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Figure 1. InteractiveBeat: A real-time system responding to human body movements captured by video camera by generating sounds that
follow the rhythm of the movements. Please see supplementary videos and materials with sample results.

Abstract

It is often the case that human body movements include
rhythmic patterns. A video camera system that captures
these patterns and responds to them with rhythmic sounds
or music, as these happen, could create a unique interac-
tive experience. Creating such an experience requires a
real-time translation of related visual cues into in-rhythm
sounds and warrants novel real-time methods. In this work,
we propose a novel learning-based system, called ‘Interac-
tiveBeat’, which generates an evolving interactive sound-
track for a camera input that captures person’s movements.
InteractiveBeat infers body skeleton keypoints and trans-
lates them into drum rhythms using a series of sequence
models. It then implements a conditional drum generation
network for generating polyphonic drum sounds based on
the rhythms. To guarantee real-time function, these mod-
els are integrated into a time-evolving pipeline with rules
for updates. InteractiveBeat is trained and evaluated on a
well-annotated large-scale dance database (AIST), and in
addition, we collected a dataset of in-the-wild videos with
people performing movements of various activities that cor-
respond to background music. Furthermore, we develop
a ‘live’ demo prototype of the system. Our evaluation re-
sults show that the system can generate interactive rhythmic
drums more accurately than existing methods and achieves
a non-cumulative latency of 34ms (approx. 30 fps). This
allows InteractiveBeat to be synchronized with the video
stream and react to real-time movements.

1. Introduction

We have an invisible metronome system in our brain and
body [25, 31]. When we see a dance move, we often imag-
ine a rhythmic sound that follows it. Also, when we hear
rhythmic sounds, we sometimes instinctively start follow-
ing them with synchronous movements. Such a natural ex-
perience involves synchronization of listening to the music,
following the beat, and creating new movements. In recent
years, the demand for real-time audio-visual creation tools
has become more imminent as virtual and augmented reality
platforms have gained traction. Instead of merely selecting
from a predefined set of soundtracks, these tools have the
potential to generate soundscapes dynamically, adapting in
real-time to movements of the user. This fosters an evolving
‘dialogue’ between the user and the environment, bringing
the immersive experience to a new higher level. Such real-
time generative capabilities in audio-visual systems have
broad applications, spanning from interactive dance work-
outs and immersive gaming, to therapeutic VR [54], where
a tailored, responsive musical virtual environment can aid
patients by adjusting to their movements and guiding them
towards new movements.

Imagine a camera system where a person faces the cam-
era and starts to make movements. The system reacts to
movements with sounds in real-time corresponding to the
rhythms of the movements. The auditory feedback from
sounds helps the person to perceive the movements and their
rhythm, and adapt to a particular desired rhythm or switch
to another rhythm when proceeding with the movements.
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This motivates the system that we propose in this work, In-
teractiveBeat. Beyond generating soundtracks for various
movements, the system provides an immersive experience
of real-time interaction with the soundtrack, where any per-
son can create rhythmic sound effects with their bodies.

Generating rhythmic soundtracks from videos of human
body movements is challenging because audio and visual
modalities are not explicitly and uniquely related. Further-
more, implementing the generation in real-time adds to the
challenges since the system must (i) be causal, with only
past information used but not future, (ii) respond quickly to
visual cues while dealing with excessive information which
could be unrelated, and (iii) achieve plausible perceptual
generation that aligns well with movements.

In this work, we address these challenges by develop-
ing a novel system, InteractiveBeat, which is a first-of-
its-kind learning-based real-time vision-based system for
rhythmic drum sound generation in response to human body
movements being captured by a video camera. Interac-
tiveBeat introduces (i) a learning-based approach that re-
designs the traditional motion rhythm extraction algorithm
(offline visual beat detection), enabling its seamless tran-
sition to a real-time operation, (ii) a style transfer module
that maps motion rhythm to drums rhythm, (iii) a compact
polyphonic drum generative model that translates rhythm to
drum sounds. An overview of InteractiveBeat is shown in
Fig. 2.

To complete the pipeline, we integrate real-time motion-
estimation as the system’s front-end, and design a producer-
consumer workflow that includes updating rules to support
real-time improvisation. Each component is implemented
by compact networks and is able to run in real-time.

