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Abstract

The inclination of a spherical camera results in
nonupright panoramic images. To carry out upright adjust-
ment, traditional methods estimate camera inclination an-
gles firstly, and then resample the image in terms of the es-
timated rotation to generate upright image. Since sampling
an image is a time-consuming processing, a lookup table is
usually used to achieve a high processing speed; however,
the content of a lookup table depends on the rotational an-
gles and needs extra memory to store also. In this paper
we propose a new approach for panorama upright adjust-
ment, which directly generates an upright panoramic image
from an input nonupright one without rotation estimation
and lookup tables as an intermediate processing. The pro-
posed approach formulates panorama upright adjustment
as a pixelwise image-to-image mapping problem, and the
mapping is directly generated from an input nonupright
panoramic image via an end-to-end neural network. As
shown in the experiment of this paper, the proposed method
results in a lightweight network, as less as 163MB, with
high processing speed, as great as 9ms, for a 256x512 pixel
panoramic image.

1. Introduction

Nonupright image is caused by the inclination of a cam-
era. To carry out image upright adjustment, a natural and
straight approach is to estimate the inclination firstly, and
then compensate the estimated inclination and generate up-
right image by resampling the nonupright image, as shown
in Figure 1(a). Until now, all the methods of image upright
adjustment are based upon this approach, called traditional
approach in this paper. That is, in the traditional approach,
the task of image upright adjustment is divided into two sub-
tasks: inclination estimation and image resampling. Since
sampling an image is a time-consuming processing, a Look-
Up Table(LUT) is usually used to achieve a high processing
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Figure 1. (a) Traditional approach for image upright adjustment,
which consists of two subtasks: inclination estimation and image
resampling. (b) Our proposed method which formulates image up-
right adjustment as a pixelwise image-to-image mapping problem.

speed; however, the content of a LUT depends on the rota-
tional angles and needs extra memory to store also.

If we focus on the input nonupright image and output up-
right images, this problem can be formulated as a pixelwise
image-to-image mapping problem, as shown in Figure 1(b).
That is, what we want to do is to generate an upright im-
age for a given nonupright image. According to this point
of view, we can attack this problem by a completely differ-
ent approach, called direct method in this paper. As an ex-
ample, we focus on panoramic image upright adjustment in
this paper. If we treat the intermediate process as one block,
the objective of panorama upright adjustment can be for-
mulated as a generative task, that is, generating an upright
panoramic image from an inclined one. More concretely,
since rotating a spherical camera does not give rise of any
change of image content, what we want to do is a pixelwise
image-to-image mapping, that is, mapping a pixel of input
image to a new position of output image. Therefore, gener-
ating an upright panoramic image can be seen as a problem
of estimating pixel displacement between two images.

Estimating pixel displacement between the two images
is a basic problem in computer vision, such as optical flow
estimation for a motion camera [10,23,34] and disparity es-
timation for a stereo images [28]. Traditionally, image up-
right adjustment is attacked as a different problem because
of different prerequisites; optical flow or stereo disparity is
estimated from a pair of images while image upright adjust-
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ment is carried out given a single nonupright image under
the condition that the output image must be upright. How to
measure the inclination of a nonupright image accurately is
not easy, especially for the image of cluttered indoor scenes
or outdoor natural scenes. However, if we attack image
upright adjustment problem using machine learning meth-
ods, the prerequisite change. In machine learning methods,
a collected dataset also includes targets (ground truth) be-
sides input. As for our image upright adjustment, every
nonupright image has its corresponding upright image in the
dataset. We train a model using nonupright input, and using
upright images for the output loss. More concretely, in the
training phase we can train a neural network to estimate the
pixel displacement of a nonupright panoramic image from
an upright one, while in the test phase an upright panoramic
image is generated directly from a nonupright panoramic
image using the trained model, which can extract inclina-
tion features from the nonupright panoramic image for es-
timating pixel displacement. The main contribution of this
paper is as follows.

1. While the existing methods, either geometrical com-
putation methods or neural network method of image up-
right adjustment are based on a two-subtask approach, we
propose a new approach of carrying out panorama upright
adjustment as a simple pixelwise image-to-image mapping
processing. To the best of our knowledge, it is different
from all the existing method.

