh×w to
qℓ ∈ RN . We define a binary decision mask M̃ ℓ ∈ {0, 1}N
to indicate whether to keep or stop each token T ℓ

n at the ℓ-th
block,

M̃ ℓ
n =

{
0, if qℓn > ξ

1, else
, (4)

where 0 ≤ ξ ≤ 1 is a threshold parameter. The number
of sparsely-keeping tokens is gradually decreased block-by-
block. But the decision mask M̃ ℓ is calculated based on the
hypothesis that the headHℓ receives a complete feature map
without token reduction. So we need to ignore the tokens
that are stopped at the previous blocks by updating M̃ ℓ with

M ℓ = M̃ ℓ ⊙M ℓ−1 =

ℓ∏
i=0

M̃ i , (5)

in which ⊙ is the Hadamard product, and M ℓ−1 is the real
decision mask from the last block, M0 = M̃0 = 1.

In this way, we have selected the keeping tokens at each
block, they will involve in the MSA blocks until meeting the
stopping criteria. With the early-probe scheme, the token-
pass is dynamic adaptively in terms of the patch complexity,
rather than subject to a fixed keeping/stopping ratio at each
stage. It’s necessary to collect the stopping tokens to build
a complete feature map for the auxiliary heads and segmen-
tation decoder. To achieve an efficient self-attention with
the keeping/stopping tokens, we design a separate token
forwarding algorithm.
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Figure 2. The overview of our dynamic token-pass transformers for semantic segmentation. The token-pass decision depends on the auxiliary
(Aux) heads inserted between the transformer blocks. With the keeping and stopping token sets, the separate self-attention module can
capture the more informative context with less computation, which represents the core of our dynamic token-pass algorithm. The token
reconstruction module is responsible for converting the sparse tokens sets to a structured feature map with ordered tokens.

3.3. Sparse Token Forwarding

With the decision masks {M̃ ℓ}Dℓ , a sparse token sequence
can be extracted from the blocks. [27] and [35] both execute
the self-attention operation with the sparse tokens via a mask
mechanism, where the exiting/stopping tokens still involve
in the calculations of query, key and value. To achieve a real
token reduction, they design different training and inference
phases in which the stopping tokens are inconsistent. The
inconsistent tokens input to the decoder could make a bias
between the training and inference phases. To this end, we
propose a simple yet efficient separate self-attention module
that keeps the consistency of dynamic token-pass in two
phases.

Separate Self-Attention. The keeping and stopping to-
kens are processed separately in each block, except the first
block B1 in which no token reduction is performed. To
gather the sparse tokens to a compact and structured repre-
sentation, we define a function G(T,M) that selects tokens
from T ∈ RN×E with the mask M and combine them to a
new token sequence with the size of |M | ×E, where |M | is
the number of nonzero items. The keeping/stopping token

sequence T̂ ℓ/T̈ ℓ up to the ℓ-th block can be obtained by

T̂ ℓ = G
(
T ℓ,M ℓ

)
, T̈ ℓ = G

(
T ℓ, (1−M ℓ)

)
. (6)

In this way, the keeping/stopping tokens output by the block
Bℓ has been divided into two parts. In dynamic token-pass
inference, only the keeping tokens are considered in the
MSA modules of the next block, i.e. Bℓ+1, which can be
formulated as

MSA(Q̂, K̂, V̂) = softmax

(
Q̂K̂⊤
√
d

)
V̂ , (7)

where Q̂, K̂, V̂ ∈ RN×d are the query, key and value embed-
dings of the keep tokens T̂ , d is the dimension of the embed-
dings. Then, the computational complexity of self-attention
is reduced from O(N2 · d) to O(|M |2 · d), |M | ≤ N . The
stopping tokens T̈ ℓ will directly pass the next block Bℓ+1

without any calculation. After separate self-attention in block
Bℓ+1, the keeping and stopping tokens can be combined as
a complete sequence T̂ ℓ+1.