We train and evaluate our system on a well-annotated
AIST dance database [53] and on a novel dataset of ‘in-
the-wild’ clips from YouTube and TikTok with a total of
764 videos and 6+ hours of duration that we have collected.
Furthermore, we implement a real-time pipeline to test the
system. Objective metrics and human studies results show
that InteractiveBeat reacts interactively to human motion
with interesting sound, plausible synchrony, and minimal
latency. In summary, in this work, our main contributions
are:
• We propose a new application and task, learning-based

real-time interactive rhythmic audio generation based on
person’s movements.

• The InteractiveBeat system that we introduce is a novel
learning-based real-time drum sound generation system
that is solely based on video camera input.

• InteractiveBeat implements a real-time pipeline that en-
sures synchronization with human motion while provid-
ing rich rhythmic drum sounds instead of plain beats.

• We collect a novel in-the-wild dataset of human move-
ments with music in diverse visual scenes, and then sep-

arate its drum track from the original music to represent
the rhythmic audio-visual scenes.

2. Related Work
Audio-visual learning, an emerging branch in multi-

modal vision-based learning, that studies the relationship
between audio and vision, has made significant progress in
recent years. Numerous tasks including audio-visual corre-
spondence [2,3,26,42], audio-visual event localization [52],
audio-visual sound source separation [20,21,57,58], audio-
visual navigation [7], audio-conditioned generation of hu-
man body movements [23,36,45], lips movements [51] and
talking faces [33, 39, 59] are proposed. Learning-based vi-
sion to audio generation has also been explored. Image-to-
audio generation leverages deep neural networks that take a
single image as input and generate different types of audio
(natural sounds, impact sounds, reverberation etc) in forms
of spectrogram or audio waveform [8, 41, 46, 60].

Video-based audio generation explores the possibility of
generating audio conditioned on different dynamic visual
cues. When audio is set to music, prior works have shown
that deep neural networks can predict the pressed keys of a
top-down view of a piano performance [34] and then gen-
erate piano music correspondingly [48]. Later, Foley mu-
sic [19] and Multi-instrumentalist Net [49] extend such gen-
eration to the music of different instruments conditioned on
body movements. Rhythmic Net [50] and cmt [14] expand
music generation from videos to a broader scope - videos
that contain general human body movements or require
background music. More recently, the emergence of novel
deep generative models gave rise to approaches of music au-
dio waveform generation from videos [61] [62] [47]. While
these video-to-music generation systems can produce new
music, their models are large by design, and the output at
each step relies on global information (non-causal). These
constraints preclude such systems from operating in real-
time. Furthermore, the generated music is not suitable for
interactive applications since the generative models strictly
adhere to music rules, i.e., fixed tempo and bar-level struc-
tures, in contrast to human movements that are not neces-
sarily restricted to these rules.

For real-time and interactive applications, it has been
shown that a rule-based sensor system to correlate move-
ment and sounds could potentially convert the sensed mo-
tion to MIDI [4, 5]. In particular, an artistic and pioneered
vision-based real-time music system (VNS) [56] dating
back to the late 90s, showed that lighting changes could
be related to motion and these can be set through a set of
rules to generate associated sounds. Similar works, such
as [17], also proposed to relate visual changes to sound ef-
fects according to different rules. Following these works,
later on, an interactive background music synthesis algo-
rithm guided by visual content was introduced to synthe-
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Figure 2. System Overview: Three stages of InteractiveBeat: (i) VisBeatNet for prediction of kinematic offsets and visual beats to estimate
beat interval, (ii) MuStyleNet transfers kinematic offsets to ‘style,’ a vector representing drum rhythm, (iii) DrumGenNet translates ‘style’
to Drum MIDI in the next beat interval.

size dynamic background music for different scenarios [55].
These methods show the plausibility of the interactive cor-
relation of movements and sound. Their limitations include
reliance on delicate rules designed by music professionals
or usage of music retrieval that cannot generate new music.
In our work, we aim to generate new interactive soundtracks
based on live camera input via a system that learns and gen-
eralizes such that it is applicable to body movements of var-
ious activities.

In the music generation domain, Musical Instrument
Digital Interface (MIDI) has been used for efficient and
high-quality music generation. Piano-roll [15] [22, 43]
or event-based [27, 28, 30, 40] MIDI representations have
been developed to generate music unconditionally in long
sequences. In addition, when extra conditions are ap-
plied, deep generative network-based systems are capa-
ble of generating waveform from music attributes [16],
and text descriptions [1, 9, 13, 29, 44]. For drum genera-
tion, GrooVAE [35] was developed to generate kick drums
given conditional signals, including beat, downbeat, on-
set of snare, and Bass. RhythmicNet [50] improved the
drum quality by designing a two-stage network system (a
transformer and UNet) to model hits and ‘style’ separately.
These methods cannot achieve real-time operation since
they rely on long context length and incorporate large net-
works or multiple stages to generate music. We thereby im-
plement a compact encoder-decoder network that infers the
2D drum roll matrix from a 1D rhythm sequence without
long context.