2.  We developed an end-to-end neural network to
directly generate an upright panoramic image from a
nonupright one. In contrast with the related research,
which trains a neural work to estimate inclination angles of
nonupright images, we argue that large dimension inclina-
tion features contain more information for the estimation of
pixel displacement considering the difficulty of inclination
angle estimation of clustered or natural outdoor scenes.

3. Since the trained model of our method generates an
upright panoramic image directly from an inclined one, it
results in a lightweight network with high processing speed.
As shown in the experimental result, our trained model
achieves as high as 9ms per frame processing speed for the
generation of a 256x512 pixel upright panoramic image. It
is suitable for real-time interactive tasks and the embedded
employment of mobile devices.

2. Related Work

Here, we introduce the related research of this research.
The related research is divided into two categories: deep-
learning-based image upright adjustment and pixel dis-
placement estimation

2.1. Deep-learning-based image upright adjustment

An upright image can be computed easily if the incli-
nation angles of its corresponding nonupright image are

known. The existing methods have focused on the estima-
tion of inclination angles until now.

As for the upright adjustment of perspective images, Fis-
cher et al. [9] proposed a method in which a convolutional
network can learn subtle features to predict the canonical
orientation of images. Olm-schenk er al. [22] proposed
using convolutional neural networks (CNNs) to automati-
cally determine the pitch and roll of a camera using a sin-
gle, scene-agnostic, 2D image. Guerzhoy et al. [14] applied
CNN s to the problem of image orientation detection in the
context of determining the correct orientation (from 0, 90,
180, and 270 degrees). Shima et al. [26] proposed a novel
orientation detection method for face images that relies on
image category classification by deep learning.

As for the upright adjustment of panoramic images, Jeon
et al. [12] proposed a novel upright adjustment framework
based on a CNN. Jung et al. [16] proposed a deep learning-
based approach that can automatically estimate the orien-
tation of a VR image and return its upright version. Shan
et al. [25] investigated the representation of spherical im-
ages by focusing on the inclination estimation of a spher-
ical camera. Davidson et al. [6] investigated how to solve
this problem by fusing purely geometric cues, such as ap-
parent vanishing points, with learned semantic cues, such
as the expectation that some visual elements have a natural
upright position. Jung et al. [15] proposed a novel method
for the upright adjustment of 360° images that consists of
two modules: a CNN and a graph convolutional network
(GCN).

The common point of the above research is that upright
image adjustment is solved as a two-subtask problem, and
different from our method of generating upright image di-
rectly by computing pixelwise mapping.

2.2. Deep-learning-based pixel displacement esti-
mation

Object or camera motion results in pixel displacement
of scene points in images. Estimating pixel displacement
between two images is a basic problem in computer vision,
such as optical flow estimation for a motion camera [ 10,23,

] and disparity estimation for stereo images [28].

As for the estimation of optical flow, Liu ef al. [21] used
optical flow to reduce the influence of noise induced by head
movements. Zhi et al. [32] used optical flow to describe
the change in pixels between two images. In face tracking,
Decarlo et al. [7] used optical flow to greatly improve the
estimation of gm, the motion parameters of the deformable
model. In mobile vehicle detection, Aslani et al. [2] used
optical flow to replace the combination of image segmenta-
tion regions for object detection. In video estimates, Wang
et al. [29] used optical flow to perform motion compensa-
tion to encode the time correlation, which greatly improved
the SR performance. In object detection, Al-Battal ef al. [1]
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proposed a framework that uses a segmentation-based CNN
to detect and localize the target anatomical structure within
a scan. Concurrently, it uses an optical flow CNN to track
the movement of this structure across frames to accurately
guide therapeutic procedures.

As for the estimation of disparity of stereo images, Ko-
rdelas et al. [17] presents a novel stereo disparity estimation
method, which combines three different cost metrics, de-
fined using RGB information, the CENSUS transform, as
well as Scale-Invariant feature transform coefficients. Zhou
et al. [33] proposed a new method that the disparity estima-
tion tasks can be accomplished using a single input image.
Zhang et al. [31] proposed to initial disparity estimates are
refined with an embedding learned from the semantic seg-
mentation branch of the network. Du et al. [8] proposed a
new deep learning architecture for stereo disparity estima-
tion: atrous multiscale network (AMNet), AMNet adopts
an efficient feature extractor with depthwise-separable con-
volutions and an extended cost volume that deploys novel
stereo matching costs on the deep features. While two im-
ages are used as input to estimate output (target) in the
methods of optical flow or disparity estimation for both
training and testing phases, in our method a nonupright im-
age (input) and an upright image (target) is used to extract
inclination features to estimate pixel displacement in the
training phase, and an upright image is generated directly
from a nonupright image in the testing phase. Therefore,
the neural network of our method has a different architec-
ture in comparison with optical flow or disparity estimation
methods, as shown in Figure 2.