Token Reconstruction. However, due to the token spar-
sifcation and separation for self-attention, the combined to-
ken sequence T̂ ℓ+1 output by block Bℓ+1 is out-of-order
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and inconsistent with the original image patches. To this
end, we introduce a token reconstruction module to locate
the tokens in T̂ ℓ+1 to their original position as a new se-
quence. It can be formulated as T ℓ+1 = R(T̂ ℓ+1, Iℓ+1), in
which R is a transform function that maps each token to
the corresponding position or rank in the sequence, Iℓ+1 is
the map of token indices that can be generated incidentally
by G. Finally, the reconstructed tokens T ℓ+1 can be fed
into the next block. After reshaped as a feature map f ℓ+1,
the auxiliary head Hℓ+1 can utilize it to make token-pass
decision for the next block, and the decoder can finish the
semantic prediction with it. As shown in Figure 2, we add a
token reconstruction module before the auxiliary heads and
segmentation decoder.

Token Merging. Considering that there may be some use-
ful information provided by the stopping tokens, we merge
them as one representative token and aggregate it with the
class token before calculating self-attention in the next block.
For example, after obtaining a token sequence T ℓ from the
block Bℓ via the above algorithms, the class token can be
updated by

T ℓ
0 ←

1

2

T ℓ
0 +

1

|Sℓ|

|Sℓ|∑
i

E∑
j

T̈ ℓ
i,j

 , (8)

where |Sℓ| = |1 −M ℓ| is the total number of stopping to-
kens. Then the keeping tokens including T ℓ

0 can sequentially
involve the self-attention in the next block. Note that we
preserve the class token in MSA following the standard in
ViT [9], and remove it when building feature maps. In fact,
the class token T0 is a default keeping token in all the blocks,
not depends on the token-pass decision.

3.4. Training Pipeline

With the feature maps {f ℓ}D+1
ℓ=1 consisting of

hierarchically-stopping tokens, the auxiliary heads
{Hℓ}Dℓ=1 and segmentation decoder D predict semantic
probability maps {pℓ}Dℓ=1 and ps. To train the segmentation
network in a supervised manner, the ground truth label map
ȳ is used to compute the cross-entropy (CE) loss

LCE(p
s, ȳ) =

1

HW

HW∑
i=1

C∑
j=1

−ȳi,j log(psi,j) , (9)

where ȳi,j is the real value (1 or 0) of the j-th class for the i-
th pixel, and psi,j corresponds to the probability predicted by
the segmentation decoder D. Analogously, the D auxiliary
heads are updated with loss function

LAH =

D∑
ℓ

LCE(U(pℓ), ȳ) , (10)

where U(·) is the upsampling function.

To alleviate the performance damage caused by dynamic
token-pass, we employ a self-distillation framework to train
the DoViT-based segmentation network with the correspond-
ing ViT-based network as a teacher. We denote the teacher’s
probability map as pt, then the self-distillation loss is formu-
lated by Kullback-Leibler(KL) divergence:

LSD(ps, pt) =
1

HW

HW∑
i=1

C∑
j

psi,j log

(
psi,j
pti,j

)
. (11)

The overall loss function is

L = LCE + αLAH + βLSD , (12)

where α, β > 0 are two hyper-parameters to control the
relative importance.

4. Experiments
4.1. Experimental Settings

4.1.1 Datasets and Metrics

Cityscapes [8] is a widely used urban scene understand-
ing dataset, with 19 common classes for evaluation. It con-
tains 2,975 fine-annotated images with 1024 × 2048 pixels
for training, 500 for validation, and 1,525 for testing.

ADE20K [45] is one of the most challenging semantic
segmentation datasets that contains challenging scenes with
20,210 fine-annotated images with 150 semantic classes in
the training set. The validation and test set contain 2,000 and
3,352 images respectively.

Metrics. The numbers of float-point operations (FLOPs)
and parameters (Params) are introduced to measure the com-
putational complexity and model size of the segmentation
network. We report the throughput and frame-per-second
(FPS) to show the inference speed of networks. We employ
the common metric of mean Intersection over Union (mIoU),
Pixel Accuracy (PA), and mean Pixel Accuracy (mPA) for
scene segmentation on all datasets. Note that mIoU is the
primary and more persuasive metric for segmentation.