3. Methods

We design our system, InteractiveBeat, to generate
rhythmic drum sounds with core objectives of being real-
time, aligned with human body movements, drum sounds
with coherent rhythmic structures. To meet these objec-
tives, InteractiveBeat consists of three neural network com-
ponents:
• VisBeatNet predicts kinematic offsets, visual beats, and

estimates tempo from a live stream of human motion.
• MuStyleNet transforms kinematic offsets into a drum

‘style.’
• DrumGenNet synthesizes a polyphonic drum track based

on the estimated tempo and inferred drum ‘style.’
A real-time producer-consumer pipeline integrates the
above network components with the motion estimation
front-end.

This design is different than related recent work
of RhythmicNet [50]. In particular,VisBeatNet and
MuStyleNet components, as described below, implement a
more effective way to bridge the motion rhythm and drum
rhythm than ‘Video2Rhythm’ in RhythmicNet, and work in
real-time. Furthermore, DrumGenNet adopts a similar net-
work structure as the first stage of ‘Rhythm2Drum’ compo-
nent of RhythmicNet, but with a more compact design to
meet the real-time requirement.

3.1. VisBeatNet

To predict motion rhythm and to estimate the tempo, we
develop a novel approach, VisBeatNet. This is inspired by
an optical flow-based visual beats prediction method [11].
While the original method relies on offline operations such
as windowing, filtering, and dynamic programming opti-
mization, we adapt it for real-time applications. Specifi-
cally, VisBeatNet employs a compact neural network that
is trained to predict visual beats in real-time. The training
uses ground truth derived from a robust pre-computation of
visual beats. In the following, we review the background of
visual beats pre-computation and then describe VisBeat-
Net, our solution for real-time application.

3.1.1 Visual Beats Pre-computation

We use a real-time human pose estimator (OpenPose) [6] to
extract the 2D skeleton key-points from a real-time video
stream, and pre-compute the visual beats ground truth via:
computing the Directogram, converting the Directogram to
Kinematic Offsets, and performing dynamic programming
to obtain the Visual Beats. Each stage is detailed below.

• Computing the Directogram from Skeleton Sequence:
Skeleton sequence is considered as a three-dimensional
tensor S ∈ RT×J×2 where T is the number of frames,
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J is the number of keypoints, and the last dimension in-
dicates x and y coordinates. By computing the first order
difference of this 3D skeleton tensor, ∆St = St − St−1,
we capture motion at each frame. Using polar coordinates
of the last dimension and splitting the full circle (0, 2π)
into N equal bins, we assign the motion magnitude of ev-
ery key point into one of the bins according to its motion
angle. The motion magnitudes of each bin are summed to
obtain the Directogram DG(t, θ)

DG(t, θ) =
∑
j

∆St(j)1θ(∠St(j)), where

1θ(ϕ) =

{
1 |θ − ϕ| ≤ 2π/Nbins

0 otherwise

• Converting the Directogram to Kinematic Offsets:
Kinematic Offsets represent motion changes according to
deceleration. The deceleration is computed through the
negative first order difference of the Directogram ∆DG

to obtain Motion Flux M , which represents the decelera-
tion in various directions. Low-pass filters are applied to
M to filter noise. To find the Kinematic Offsets, negative
values in M are removed and the mean over each frame
is computed which constitutes K. Top 1% peaks in K
are then used and normalized to [0, 1] range to obtain the
smoothened Kinematic Offsets.

• Obtaining the Visual Beats from Kinematic Offsets:
Kinematic Offsets, a continuous signal, is converted to a
binary sequence that indicates whether there is a signifi-
cant change in the human motion. We call the sequence
Visual Beats. Using dynamical programming with the ob-
jective ‘beat score function’ the Visual Beats are computed
by finding a set of local peaks of Kinematic Offsets having
close or equal interval

V (m) =

n∑
j=1

u(mj) + α

n−1∑
j=1

VT (mj ,mj+1), (1)

VT (mj ,mj+1) =
T [bin(mj+1 − mj)]

Tmax

− 1.0, (2)

where u is the Kinematic Offsets value of the candidate
beat to encourage strong visual impacts. {mj}nj=1 ∈ m
is a subset of candidate beats. VT (mj ,mj+1) penalizes
the deviation from optimal tempos within a local win-
dow to encourage equal-spacing beats and it computes
time-dependent autocorrelation function T on Kinematic
Offsets to measure the deviation. α balances the weight
between two terms and T is the autocorrelation average
within local time window.

