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Abstract

We propose Hierarchical Text Spotter (HTS), a novel
method for the joint task of word-level text spotting and ge-
ometric layout analysis. HTS can recognize text in an image
and identify its 4-level hierarchical structure: characters,
words, lines, and paragraphs. The proposed HTS is char-
acterized by two novel components: (1) a Unified-Detector-
Polygon (UDP) that produces Bezier Curve polygons of
text lines and an affinity matrix for paragraph grouping
between detected lines; (2) a Line-to-Character-to-Word
(L2C2W) recognizer that splits lines into characters and
further merges them back into words. HTS achieves state-
of-the-art results on multiple word-level text spotting bench-
mark datasets as well as geometric layout analysis tasks.

1. Introduction
The extraction and comprehension of text in images play

a critical role in many computer vision applications. Text
spotting algorithms have progressed significantly in recent
years [33, 42, 45, 49, 67], specifically within the task of de-
tecting [2, 28, 36, 63] and recognizing [5, 12, 40, 41, 59] in-
dividual text instances in images. Previously, defining the
geometric layout [7, 9, 24, 62] of extracted textual content
occurred independent of text spotting and remained focused
on document images. In this paper, we aim to further the
argument [34] that consolidating these separately treated
tasks is complementary and mutually enhancing. We postu-
late a joint approach for text spotting and geometric layout
analysis could provide useful signals for downstream tasks
such as semantic parsing and reasoning of text in images
such as text-based VQA [6, 53] and document understand-
ing [16, 23, 25].

Existing text spotting methods [45, 49, 67] most com-
monly extract text at the word level, where ‘word’ is defined
as a sequence of characters delimited by space without tak-
ing into account the text context. Recently, the Unified De-
tector [34], which is built upon detection transformer [58],
detects text ‘lines’ with instance segmentation mask and
produces an affinity matrix for paragraph grouping in an
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Figure 1. Illustration of our Hierarchical Text Spotter (HTS).
HTS consists of two main components: (1) Unified-Detector-
Polygon (UDP) that detects text lines with bounding polygons and
clusters them into paragraph groups. In this figure (upper right),
paragraph groups are illustrated by different colors. The bound-
ing polygons are used to crop and rectify text lines into canonical
forms that are easy to recognize. (2) Line-to-Character-to-Word
(L2C2W) Recognizer that jointly predicts character classes and
bounding boxes. Spaces are used to split lines into words. The
output of HTS is a Hierarchical Text Representation (HTR) that
encodes the layout of all text entities in an image. In this figure,
we use indents to represent the hierarchy of text entities (middle
right), and visualize the character bounding boxes (bottom right).

end-to-end way. This method is limited to the detection task
and it can not produce character or word-level outputs.

In this paper, we propose a novel method, termed Hi-
erarchical Text Spotter (HTS), that simultaneously localize,
recognize and recovers the geometric relationship of the text
on an image. The framework of HTS is illustrated in Fig.
1. It is designed to extract a hierarchical text representa-
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tion (HTR) of text entities in images. HTR has four lev-
els of hierarchy1, including character, word, text line, and
paragraph, from bottom to top. The HTR representation
encodes the structure of text in images. To the best of our
knowledge, HTS is the first unified method for text spotting
and geometric layout analysis.

The proposed HTS consists of two main components:
(1) A Unified-Detector-Polygon (UDP) model that jointly
predicts Bezier Curve polygons [30] for text lines and an
affinity matrix supporting the grouping of lines to para-
graphs. Notably, we find that the conventional way of train-
ing Bezier Curve polygon prediction head, i.e. applying L1
losses on control points directly [30,47,56], fails to capture
text shapes accurately on highly diverse dataset such as Hi-
erText [34]. Hence, we propose a novel Location and Shape
Decoupling Module (LSDM) which decouples the represen-
tation learning of location and shape. UDP equipped with
LSDM can accurately detect text lines of arbitrary shapes,
sizes and locations across multiple datasets of different
domains. (2) A Line-to-Character-to-Word (L2C2W) text
line recognizer based on Transformer encoder-decoder [57]
that jointly predicts character bounding boxes and charac-
ter classes. L2C2W is trained to produce the special space
character to delimit text lines into words. Also, unlike other
recognizers or text spotters that are based on character de-
tection [3, 27, 31, 61], L2C2W only needs a small fraction
of training data to have bounding box annotations.