4.1.2 Implementation Details

We implement our DoViT frameowrk with PyTorch [26]
on 8 NVIDIA V100 GPUs. We evaluate the proposed
method on two popular transformer-like segmentation ar-
chitectures, i.e., SETR [44] and Segmenter [30], using clas-
sic ViT [9] and DeiT [31] as backbone. For the base and
small transformer backbone, we select the (3,6,9)-th layers
as the decision layers. In the total 24 self-attention layers
of the ViT-large, the (6,12,18)-th layers are the decision lay-
ers. Three single-layer auxiliary heads with 1 × 1 kernel
are inserted following the decision layers. And the original
auxiliary heads for SETR [44] can be reused without specific
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Network Backbone PA (%) mPA (%) mIoU (%) Params (M) ↓ FLOPs (G) ↓

SETR

ViT-L 95.91 85.71 78.10 305.74 2484.27
DoViT-L (Ours) 95.93 85.27 77.98 (-0.22) 306.54 (+0.8) 1088.80 (-56%)
ViT-B 95.65 84.22 76.59 87.62 703.28
DyViT-B/0.9 94.99 79.10 71.60 (-4.99) 91.12 (+3.5) 626.79 (-11%)
DyViT-B/0.85 94.82 77.44 70.11 (-6.48) 91.12 (+3.5) 581.84 (-17%)
DoViT-B (Ours) 95.64 83.95 76.40 (-0.19) 88.23 (+0.6) 330.09 (-53%)
ViT-S 95.39 83.14 74.80 22.57 177.99
DyViT-S/0.9 94.10 77.52 67.47 (-7.33) 23.62 (+1.1) 158.87 (-11%)
DoViT-S (Ours) 95.52 83.26 75.13 (+0.33) 22.89 (+0.3) 91.13 (-49%)

SETR

DeiT-B 95.78 85.25 77.41 87.62 703.28
DoDeit-B (Ours) 95.62 84.33 76.70 (-0.71) 88.23 (+0.6) 332.73 (-53%)
DeiT-S 95.47 82.69 75.14 22.57 177.99
DoDeit-S (Ours) 95.29 82.58 74.63 (-0.51) 22.89 (+0.3) 83.64 (-53%)

Segmenter

ViT-L 96.07 86.41 79.10 333.82 2705.40
DoViT-L (Ours) 95.88 85.60 78.47 (-0.63) 334.62 (+0.8) 1257.86 (-54%)
ViT-B 95.89 85.55 77.83 103.38 826.99
DoViT-B (Ours) 95.73 84.57 77.40 (-0.43) 103.99 (+0.6) 442.19 (-47%)
ViT-S 95.68 84.22 76.61 26.47 208.05
DoViT-S (Ours) 95.65 84.11 76.65 (+0.04) 26.79 (+0.3) 119.50 (-43%)

Table 1. Main results on Cityscapes. Performance comparison of different segmentation models with varying backbones on Cityscapes
validation set. The “DoViT” and “DoDeiT” are standard ViT/DeiT backbone with our acceleration method. The suffix “L/B/S” represent the
large/base/small transformer, respectively.

modification. All the setups of data augmentation, network
training and accuracy evaluation follow the offical imple-
mentation of SETR [44] and Segmenter [30] in codebase
MMSegmentation [7]. The co-efficient α and β are set to 1.0
and 0.4 by default, respectively. The confidence threshold
ξ = 0.985 is optimal for Cityscapes, and ξ ∈ [0.96, 0.985]
is suitable for ADE20K. Without specific instruction, the
parameters, FLOPs, throughput and FPS are reported with
a 1024 × 2048 resolution for Cityscapes, and 512 × 512
randomly cropped images for ADE20K. To test the adaptive
inference cost of each image in our DoViT, we randomly
sample 100 images from the validation set and report their
average FLOPs, throughput and FPS. For parallel training
of images with various numbers of sparse keeping tokens,
we utilize a distributed environment, where the batch size
per GPU is set to 1 for Cityscapes and 2 for ADE20K. If the
batch size per GPU is larger than 1, the numbers of keeping
tokens of batch images on one GPU are set the same, by
striking an average according to the sort of confidence.