3.1.2 VisBeatNet: A real-time network for visual beats

We introduce VisBeatNet, a light-weight neural network de-
signed to predict Kinematic Offsets and Visual Beats from

Figure 3. Detailed Schematics of VisBeatNet.

a motion sequence, as visualized in Fig. 3. This architec-
ture is built upon two uni-directional Gated Recurrent Units
(GRUs), RN1 and RN2.

• RN1 (Kinematic Offsets Prediction): RN1 predicts the
Kinematic Offsets K auto-regressively from Directogram
DG as the given context.

• RN2 (Visual Beats Prediction): RN2 takes both Kine-
matic Offsets K and residual connection from hidden
states of prediction window in RN1 as inputs and out-
puts the Visual Beats Pb distribution via a linear prediction
head.

Training. We train VisBeatNet using the pre-computed
Kinematic Offsets and Visual Beats as theground truth. The
training applies teacher-forcing to RN1, and employs two
loss terms: (i) Mean Square Error (MSE) between the pre-
dicted Kinematic Offsets and the ground truth, and (ii)
Weighted binary cross-entropy between the predicted beat
distribution and the actual Visual Beats.
Post-processing using B-HMM. After training, the Visual
Beats distribution Pb is processed by a pre-built beat Hidden
Markov Model (B-HMM). Utilizing the Viterbi algorithm,
the B-HMM yields the final output: a list of beat times Tb,
specifying when each beat occurs.

While Visual Beats capture moments of strong visual
impact in human motion, they inherently lack the drum
rhythm, resulting in unnatural sounds when they are directly
translated to audio, i.e the direct approach, termed Mono,
directly overlays a monophonic drum sound atop of the vi-
sual beats, utilizing an auto-regressive drum notes gener-
ator. To address this limitation, we propose a refined ap-
proach which achieves more natural drum sounds, termed
Poly, which periodically updates the tempo with VisBeat-
Net. Subsequently, a polyphonic drum language model
(Section 3.3) conditioned on ‘style,’ a learning-based drum
rhythm (Section 3.2), are applied.

3.2. MuStyleNet: Style Transfer for Drum Rhythm

The essence of drum audio lies in its rhythm - the pattern
of drum onsets within each frame. In a realistic drum track
every frame contains multiple onsets of different drum kits.
Extracting the strongest onset in each frame gives rise to
what we define as the drum ‘style’, a vector representing
the rhythm of the drum audio.
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Figure 4. Detailed schematics of MuStyleNet (left) and DrumGenNet (right)

To obtain the‘style’, it is crucial to establish a relation-
ship between ‘style’ and kinematic offsets, which represent
the rhythm of body movements. There are multiple plau-
sible ways to transform these offsets into the drum ’style’.
A straightforward method was presented in ‘RhythmicNet’.
This method combined predicted music beats with motion
peaks based on spectral analysis. Since drum rhythms con-
tain regular patterns, while motion rhythms do not, it is un-
clear how to obtain associated ‘styles’. Indeed, the crude
approximation for the ‘styles’ can result in unnatural drum
rhythms when used as the conditional input to the drum gen-
eration network.

Towards this end, we propose an adversarial style trans-
fer module, MuStyleNet, which learns to translate the Kine-
matic Offsets into drum ‘style’ using a Generative Ad-
versarial Network [24]. As illustrated in Fig. 4, the net-
work takes kinematic offsets K = {K1,K2, ...,Kt} as
input and outputs the corresponding onset envelope O =
{O1, O2, ..., Ot}. The generated envelope is given to the
discriminator component to decide whether the envelope is
real or fake. The GAN objective is defined by:

min
G

max
D

EO∼O[logD(O)] + EÔ∼P̂ [log(1−D(G(K)))]. (3)

Once the generated onset envelope is obtained, O is accu-
mulated by step size st to obtain Oacc(k) =

∑Tsk+1

t=Tsk
Ot,

where st is determined by the beat interval estimated in
VisBeatNet and Tsk+1

= Tsk + st. For consistency with
the drum MIDI dataset that is used in the next stage, we
fix st to be an interval of a quarter beat, and normalize the
compressed onset envelope to obtain the drum ‘style.’