The proposed HTS method achieves state-of-the-art text
spotting results on multiple datasets across different do-
mains, including ICDAR 2015 [19], Total-Text [10], and
HierText [34]. It also surpasses Unified Detector [34] on the
geometric layout analysis benchmark of HierText, achiev-
ing new state-of-the-art result. Importantly, these results
are obtained with a single model, without fine-tuning on tar-
get datasets; ensuring that the proposed method can support
generic text extraction applications. In ablation studies, we
also examine our key design choices.

Our core contributions can be summarized as follows:

• A novel Hierarchical Text Spotter for the joint task of
word-level text spotting and geometric layout analysis.
• Location and Shape Decoupling Module which en-

ables accurate polygon prediction of text lines on di-
verse datasets.
• L2C2W that reformulates the role of recognizer in text

spotter algorithms by performing part of layout analy-
sis and text entities localization.
• State-of-the-art results on both text spotting and geo-

metric layout analysis benchmarks without fine-tuning
to each particular test dataset.

1Here, we follow the definitions of these levels in [34].

2. Related Works
Text Spotting Two-stage text spotters consist of a text de-
tection stage and a text recognition stage. Text detec-
tion stage produces bounding polygons or rotated bounding
boxes for text instances at one granularity, usually words.
Text instances are cropped from input image pixels [4], en-
coded backbone features [26, 45], or both [49]. The text
recognition stage decodes the text transcription. End-to-
end text spotters use feature maps for the cropping process.
In this case, the text recognition stage reuses those fea-
tures, improving the computational efficiency [29]. How-
ever, end-to-end text spotters suffer from asynchronous con-
vergence between the detection and the recognition branch
[22]. Due to this challenge, our proposed HTS crops from
input image pixels with bounding polygons. The aforemen-
tioned text spotter framework connects detection and recog-
nition explicitly with detection boxes. Another branch of
two-stage text spotter performs implicit feature feeding via
object queries [21] as in detection transformer [8] or de-
formable multi-head attention [67]. More recently, single
stage text spotters [20, 42] are proposed under a sequence-
to-sequence framework. These works do not perform layout
analysis and are thus orthogonal to this paper.
Text Detection Top-down text detection methods view text
instances as objects. These methods produce detection
boxes [30,56] or instance segmentation masks [34] for each
text instance. Bottom-up methods first detect sub-parts
of text instances and then connect these parts to construct
whole-text bounding boxes [52] or masks [36]. Top-down
methods tend to have simpler pipelines, while bottom-up
techniques excel at detecting text of arbitrary shapes and
aspect ratios. Neither top-down nor bottom-up mask pre-
diction methods are proficient for spotting curved text, be-
cause a mask can only locate text but cannot rectify it. Ad-
ditionally, the performance of such models on curved text
datasets is commonly reported by fine-tuning those models
on the specific data. Therefore, it is unknown whether poly-
gon prediction methods can adapt to text of arbitrary shapes
and aspect ratios on diverse datasets.
Text Recognition An important branch of text recognizers
[12, 32, 40] formulates the task as a sequence-to-sequence
task [55], where the only output target is a sequence of
characters. Another branch formulates the task as character
detection [27, 31], where it produces character classes and
locations simultaneously. However, it requires bounding
box annotations on all training data, which are rare for real-
image data. Our recognition method falls into the sequence-
to-sequence learning paradigm, with the additional ability
to produce each character bounding box. Importantly, our
model’s training requires only partially annotated data, i.e.
only a fraction of the data needs to include character level
bounding box annotations.
Layout analysis Geometric layout analysis [18, 43, 60, 68]
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aims to detect visually and geometrically coherent text
blocks as objects. Recent works formulate this task as ob-
ject detection [51], semantic segmentation [24,34], or learn-
ing on the graphical structure of OCR tokens via GCN [60].
Almost all entries in the HierText competition at IDCAR
2023 [35] adopt the segmentation formulation. Unified De-
tector [34] consolidates the task of text line detection and
geometric layout analysis. However, it can not produce
word-level entities and does not provide a recognition out-
put. Another line of layout analysis research focuses on
semantic parsing of documents [16, 23, 25] to identify key-
value pairs. These methods build language models [13, 46]
on top of OCR results. Recently, StruturalLM [25] and Lay-
outLMv3 [16] show that the grouping of words into seg-
ments using heuristics, which is equivalent to text line for-
mation, improves parsing results. We believe our work of
jointly text spotting and geometric layout analysis can ben-
efit semantic parsing and layout analysis.