4.2. Main Results

Cityscapes. One of the most advantages of our DoViT
framework is that it can reduce the computational complexity
(i.e., FLOPs) of a wide range of transformer-like segmenta-
tion networks with a tiny drop of accuracy. Table 1 summa-
rizes the performance and computation comparison between
our framework and various state-of-the-art segmentation
models. We mainly highlight the mIoU drop and FLOPs

reduction rate in the brackets. With our method, the FLOPs
of networks are reduced by 40%∼ 60%, with less than 0.8%
mIoU loss. Especially, the mIoU is improved a little rather
than reduced for some networks with the DoViT-S backbone,
benefiting from the dynamic and sparse token pass. More-
over, we extend the DynamicViT [27] backbone to segmen-
tation architectures, abbreviated as “DyViT/ρ” (0 ≤ ρ ≤ 1
is the token ratio) in the table. The implicit token exiting
strategy with regularization of keeping ratio, is insufficient
for semantic segmentation models, in which the complex
context confuses the token selection. As we can see that
when the FLOPs are reduced by less than 20%, the SETR
drops more than 5% mIoU. We also present the incremental
parameters of DoViT and DyViT, relative to the standard
ViT. To align with the embedding dimensions of larger trans-
formers, the auxiliary heads with larger input dimensions
introduce more extra parameters. But the extra parameters
can be negligible comparing to the backbone itself.

ADE20K. To evaluate the effectiveness and efficiency
of our approach, we conduct extensive experiments on the
ADE20K dataset, as shown in Table 2. We adopt various
confidence threshold ξ ∈ [0.96, 0.985] and compare the
trade-offs between the mIoU performance and computational
reduction. For SETR with ViT-base, our method can reduce
30% FLOPs without mIoU drop. The ADE20K dataset is
very challenging due to the large-scale semantic categories
and complex scenes, making the models predict with lower
confidence for numerous pixels. Even though leveraging
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Network Backbone ξ mIoU (%) FLOPs (G) ↓

SETR

ViT-B – 46.37 88.54
DoViT-B 0.985 46.54 (+0.17) 66.06 (-25%)
DoViT-B 0.98 46.41 (+0.04) 63.16 (-29%)
DoViT-B 0.96 45.74 (-0.63) 61.07 (-31%)

ViT-S – 42.81 22.82
DoViT-S 0.985 42.56 (-0.25) 19.85 (-13%)
DoViT-S 0.98 42.33 (-0.47) 19.53 (-14%)
DoViT-S 0.96 42.26 (-0.55) 18.15 (-20%)

SETR DeiT-B – 43.67 88.54
DoDeiT-B 0.96 43.24 (-0.43) 60.18 (-32%)

Segmenter ViT-S – 46.19 26.57
DoViT-S 0.96 45.84 (-0.35) 21.75 (-18%)

Table 2. Main results on ADE20K. We apply our method on SETR
and Segmenter with different backbones. The mIoU performance
and FLOPs reduction are reported on the validation set, when
utilizing different thresholds ξ.

a lower threshold can early stop more tokens and reduce
more inference cost, it’s difficult to reduce the FLOPs up
to 20%, especially for the small networks, e.g., DoViT-S,
DoDeiT-S. Generally, the smaller networks achieve a less
ratio of FLOPs reduction, caused by the lower confidence at
early-probe.

Acceleration Effort. In Figure 3, we compare speedup
on one NVIDIA V100 GPU in terms of SETR (ViT-B/DoViT-
B) on two datasets respectively. It’s worth noting that limited
to the super-resolution, i.e., 1024× 2048 pixels, we utilize
512× 512 randomly cropped inputs to evaluate the through-
put on Cityscapes. Figure 3a illustrates that both the through-
put and FPS of the large and base models are improved by
over 2×, without requiring hardware/library modification.
Meanwhile, our method improves the throughput and FPS of
ViT-large (ξ = 0.98) variants by 27% and 30% on ADE20K
(Figure 3b). It is a pity that the throughput of ViT-small can
be improved by 23% on ADE20K, but the FPS decreases a
little due to the extra computation of auxiliary heads.