3.3. Drum Generation

DrumGenNet This stage translates the 1D drums ma-
trix, obtained in the previous stage, into polyphonic drum
sounds. In contrast to the 2-stage Rhythm2Drum network
in RhythmicNet [50], we keep the first stage network (with
fewer number of layers and hidden size) that translates 1D
drum rhythm into 2D drum hits matrix and due to real-time

constraints discard the UNet that generates velocity and off-
set matrices. Furthermore, the 1D rhythm inout is continu-
ous rather than binary, and thereby we use the continuous
values as velocity for all drum hits at each time step. These
changes make the drum generation network compact with
the inference overhead compatible for real-time. We train
DrumGenNet using a cross-entropy loss.

3.4. Real-Time Pipeline

Figure 5. Real-Time Pipeline: A two-threaded pipeline with the
Producer’ and Consumer’. The Producer uses Openpose [6] to ex-
tract the skeleton sequence from live video and buffers it. When
full, the sequence moves to the Consumer thread. The Consumer
runs InteractiveBeat to produce drum MIDI for the next beat in-
terval, dynamically updating. The Producer continues to add se-
quence to the buffer, pausing only for drum sound playback every
quarter beat.

For real-time operation of the system, we integrate all
components, i.e., motion estimation, beat inference, style
transfer and drum generation, into a single and efficient
pipeline. We design the pipeline to work in a producer-
consumer mode, where the thread of the producer reads the
body keypoints from motion estimation module, and sends
them to a buffer list shared with the consumer thread. When
the thread of the consumer obtains enough frames with key-
points, InteractiveBeat starts the inference by computing the
Directogram and feeding it into the neural network com-
ponents to generate the ’style’. The ‘style’ is provided to
DrumGenNet to obtain associated drum MIDI. Meanwhile,
InteractiveBeat dynamically updates the tempo every beat
interval to keep up with the human motion. The Interac-
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tiveBeat real-time pipeline is illustrated in Fig. 5. Further
implementation details of the pipeline are illustrated and ex-
plained in Supplementary Materials.

4. Experiments
4.1. Datasets

We use multiple datasets to train and evaluate Interac-
tiveBeat. We use the AIST Dance Video Database [53], as
laboratory dataset. This dataset is a large-scale collection
of dance videos recorded in a studio. The database includes
10 dance genres, with each genre 1080 videos. We split
samples into train/validate/test sets by 80/10/10.

In addition, we collected a novel in-the-wild dataset,
from YouTube and TikTok, which includes 764 videos of
individuals performing diverse movements such as dance,
sports, and aerobics. It includes soundtracks with differ-
ent music genres of pop, hip-hop, jazz, EDM, and classi-
cal and in total spans 6 hours. Each frame of the video
maintains a solo subject. The distance and orientation of
the performer to the camera may vary. Performers from
multiple ethnicities, cultures and skills are included. We
apply Demucs [12], a source separation model to extract
rhythmic sections of raw audio, and then remove silent sec-
tions. The dataset provides links to original video, percus-
sion tracks, rhythmic video segments, and body keypoints
computed with OpenPose [6]. The split of the dataset is
80/10/10 for training/validation/testing.

VisBeatNet is trained on pre-computed visual beats
from AIST videos and ‘in-the-wild’ datasets. To train
MuStyleNet, we manually sample 100k kinematic offset
curves from AIST and from ‘in-the-wild’ videos, and then
pair them with drum samples with onset envelope extracted
in Groove MIDI Dataset [22] (a large-scale drum dataset
with 9 canonical drum categories) by using a dynamic time
warping method proposed by [11]. DrumGenNet is trained
on the Groove MIDI Dataset.

4.2. Implementation Details

All models are implemented in PyTorch. In particular,
skeleton key points are obtained using OpenPose [6] to ex-
tract 17 2D-keypoints of body joints. We set the number
of bins to be 18 for the Directogram computation, such that
each direction aggregates 20 degrees range of motion mag-
nitude.

For VisBeatNet, RN1 and RN2 are GRUs of hidden sizes
of 64 and 32, respectively. During training, a 3-second Di-
rectogram is fed as context, and the Kinematic Offsets and
Visual Beats are predicted for the next second.

For MuStyleNet, we implement a GAN consisting of a
2-layer unidirectional GRU with the hidden size of 64 as
generator, and a 3-layer 1D-CNN as the discriminator. The
network is trained with MSE loss for reconstruction and

AIST dataset ’in-the-wild’ dataset
Visual Beats Music Beats Visual Beats Music Beats

Votes 46.7% 53.3% 63.7% 36.3%

Table 1. Preference of Visual Beats v.s Music Beats.