3. Methodology
3.1. Hierarchical Text Spotter

As illustrated in Fig. 1 our HTS method mainly com-
prises 2 stages: (1) Unified Detection Stage: we propose
an end-to-end trainable model termed Unified-Detector-
Polygon (UDP) that detects text lines in the form on Bezier
Curve Polygons [30], and simultaneously clusters them into
paragraphs. UDP contains the Location and Shape De-
coupling Module (LSDM), a key component in accurate
text line detection across diverse datasets. Text line im-
ages are cropped from the input image with BezierAlign
[30] and then converted to grayscale image patches. (2)
Line Recognition Stage: We propose an autoregressive text
line recognizer based on Transformer encoder-decoder [57]
that jointly predicts character bounding boxes and character
classes. We train our recognizer to identify printable char-
acters and a special non-printable space delimiter. We use
the space character to split text lines into word-level granu-
larity. The word-level bounding boxes are formed from the
predicted character-level bounding boxes. Character and
word bounding boxes are estimated in the coordinate space
of text line image patches. During the post-processing step,
they are projected back to the input image coordinate space.
Putting these together, we obtain a hierarchical text repre-
sentation of character, word, line, and paragraph.

3.2. Unified Detection of Text Line and Paragraph

Preliminaries Based on MaX-DeepLab [58], Unified-
Detector [34] detects text lines by producing instance seg-
mentation masks from the inner product of object queries
and pixel features. Further, an affinity matrix that repre-
sents the paragraph grouping is produced by computing the
inner product of layout features which are extracted by extra

Queries
NxD

KMaX-DeepLab

Pixel Features
H’xW’xC

Encoded Query
NxC

Text Masks
NxHxW

Textness Score
Nx1

Cls 
Head

Layout 
Head

Bezier 
Head

Affinity matrix
NxN

Ctrl points
Nx4(m+1)

Bezier polygon prediction head

Unified-Detector-Polygon

Obj Features
NxC

FFN

FFN

Location Head

Shape Head

AABB
Nx4

Local Bezier
Nx4(m+1)

Global Bezier
Nx4(m+1)

Location and Shape Decoupling

Illustrations for AABB, local and global Bezier curves

AABB Local Bezier Global Bezier

Figure 2. Illustration of our Unified-Detector-Polygon (UDP).
Top: Architecture of UDP, where each color tint represents one
prediction branch. N is the number of queries. m is the order of
the Bezier Curves. C is the model width. D is the query dimen-
sion. Middle: Architecture of our Bezier polygon prediction head
with a dual-head Location and Shape Decoupling Module. Bot-
tom: Illustrations for axis-aligned bounding box (AABB), local
and global Bezier curve representation.

transformer layers applied on object queries.

Unified-Detector-Polygon (UDP) While Unified Detector
[34] achieves state-of-the-art text detection performance, it
uses only masks to localize text instances. The estimated
masks can not be directly used to rectify curved text lines.
Thus, complex post-processing heuristics are required to
build an effective text-spotting system. Therefore, we ex-
tend the model with an additional Bezier polygon prediction
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head applied on the encoded object queries, as illustrated
in the top of Fig. 2. The Bezier polygon prediction head
produces a polygon representation [30] based on Bezier
Curve2. In this representation, each text line is parametrized
as two Bezier Curves of order m, one for the top and one
for the bottom polyline of the text boundary. Each Bezier
Curve has m + 1 control points. The model is trained to
predict these 2(m + 1) control points i.e. 4(m + 1) coor-
dinates. During inference, the text boundaries are recon-
structed from the predicted control points. In addition, we
also replace MaX-DeepLab in the original Unified Detector
with KMaX-DeepLab [65] as the backbone, which is faster
and more accurate.
Location and Shape Decoupling Module Previous works
[47, 56] use a single feed-forward neural network (FFN) to
predict the control points in image space and train the net-
work by applying L1 loss on the control points. However, as
shown in Sec. 4.4, such approach results to sub-optimal de-
tection accuracy for text line datasets such as HierText [34]
due to its diverse locations, aspect ratios, and shapes. To
mitigate this issue, we propose a novel Location and Shape
Decoupling Module (LSDM). As shown in the middle of
Fig. 2, it consists of two parallel FFNs, one for location
prediction and the other for shape prediction. The Loca-
tion Head predicts Axis-Aligned Bounding Boxes (AABB)
whose coordinates are normalized in the image space. For
the i−th text instance, we denote its predicted AABB as:

AABBi = [xcenter,i, ycenter,i, wi, hi] ∈ R4 (1)

representing its center, width, and height. The Shape Head
predicts Local Bezier Curve control points whose coordi-
nates are normalized in the space of the AABB:

bezierlocal,i = {(x̃i,j , ỹi,j)}2(m+1)
j=1 (2)

Finally, the Global, i.e. image space, Bezier curve con-
trol point coordinates are obtained by scaling and translat-
ing Local Bezier coordinates by AABB:

bezierglobal,i = {(xi,j , yi,j)}2(m+1)
j=1 (3)

where xi,j = x̃i,j ∗ wi + xcenter,i (4)
yi,j = ỹi,j ∗ hi + ycenter,i (5)

The concepts of AABB, Local Bezier coordinates, and
Global Bezier coordinates are further illustrated in the bot-
tom of Fig. 2. During training, we generate appropri-
ately ground-truth data for both heads and apply super-
vision on both of them. Specifically, given ground-truth
Global Bezier control points, we first compute ground-truth
AABB as the minimum area AABB enclosing the ground-
truth polygons, and then use the reverse of Eq. (3) (4) (5)
to compute ground-truth Local Bezier control points. The

2https://en.wikipedia.org/wiki/Bezier_curve

final training loss is the weighted sum of all Unified Detec-
tor [34] loss, GIoU loss on AABB [48], L1 loss on AABB,
and L1 loss on local control points:

Ldet = Lunified detector

+ λ1LAABB,GIoU + λ2LAABB,L1 + λ3LLocal,L1 (6)

where λ1, λ2, λ3 are the weights for loss balancing.

3.3. Line-to-Character-to-Word Recognition

We propose a novel hierarchical text recognition frame-
work, termed Line-to-Character-to-Word (L2C2W). Fig. 3
illustrated our framework. Text line images are cropped and
rectified from the input image with BezierAlign [30]. We
use the grayscale cropped image as input for the recognizer.
The model predicts character-level outputs. To correctly
group characters into words, our recognition model learns
to predict both printable characters and the space charac-
ter. During inference, we use the space as the delimiter
to segment a text line string into words. The model also
produces character-level bounding boxes. These character
bounding boxes are grouped based on each word’s bound-
aries and produce the words’ bounding boxes.
Text Line Recognition Model Our transformer-based rec-
ognizer consists of three stages. First, a MobileNetV2 [50]
convolutional backbone encodes the image pixels, and re-
duces the height dimension to 1 using strided convolutions.
Then, a sinusoidal positional encoding [57] is added, and
transformer encoder layers are applied on the encoded fea-
tures. Lastly, a transformer decoder produces the predicted
output autoregressively [55].
Character Localization We use axis-aligned bounding
boxes to represent the location of characters in cropped text
lines. Vanilla transformer decoder [57] has only one pre-
diction head to produce a probability distribution over the
next token. To predict character bounding boxes, we add
a 2-layer FFN prediction head on the output feature from
decoder, in parallel to the classification head. The charac-
ter location head produces a 4d vector representing the top-
left and bottom-right coordinates of the character bounding
boxes. These character coordinates are normalized by each
text line’s height.
Training The total loss for training is the weighted sum of
character classification loss and character localization loss.
We use cross-entropy for character classification and L1

loss for character localization. It is important to note that
ground-truth annotated character bounding boxes are rare
in real-image datasets but are available in most synthetic
text data [14, 37, 64]. During training, we mix real-image
and synthetic data and apply character localization loss only
when ground-truth labels are available. The training target
for one text line can be formulated as:
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Figure 3. Illustration of our Line-to-Character-to-Word
(L2C2W) recognition method. Top: Text line images are cropped
and rectified from the input image using BezierAlign [30]. Our
L2C2W recognition model uses an autoregressive transformer
encoder-decoder model [57] to predict character class and box si-
multaneously. Middle: Output sample. Bottom: Text line recog-
nition results are split into words, and character bounding boxes
are clustered in accordance with words and form word bounding
boxes. Bounding boxes are projected back to image space.