3. Proposed Methods

3.1. Mathematical computation of panorama up-
right adjustment

Here, we give the detailed mathematical computation of
panorama upright adjustment in terms of the traditional ap-
proach (see Figure 3). A panoramic image can be captured
by a spherical camera with full field of view, and usually is
represented as an equirectangular image. Assume that we
have a pair of nonupright equirectangular image, I;(u,v),
and its upright one, I}(u',v"). The coordinates of a scene
point at I;(u,v) and I](u’, v") are p(uy, v,) and p'(ug,, v;,).
The azimuth angle ¢; and polar angle 6; of a pixel pin the
nonupright equirectangular image can be computed as:

_o Y 4 _ _Up
301*27TW301*7TH (D
where W and H are the image width and height, respec-
tively. Then, we have the orthogonal coordinate (x,, ¥y, 2p)
of p(u,, vp) on a unit sphere as:

Tp = cosp;sinb;, y, =sinp;sinb;, z, =cosb; (2)

Suppose the camera inclination is represented by a roll an-
gle, a, and pitch angle, 8, which are estimated from the
nonupright panoramic image. Then, the image upright ad-
justment can be carried out by rotating the nonupright image
with a rotation matrix R(«, /).

x;, Tp
y; = R(aa 5) Yp 3)
zz’) Zp

where (z},,,,2,) is the orthogonal coordinates on a unit
sphere. Finally, using the inverse functions of Equation 1
and Equation 2 we can obtain the upright equirectangular

image as follows.

i = arctan2 (y,, ) ,0; = arccos(z) 4
w H
/ / !/ /
up = ﬂ@i,’l)p = ?91 (5)

where ¢} and 6 are the azimuth angle and polar angle at the
unit sphere rectified upright, respectively; and u; and v;, are
the coordinates of point p/ at the upright rectangular image.

Summarizing the above mathematical computation, the
problem of panorama upright adjustment is to compute
point p/(uy,, v,,) of an upright panoramic image from point
p(up, vp) of a given nonupright panoramic image by using
estimated inclination angles (c, 3).

Since Equation 1, Equation 2, Equation 3, Equation 4
and Equation 5 are deterministic, the traditional methods
of panorama upright adjustment focus on the estimation
of camera inclination angles («, 3) from a nonupright im-
age [6, 12,15, 16,25]. In addition, since mapping a point
p(up,vp) of nonupright image to the corresponding one
p' (uy,, v,,) of upright image involves nonlinear computation,
as shown in Equation 2, Equation 3 and Equation 4, LUTs
are usually used to speed up the processing for real-time
interactive tasks. However, since a LUT depends on the
estimated inclination angles, theoretically, it means that in-
finitive LUTs are needed to cope with arbitrary inclination
angles. That is, a large amount of memory storage is needed
to achieve high speed processing performance.

We formulate upright adjustment task as a pixelwise dis-
placement estimation task. We represent the nonupright
image pixel as p(up,v,), and upright image pixel as
p'(uy,,v,,), where u,, and v, are the coordinate of the pixel
in the image. Our purpose is to estimate a pixel displace-
ment model to map the pixel from p(u,, vp) to p'(uy, v;,)
directly.Let the displacement of p(u,,v,) to p/(uj,,vy,) be
(Aup, Avp). Then, we have:

Uy, = up + Ay, v, = v, + Av, (6)

In this paper, we do not predict the tilted angle of the camera
as traditional methods. In our network, we extract the incli-
nation features through the encoder, and then the decoder
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Figure 3. Mathematical computation of panorama upright adjust-
ment.

estimate the pixel displacement. Therefore, the upright ad-
justment in our view can be represented as follows:

P (up, vy) = plup, vp) © p(Auy, Avy) @)

Where p(Au,, Av,) represents the pixel displacement. &
represents the mapping operation which will fill the values
of the input to a specified position according to the coor-
dinate information provided by the pixel displacement, our
method use grid_sample functions to realize it. We will in-
troduce our network in later sections.