Wasserstein loss [18] as an adversarial loss.
DrumGenNet implements a 2-layer transformer encoder-

decoder with hidden size 64 and 1 attention head. The con-
text length is 3 beat intervals and the prediction length is a
single beat interval.

4.3. Validation of Visual Beats as Ground Truth

To validate the effectiveness of using visual beats as
ground truth, we conducted a user study comparing pre-
computed visual beats against music beats obtained from
the audio of the videos. We collected videos from AIST
and ‘in-the-wild’ for evaluation (30 from each). The ques-
tion, ”Which beats do you think are better in sync with body
moves?” is asked. As shown in Table 1, Visual Beats are
preferred over Music beats. For ‘in-the-wild’, the prefer-
ence is of large margin of +27.4% and for AIST the pref-
erence is of smaller margin of 6.6%. We suspect that the
difference in the margin is due to data processing and an-
notation. AIST includes precise annotations and alignment
of well-annotated music beats with dance movements while
‘in-the-wild’ dataset relies on music beats extracted with
libraries, such as Demucs + Librosa, since there are no an-
notations. This process can introduce errors.

4.4. Visual Beats Prediction Comparison

Learning-based Visual Beats. To compare visual beats,
we train stage 1 of the Video2Rhythm component in Rhyth-
micNet [50] and compare it against VisBeatNet. We use
pre-computed visual beats as ground truth,. The origi-
nal implementation of Video2Rhythm uses a bi-directional
graph-transformer with SSM modules, which is non-causal
and cannot be applied in real-time. Direct adaption would
be adding a causal transformer decoder to it that decodes the
Kinematic Offsets with auto-regression and a linear layer
for Visual Beats estimation. We use a 1-layer decoder with
same hidden size and number of attention heads as Rhyth-
micNet. Given a 3-sec input, we predict the next 1 second,
and repeat the process for 3 times on a rolling basis to col-
lect 3-sec Visual Beats predictions for evaluation 2.
Rule-based Visual Beats. We also implement a rule-based
Visual Beats prediction baseline that satisfies the constraints
of maximum within a pre-defined window size of 0.25s,
minimum time wait after previous peak 0.25s, and above
the average within the window than a threshold, which is
set to 0.015. These parameters are the same as the ones
used to extract candidate Visual Beats during Visual Beats
pre-computation.
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Beat Objective Evaluation. We follow the rubrics pro-
posed for musical beat tracking [10] to evaluate Visual
Beats prediction. We compute the performance in terms
of Precision, Recall, F-score measure, and Cemgil’s score
(Cem). We also compute the Beat Alignment Score [37]
which measures the correlation between motion and music.
As shown in Table 2, VisBeatNet achieves on-par perfor-
mance with RhythmicNet on visual beats prediction, while
using only 2 GRU layers (30k parameters) with 5ms infer-
ence time compared to the RhythmicNet (800k parameters)
with 90ms inference time. In Section 4.6, we show that
such inference time introduces large system latency which
hinders real-time application. Further, it is noteworthy that
the rule-based approach achieves reasonable performance in
recall score. However, its precision is low, which generates
excessive beats even when no movements appear.
Beat Subjective Evaluation. We compare the predicted
visual beats by VisBeatNet against the ground truth visual
beats to evaluate the perceptual gap between the prediction
and the ground truth. As shown in Table 3, the gap is of
11.4% or 6% for AIST and ‘in-the-wild’ datasets respec-
tively, which demonstrates the relative effectiveness of Vis-
BeatNet. The gap for ‘in-the-wild’ is smaller than the gap
on AIST. The reason is that the pre-computed visual beats
for ‘in-the-wild’ videos are more noisy than AIST videos
due to the quality of the body keypoints inputs, but in terms
of alignment, visual beats align better with movements than
accompanying music beats, as we show in Table 1.