4.3. Ablation Study

Effects of different components. To verify the effec-
tiveness of each component in our framework, we conduct
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Figure 3. The throughput (Thr.) and FPS improvement of SETR-
DoViT-B on Cityscapes

DoViT Token Merging Self-Distillation mIoU

✓ 75.37
✓ ✓ 75.66
✓ ✓ ✓ 76.40

Table 3. Effects of different components in our framework. We
provide the results after removing the self-distillation and token
merging in terms of SETR-DoViT-B on Cityscapes.
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Figure 4. Impact of the confidence threshold ξ to computation (a)
and acceleration (b).

ablation analysis on Cityscapes with SETR-DoViT-B, and
present the results in Table 3. With the token merging strat-
egy, the mIoU of the DoviT is improved by about 0.3%.
With the pixel-wise self-distillation, the gap between the
DoViT and ViT segmentation networks can be reduced to
0.2% mIoU.

Impact of the threshold. To investigate the impact
of the confidence threshold ξ, we train SETR-DoViT-B on
Cityscapes without self-distillation. Figure 4a depicts the
trade-off between the performance and computation, varying
the threshold from 0.95 to 0.99. It is obvious that with the in-
crease of threshold, mIoU and FLOPs will increase, which is
reasonable — more computation brings better performance.
In order to balance the computation and performance loss, it
is suitable to set ξ ∈ [0.985, 0.99] for Cityscapes. Thanks to
the numerous easy-to-learn patches of cityscapes, the FLOPs
can be reduced by 50% when ξ = 0.99. In addition, we plot
the line of inference speed (throughput and FPS) with thresh-
old, as shown in Figure 4b. Varying the threshold from 0.95
to 0.99, the throughput (Thr.) can be improved from 34.1 (as
shown in Figure 3a) to a range of [63, 83], and the inference
can be speeded up by at least 2.9×, i.e., from 1.52 FPS to
over 4.42 FPS.

4.4. Visualization

In Figure 5, we show the qualitative results of two
cityscape images. We find that applying DoViT results in pro-
gressive reduction of keeping tokens/patches when forward-
ing block-by-block. Meanwhile, the easy-to-learn patches,
such as that cover road, sky and tree, are stopped from self-
attention early, while the hard patches consisting of complex
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Figure 5. Visualizations of keeping tokens and segmentation results of two images from Cityscapes. The first and third rows depict the
corresponding patches of the keeping tokens input to each block, where the white region is corresponding to the stopping tokens. The second
and fourth rows show the final prediction results and confidence score map at each block.
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Figure 6. Case study of two images in Cityscapes. We report the
number of keeping tokens and FLOPs at each transformer block,
with a 1024× 2048 input to SETR with ViT-B/DoViT-B. The total
number of tokens is 8,192 as the patch size is set to 16.

context, will be kept until the end of the vision transformers.
Additionally, we visualize the confidence score maps pred-
ited by the three auxiliary heads. The tokens/patches with
higher scores (closer to yellow) are supposed to be removed
from the calculation. What’s more interesting is that, though
the tokens covering easy patches are removed, some more
informative edge parts are preserved, e.g., the outline of the
trees and cars. Figure 6 demonstrates the corresponding
quantitative information of the two inference cases. The

number of tokens involving in the four ViT blocks are all
8,192. In case 1 (a), over half of the tokens are removed at
the second block, and the FLOPs per block also drops ac-
cordingly. In case 2 (b), over 80% tokens are stopped at the
second block, and only 10% tokens are kept at the last block.
These results reflect the efficiency and interpretability of our
dynamic token-pass method. The early-probe scheme deter-
mines token-pass adaptively, rather than forcely stopping a
fixed ratio of tokens for all images. Thus, the inference costs
of different images could be very different.

5. Conclusion

In this work, we explore the segmentation transformer
acceleration from a perspective of data-redundancy. We
have introduced dynamic token-pass transformers (DoViT)
to adaptively adjust the inference cost based on input com-
plexity. DoViT gradually reduces the number of tokens pass-
ing self-attention layer and shorts the hierarchical-stopped
tokens into a unified decoder. We evaluate the effective-
ness of our approach in computation reduction and inference
speedup, and discuss some meaningful issues. In the future,
we plan to combine our data-aware transformer accelera-
tion method with the parameter-aware model compression
approaches and extend it to other dense prediction tasks.
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