3.2. Network Architecture

As mentioned in subsection 2.2, estimating pixel dis-
placement is a basic problem in computer vision, such as
optical flow estimation and disparity estimation. Until now,
estimate pixel displacement by neural networks has been a
common method in many computer vision tasks. For exam-
ple, Sun et al. [27] proposed a method to extract optical flow

using a deep learning network. Yan et al. [30] proposed a
deep learning network to learn the inherent pixel correspon-
dence between stereo views and restores stereo image with
the cross-view information at image and feature level.

These methods prove that compared with traditional
methods, using a deep learning network to extract pixel dis-
placement can have good performance. Thus, our method
designs a deep learning network for estimating the pixel dis-
placement from the nonupright image. Concretely, we uti-
lize a downsampling encoder network to obtain the inclina-
tion features and a decoder to estimate the pixel displace-
ment. As Figure 2 shows, our network can adjust the im-
age in one step, while current upright adjustment methods
are only focusing on the rotation estimation, and generate
upright image by resampling the nonupright image (mostly
by LUT). Moreover, compared with traditional LUT-based
methods, our method cost smaller space and have a better
performance.  Until now, obtaining optical flow by deep
learning networks has been a common method in many
computer vision tasks. For example, Sun et al. [27] pro-
posed a method to extract optical flow using a deep learn-
ing network. Chang et al. [4] used an optical flow gener-
ation method to conduct unsupervised periodic consistent
learning for facial representation. They used convolution to
extract the features in the downsampling network and esti-
mate the optical flow in the upsampling network. Through
the optical flow generated by their network, they modeled
facial expressions and proposed a new framework for un-
supervised learning facial representations from a single fa-
cial image. These methods prove that compared with tra-
ditional methods, using a deep learning network to extract
optical flow can have good performance. Different with pre-
vious work, our method is based on the motion of a 360
panoramic scene. For motion, we extract a motion feature
from the image to express the motion. We design a down-
sampling encoder network to obtain the motion and a de-
coder to estimate optical flow. Our method is the first to
adjust the panoranic without angle prediction.

As Fig. 2 shows, our network is divided into an encoder
and a decoder. The encoder extracts the high-level motion
features from the nonupright image. The decoder estimates
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the dense optical flow according to the high-level motion
features. The decoder also needs to map the nonupright im-
age with the optical flow to generate an upright image. Our
network can adjust the image in one step, while traditional
methods are divided into two steps. Moreover, our method
cost more smaller space and have a better performance than
traditional LUT-based methods.

3.2.1 Encoder

In this section, we will introduce the downsampling encoder
network. To fully extract the inclination features, we use a
double convolution first to fully extract the inclination fea-
tures on the input size and then downsampling with a double
convolution at every size. We attempted to use a single con-
volution for each downsampling layer, but the effect was
poor, which proves that the shallow network cannot extract
features well. Ablation analysis can be seen in the experi-
ments. The size of the convolution kernel for all layers is 3,
and the stride is 1 for convolution and 2 for max-pooling.
Usually, the pixel displacement network does not down-
sample the feature size to very small [20]; therefore, only
five layers are included in our design, and the final feature
size of the convolutional layers is 16x32x512. Similar to
some common networks, such as ResNet, average pooling
is followed by convolutional layers. Different with tradi-
tional methods, we set the kernel of average pooling to (1,
2) since the height-width ratio of 360 panoramic images is
1:2. Next, essentially, the convolutional layers provide a
meaningful, low-dimensional, and somewhat invariant fea-
ture space, and the fully connected layer learns a (possibly
nonlinear) function in that space. A fully connected layer
is added to integrate the features. Considering that the fol-
lowing decoder is designed for generating a 2D dense pixel
displacement by upsampling, 2D feature maps are needed
as the input. Additionally, the displacement of pixels on
images is separated into horizontal and vertical directions,
and we reshape the features to 2-channel 2D feature maps.
The whole process after convolutional layers is shown in
Figure 4.

3.2.2 Decoder

In this section, we introduce the key to our task: obtain the
pixel displacement.