4.5. Drum Generation Comparison

As we discuss in Section 3.1, the drums can be gener-
ated by whether directly adding monophonic drum notes
to the visual beats, or applying a polyphonic drum gener-
ative model conditioned on drum ‘styles’. For monophonic
drum, we train a 1-layer GRU model, with hidden size 64 on
Groove MIDI dataset to auto-regressively generate mono-
phonic drum notes. Polyphonic drums are generated using
‘DrumGenNet.’ We generate the drum sounds using ‘styles’
extracted from the videos rather than real drum rhythm ex-
tracted from drum tracks. This is important because the
drum generator input comes from the rhythm in motion
modality rather than drums, while the evaluation of the orig-
inal ‘Rhythm2Drum’ stage of ‘RhythmicNet’ [50] ignores
this crucial point. To be clear, we name the baseline meth-
ods as ‘Mono’ or ‘Poly’ method as follows.
Rule-based-Mono uses the rule-based visual beats described
in Section 4.4 to generate ‘style’ patterns, and use ‘Mono’
to generate drum sounds.
RhythmicNet-Mono use the ‘Video2Rhythm’ stage of
‘RhythmicNet’ to generate ‘style’ patterns, and use ‘Mono’
to generate drum sounds.
RhythmicNet-Poly uses ‘Video2Rhythm’ for ‘style’, and
‘DrumGenNet’ to generate drums. The tempo is estimated

by ‘Video2Rhythm’.
InteractiveBeat uses ‘MuStyleNet’ to generate ‘style’ from
Kinematic Offsets, and ‘DrumGenNet’ to generate drum.
The tempo is estimated by VisBeatNet.

We use two audio objective metrics to compare the drum
sound quality.

1) FID was introduced to evaluate image quality in
GANs. It is adapted in audio-visual domain for audio spec-
trograms of generated soundtracks. It measures the dis-
tance between InceptionV3 pre-classification feature distri-
butions for real and generated samples. By adapting Incep-
tionV3 input for a 2D magnitude spectrogram and training
it on GrooveMIDI for classifying 12 drum genres, we ex-
tract 2048-sized vectors from the last layer for both sets of
samples. FID is then computed from these vectors.

2) NDB metric is used to evaluate the diversity of gener-
ated samples; the lower the NDB score, the better the diver-
sity. Following RhythmicNet [50], We select k = 50 for k-
means algorithm to cluster Voronoi cells in log-spectrogram
space.

For each baseline, we generate 5000 samples separately
from the test set of AIST and ‘in-the-wild’ to perform the
objective evaluations. As shown in Table 4, InteractiveBeat
achieves better drum quality than ‘RhythmicNet’. A poly-
phonic drum generative model with a clear bar-level struc-
ture is necessary to produce quality drum sounds.

We also perfrom a perceptual experiment where we se-
lect 30 videos from each of the datasets AIST and ‘in-the-
wild’ and ask the raters to compare the drum sounds for dif-
ferent methods. In particular, we ask: ”Which drum track
sounds most natural, coherent, and rhythmic?” As shown
in Table 4, InteractiveBeat consistently outperforms other
baselines by a large margin, +18.6% and +13.7%, for AIST
and ‘in-the-wild’ respectively.

4.6. Real-Time System Evaluation

To evaluate the real-time system, we use latency as the
main metric and evaluate the baselines (Rule-based-Mono,
RhytmicNet-Mono,RhytmicNet-Poly) along with Interac-
tiveBeat. The system latency can be analyzed based on the
following aspects:
Camera Frame Rate (CFR): Our off-the-shelf web camera
for experiments operates at CFR = 30fps.
OpenPose Inference Speed (OIS): On a TitanX GPU, Open-
Pose achieves OIS = 70fps on AIST and ’in-the-wild’
videos.
Network Inference Speed (NIS): This is the inference speed
of all networks combined.
Causal v.s Non-causal (C/NC): generate the drum for the
present with delay (NC) v.s generate the drum for the next
interval, compensating for delay (C).

For CFR and OIS, CFR= 30fps is the minimum possi-
ble latency (Lcam = 33ms) of the system , while OpenPose
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Num Params Inference time AIST Dataset ’in-the-wild’ Dataset
Pr ↑ Rec ↑ Cem ↑ F↑ B-Aln ↑ Pr ↑ Rec ↑ Cem ↑ F↑ B-Aln ↑

Rule-based - 1ms 38.62% 57.31% 33.53% 45.10% 0.286 39.25% 56.96% 33.42% 45.7% 0.2813
RhythmicNet [50] 800k 90ms 69.78% 49.60% 45.93% 59.45% 0.4147 67.25% 51.29% 44.52% 55.70% 0.4098
VisBeatNet 30k 5ms 69.01% 50.71% 46.02% 58.19% 0.4032 66.17% 51.91% 44.31% 55.43% 0.4175

Table 2. Visual Beat prediction evaluation on AIST dance dataset(lab environments) and ‘in-the-wild’ dataset. The abbreviation of each
component stands for: Pr(Precision), Rec(Recall), F (F-score measure), Cem (Cemgil’s score), B-Alg(Beat Alignment Score).