We design an upsampling network to estimate the pixel
displacement from inclination features. Since the size of
inclination features is 16x32, while the pixel displacement
should be the same size as the 256x512 input size. Thus,
the structure of the decoder is consistent with that of the
encoder, with 5 layers included, a 2D transposed convo-
Iution operator for upsampling and double convolution on
each size for feature integration. The size of the convo-
lution kernel for all layers is 3, and the size of the trans-
posed convolution kernel is 2. Finally, a pointwise convo-
lution with Tanh activation is applied to obtain a 2-channel
256x512 pixel displacement. Compared with other activa-
tion functions, Tanh is quite common in current generation
networks [19] [24]. Tanh has the merit that the gradient is
relatively large during backpropagation, reducing the possi-
bility of gradient dispersion. After the pixel displacement
is generated through upsampling, a simple mapping func-
tion is conducted to generate the upright image: grid sample
function, which will fill the values of the input to a specified
position according to the coordinate information provided
by the pixel displacement.

3.3. Loss Function

In image generation networks, most of the generate net-
works are regularized by L1 loss. regularizing the networks
by L1 loss can greatly regularize the layout of the gener-
ated images, making the generated images generally simi-
lar to the ground truth and reducing blurring. For example,
the well-known networks, PasteGAN [ 18] and pix2pix [ 1]
both use L1 loss to achieve good performance. Therefore,
in this paper, to make the images generated by our network
achieve a good effect, we use L1 loss to regularize the net-
work. In this paper, L1 loss is denoted as:

>
L=

X, — X;

®)
n

where X; denotes the pixel truth value from the upright

dataset, and X; denotes the pixel value from the generated

image. However, the image generated using only L1 loss

has flaws in high-frequency details, which leads to the gen-

erated image not being perfect in high-frequency details.

In this paper, to improve our image details and quality
and reduce the pixel loss between images, shorten the Eu-
clidean distance between the generated image and the tar-
get image, we use perceptual loss [13] to regularize our net-
work. We use VGG19 to compute the features of the image,
in which image perceptual loss is denoted as:

LPerceptual - MSE(SD(X)a QP(X)) (9)

where X denotes the upright panorama, X denotes the gen-
erated image from our network, and ¢ denotes the VGG19
feature extraction module, MSE denotes the mean squared
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Table 1. Ablation analysis with different options

single double perceptual A=1 A=0.1 A=0.01 FIDJ

convo- convo- loss

lution lution

Vv Vv Vv 50.25
VA 35.30
4 4 v 35.99
v 4 vV 32.58
vV 4 4 31.21

all trained with the same hyper-parameters

error. In this paper, we introduce these two loss functions to
enrich our generated image quality. The total loss is denoted
as:

Liotat = L1+ X % LPerceptual (10)

where L1 is the L1 loss, L perceptuat 18 the perceptual loss,
and A = 0.1. By regularize the network, the quality of the
image generated by our method greatly improved. Com-
pared with the traditional methods, our performance is bet-
ter.

4. Experiments
4.1. Dataset and Training Details

Dataset: In this paper, we use Matterport3D [3] to correct
panoramic images and to evaluate our method. Due to hard-
ware limitations, we used low solutions panoramic images
with 256*512 solutions and we only trained and designed
a network apply to 256*512 panoramic images (the same
size as current tile estimation methods in the field), but the
work can be extended to higher resolutions in theory. We
believe our novel idea could enlighten the future works.At
present, researchers use this dataset for various tasks, such
as depth estimation. However, these tasks are all conducted
on upright panoramic images. Therefore, it is appropriate
to conduct our upright adjustment on this dataset. Since
Matterport3D only provides upright images, we rotate the
source images with a random angle in the range [-90°, 90°]
for both pitch and roll to achieve a nonupright panorama
dataset. We take 70% for training, 15% for evaluation, and
the final 15% for testing in original dataset. To cover all the
angles in the range of [-90°, 90°], five different random ro-
tations of each image were used to expand the datasets after
the dataset is divided.

Training details: Our entire network was trained using the
Adam optimizer, a batch size of 8, and a learning rate of
2x10-4 on a TITAN RTX 24G.

4.2. Ablation Analysis

In 3.2.1, we mentioned that our network needs to ob-
tain the inclination features through the encoder, and we
propose to use double-convolution layers instead of single-
convolution layers to extract inclination features in the en-
coder. To illustrate the merits of using double-convolution

Figure 5. The left is the input, the second column is the result of
our method, the third column is the result of the LUT, and the 4th
column is the result of Chen et al. [5]. *: using LUT to adjust the
image with a known tilt angle. This method is used by Shan et
al. [25], Jung et al. [16]

layers, a comparison is conducted. In addition, ablation
analyses using perceptual loss and the value of A are also
conducted. We introduce FID (Fréchet Inception Distance)
to evaluate the whole test set under different situations since
it is difficult to distinguish the difference in view. As Table 1
shows, the single convolution performs worst. The percep-
tual loss did help to upgrade the image quality. Finally, we
take the best options when doing the following experiments.

4.3. Upright Evaluation with state of the art

Since our method focuses on pixel displacement, it can-
not have an intuitive angle output as previous works have
done. To make a reference standard, we rotate the origi-
nal upright images in the test set by a unified angle error
and then calculate the Normalized Root Mean Square Error
(NRMSE) and Normalized Mean Absolute Error (NMAE)
between the ground truth and the rotated ground truth. As
Table 2 shows, we achieve the references with 1° and 2°
rotation in pitch and roll, respectively. Next, we calculate
the NRMSE and NMAE between our upright generations
and the ground truth with the whole test set. We can see
that the values of our method are between 1° and 2°, which
means our method almost make all the nonupright images
horizontal. We also list the result of Chen et al. [5] and Shan
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Table 2. Upright evaluation

Pitch Roll
Evaluation Ours Chen et al. [5] Shan et al. [25] 1° 2° 1° 2°
NRMSE|  0.2268 0.3225 0.5452  0.1935  0.2520  0.1920  0.2497
NMAE| 0.1363 0.2180 0.4843  0.1039  0.1447  0.1034  0.1433

Table 3. Image quality, time, space comparison

Evaluation Ours LUT* Chen et al. [5]
FID| 3121  41.7467 59.97
Time] 0.009s Could be real time on 0.012s
GPUs (on-site LUT cal-
culation)
spacel. 163MB 4.5GB (LUTs offline) 429MB

*: using LUT to adjust the image with a known tilt angle. This method is used by
Shan et al. [25], Jung et al. [16]

et al. [25], and our performance is better than them. There
are also two related papers in the field, Jung ef al. [16] and
Davidson et al. [6]. Since they did not generate the upright
images and are not making their code public available, we
compute their average predict angle’s deviation in 5° from
their paper. Jung et al. [16] is 1.977° and Davidson et al. [6]
is 1.807°. Because the values of the NRMSE and NMAE
of our method are both between 1° and 2°, we estimate
our average angle roughly from the range of NRMSE and
NMAE, our method is 1.825°. The experiment proves that
our method is competitive with existing methods in the ac-
curacy of upright adjustment. And it shows that our method
is acceptable for usage.

4.4. Image quality, time, space comparison

There are many researchers performing upright adjust-
ment at present. However, all of them focus on angle esti-
mation [6, 12, 15,16,25], then adjust the nonupright images
with tilt angles referring to the spherical model-based pro-
jection. Notably, their methods just predict the tilt angle, the
output of their method is angle. Moreover, to trade space for
time, they usually build LUTs offline to save the mapping
relation in place of on-site calculation. In theory, on-site
calculation and LUTs offline have the same effect. Chen
et al. [5] is the first to propose to adjust the image by an
end-to-end network without LUT. Thus, we have a compar-
ison among our method, the LUT-based method, and Chen
et al. [5] with official settings.

Image quality: In Figure 5, the first column shows the
nonupright images, the second column is directly output by
our end-to-end network, the third column is rotated by LUT,
and the last column is Chen et al. [5] method. Visually,
our method is nearly the same as the LUT-based method.
However, the FID on the whole testset of our generations is
31.21, while the LUT generation is 41.75, Chen et al. [5]
is 59.97. This proves our method would have a better ef-