AIST dataset ‘In-the-wild’ dataset
VisBeatNet GT Visual beats VisBeatNet GT Visual beats

Votes 44.3% 55.7% 47.0% 53.0%

Table 3. Visual beats prediction v.s GT perceptual preference.

AIST dataset ‘In-the-wild’ dataset
FID↓ NDB↓ Votes↑ FID↓ NDB↓ Votes↑

Rule-based-Mono 68 49 3.7% 72 49 3.0%
RhythmicNet-Mono [50] 66 49 10.3% 70 49 12.7%
RhythmicNet-Poly [50] 47 46 33.7% 49 47 35.3%
InteractiveBeat 37 41 52.3% 43 41 49.0%

Table 4. Audio quality metrics(NDB, FID) and soundtrack prefer-
ence between InteractiveBeat and other baselines.

Methods Causal or Non-Causal(C/NC) Total Latency(ms)↓ Votes↑
Rule-based-Mono NC 158 3.7%

RhythmicNet-Mono [50] NC 133 11.3%
RhythmicNet-Poly [50] C 103 35.3%

InteractiveBeat C 34 49.7%

Table 5. Real-Time evaluation on InteractiveBeat v.s other base-
line methods.

achieves faster speed (70fps). For NIS and C/NC, we de-
scribe the integration of different network choices into the
real-time pipeline, and analyze the total latency. A sum-
mary of total latency is shown in Table 5 and we summarize
the latency metrics below.

•Rule-based-Mono: A non-causal method that directly
adds monophonic drums to the ‘style’.

Inference time: Lni = 125ms (visual beats are determined
after 125ms, half of the window size (0.25s).
Total latency: Ltotal = Lcam + Lni = 158ms.

•RhythmicNet-Mono: A non-causal method with the
Video2Rhythm stage of ‘RhythmicNet’ [50]. It uses a 3-
sec input window for real-time adaptation and checks for
visual beats in the latest 60ms.

Inference time: Lni = 70ms.
‘Style’ check delay: Tr = 30ms.
Total latency: Ltotal = Lcam + Lni + Tr = 133ms.

•RhythmicNet-Poly: A causal method which compensates
for camera frame rate delay by forecasting the style’ for
the next interval. Apply a 3-sec Video2Rhythm inference
window followed by a 1-layer GRU forecaster.

Inference time: Video2Rhythm & forecaster: 81ms,
‘DrumGenNet’: 22ms.
Total latency: Ltotal = Lni = 103ms.

•InteractiveBeat: Our method for causal forecasting visual
beats in the next interval.

Inference time: Directogram calculation (1ms), VisBeat-
Net (5ms), MuStyleNet (6ms) and DrumGenNet (22ms).
Total latency: Ltotal = Lni = 34ms.

As shown in Table 5, InteractiveBeat achieves signif-
icantly lower latency than other baselines due to com-
pact networks design that reduces inference speed and a
causal scheme which compensates for the delay. Notably,
‘RhythmicNet-Poly’ is an adaption from ‘RhythmicNet’
with addition of real-time constraint. Our results show that
merely adding such constraint without change of network
design would still correspond to larger latency.

To further evaluate the operation in real-time in terms
of its perceptual experience, we conducted a human study
where we generated drum sounds for a total of 30 videos
from AIST and ‘in-the-wild’ set in real-time for each
method. A question ”Which drum soundtrack do you pre-
fer, considering the alignment with body movements and
latency?” was presented to raters. As shown in Table 5, In-
teractiveBeat receives most votes, higher by +14.4% than
the second top pipeline of ‘RhythmicNet-Poly’.

5. Discussion and Conclusion

In this work, we propose a real-time system, Interactive-
Beat, for interactive generation of sounds that accompany
person’s body movements being captured by a camera. In-
teractiveBeat introduces a series of compact models to gen-
erate drum sounds in real-time with low latency. Quanti-
tative experiments and human evaluation studies show that
the system can achieve a correspondence between move-
ments and the emitted sounds. The current system focuses
exclusively on generating drum sounds to achieve optimal
synchrony between body movements and sounds. A plausi-
ble future extension of the system could be extension to gen-
erate ‘organic’ music that will result with melodic sound-
tracks and further promote the perecpetual experience of
interaction between music and movement. Additionally,
system’s current latency of a 34ms could be further opti-
mized. For advanced VR applications, 10-20ms latency is
desired [38], and for musical performances, latency of 10ms
is required for natural perceptual experience [32].
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