fect. We also test our method on Stanford2D3D [35] while
trained on Matterport3D [3]. The quality is quite good, es-
pecially perform better on edges than LUT-based method.
Space and time cost: We test our network running on Py-
Torch with GPUs, and the average time for a sample is
0.009s, which we think is faster than traditional pipeline.
Here are the reasons: 1. the traditional pipeline needs to es-
timate the tile angle first, the recent accurate methods are all
deep learning based methods with 256*512 size input, and
the time cost of their network may not be faster than ours,
since our five basic CNN layers are very simple. Let alone
they need extra time on upright adjustment based on the
spherical model. 2. As the resolution be higher, the tradi-
tional pipeline would grow exponentially, Take 1024%2048
as an example, the rotation computation based on the spher-
ical model would be 16 times than 256*512, since the com-
putation is pixel wise. While our method does not need
the spherical based rotation. Certainly, our model on higher
resolution would cost more time than current, since the pa-
rameters in pretrained model increasing, but their tile esti-
mation methods would also cost more time. They have the
same problems as we have, because we are all deep learning
based methods. A pure deep learning based method could
be real-time always. Meanwhile, the running time of the tra-
ditional remapping process by the spherical model is truly
different under different platforms and optimization levels.
For example, we have used Python and MATLAB to real-
ize the traditional process, and we found that the running
time is quite slow (e.g., 0.5s for a sample in MATLAB on
GPUS, much slower using Python), which is not fair to list
as the reference. We think the spherical-based projection
can reach real time on GPUs with a very high-level opti-
mization strategy ( Table 3). However, considering the ad-
ditional time cost of preposition angle estimation methods,
we believe our 0.009s is quite competitive. The main space
cost of our network is the pretrained model when using it.
Since we only use a lightweight encoder-decoder network,
it only takes 163 MB of storage, which is quite small in
deep learning fields. It can be shown that our network is an
efficient way to balance space and time.

4.5. Application Test
4.5.1 Pedestrian Detection on Qutdoor Images

To show the viability of our approach, we use the YOLOvS
pretrained model, which trains on perspective images, to de-
tect pedestrians in panoramic images. We collect some out-
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Table 4. Depth estimation results

AbsRell SqRell, RMS] RMSlogl &<1.251 6<1.221 §<1.25%1
Non-upright images in range [-90°,90°] 0.4492 0.7937  1.2815 0.5467 0.4042 0.6461 0.7982
Chen et al. [5] 0.1408  0.1175  0.5506 0.2253 0.8247 0.9436 0.9771
Upright adjustment(our method) 0.0905  0.0488  0.3580 0.1433 0.9189 0.9850 0.9946
Ground truth 00548 00165 0.2241 0.0865 0.9759 0.9965 0.9991
0 our method works well even in outdoor situations. More-
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Figure 6. Pedestrian detection results

Chen et al.[5] Ground Truth

Figure 7. Depth estimation results

door images and rotate them at random angles. As Figure 6
shows, if we use the nonupright images, the model fails to
detect since the pretrained model is not training for pedes-
trians with distortion. Only the image in the last row detects
one pedestrian. Additionally, we use the model training on
indoor images directly on outdoor images, which shows that

over, after processing by our end-to-end network, all pedes-
trians are detected in the images, and the distortion is ad-
justed. The experimental results prove that our method does
not have any influence on such detection tasks.

4.5.2 Depth Estimation

In this section, we estimate the depth by the Zioulis ef al.
[35] method and use samples from Stanford2D3D dataset
to estimate the depth as in Zioulis et al. [35]. First, we ro-
tate the image with random angles in the range [-90°,90°]
to achieve nonupright images. Then, both the nonupright
images and images adjusted by our method are input to the
depth estimation network. The qualitative evaluation results
are shown in Table 4. Compared with the ground truth, the
nonupright images perform poorly, since the existing depth
estimation models are all trained on upright images, while
the generation by our method performs close to the ground
truth. Moreover, our method is better than Chen et al. [5].
This experiment proves that our network can output qual-
ified upright images for depth estimation. Figure 7 shows
the visual depth results of our generation, which are nearly
the same as the ground truth.

5. Conclusions

In this paper, we propose a new method of directly gener-
ating an upright panoramic image from an input nonupright
one without rotation estimation and lookup tables as an in-
termediate processing. Since our method estimates a pix-
elwise image-to-image mapping between nonupright and
upright images, it is straight forward in contrast with the
existing methods. Consequently, this approach results in a
lightweight end-to-end neural network. The effectiveness of
this paper is shown in the experimental results in compari-
son with the state-of-the-art methods. The improvement of
the quality of generated images is our future work.
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