Lrec =
1

T

T∑
t=1

LCE(yt, ŷt)+
λ4

∑T
t=1 αtLL1

(boxt, b̂oxt)∑T
t=1 αt + ε

(7)

where T is the number of characters, λ4 is the weight for lo-
calization loss, αt is an indicator for whether it has ground-
truth character bounding box, and ε is a small positive num-
ber to avoid zero denominator. In practice, we do the sum-
mation and average on a batch level, to balance the loss be-
tween long and short text.
Post-processing We partition text lines into words using
the predicted space character. We obtain word-level bound-
ing boxes by finding the minimum-area axis-aligned bound-
ing boxes of each word’s characters. Finally, we project
these word and character bounding boxes back to the image
space. When we perform BezierAlign [30] in line cropping,

we build a bijection from coordinates in text line crops to
coordinates in the input image. We re-use this bijection to
compute this projection operation (detailed in supplemen-
tary material Sect. A).

4. Experiments
In this section, we evaluate the proposed method on a

number of benchmarks. We first introduce the experimental
settings, including the training and test datasets, the hyper-
parameters of models, and the evaluation practices. We
compare our method to the current state-of-the-art on end-
to-end text spotting, text detection, and geometric layout
analysis [34]. Finally, we conduct comprehensive ablation
studies and analyze our design choices.

4.1. Experiment Setting

Unified-Detector-Polygon We base our UDP implementa-
tion on the official repository3 of Unified Detector [34]. The
input resolution is 1600 × 1600. Model dimensions are
N = 384, D = 256, C = 128 respectively, using the
same settings as Unified Detector [34]. As for the Bezier
polygon prediction head, we use a 2-layer MLPs for both
branches, with a hidden state dimension of 256. ReLU and
LayerNorm [1] are applied in between the two layers. The
AABB and Local Bezier prediction head outputs are acti-
vated by a sigmoid and a linear function respectively. We
use m = 3, i.e. cubic order Bezier Curves. For the loss bal-
ancing weights, we set λ1 = 1.0, λ2 = 2.5, and λ3 = 0.5.
The ratio of λ1 and λ2 are set after DETR [8]. UDP is
trained on 128 TPUv3 devices for 100K iterations with a
batch size of 256, AdamW [39] optimizer, cosine learn-
ing rate [38] of 0.001, and weight decay of 0.05. We train
UDP on a combination of the training sets of HierText [34]
and CTW1500 [66], which both provide line-level text an-
notations. During training, images are randomly rotated,
cropped, padded, and resized to the input resolution. A ran-
dom scheme of color distortion [11] is also applied.
L2C2W Recognizer We use the TensorFlow Model Garden
library [15] to implement our model. Input text lines are re-
sized to height of 40 pixels and padded to width of 1024 pix-
els to accommodate the variable aspect ratios of lines. The
CNN backbone is a MobileNetV2 [50] model with 7 identi-
cal blocks each with a filter dimension of 64 and an expan-
sion ratio of 8. The following strided convolution has 128
filters. The transformer encoder stack consists of 8 encoder
layers, with hidden size of 256 and 4 heads for each layer.
The inner layers of FFNs in transformer encoders have a
hidden size of 512. We use a single layer transformer de-
coder with hidden size 256 and only 1 attention head. The
character classification head is trained to recognize case-
sensitive Latin characters, digits and printable punctuation

3https : / / github . com / tensorflow / models / tree /
master/official/projects/unified_detector
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symbols (see supplementary material Sect. B). We set λ4 =
0.05 for the bounding box loss. L2C2W is trained on 16
TPUv3 cores for 200K iterations with a batch size of 1024
and the same optimizer setup as UDP. The training data con-
sists of SynthText [14], Synth90K [17], HierText [34], IC-
DAR 2015 [19], Total-Text [10], CTW1500 [66], and an
internal dataset of 1M synthetic text lines, with a sam-
pling ratio of [0.25, 0.20, 0.25, 0.0005, 0.001, 0.001, 0.25].
From the full-image datasets [10, 14, 19, 34, 66], we use the
ground-truth text polygon to crop and rectify text. Synth-
Text and HierText provide word and line-level annotations.
The internal synthetic dataset generation process utilizes a
similar method to Synth90K [17] but mainly contains text
lines instead of single words4. SynthText and our inter-
nal synthetic dataset provide annotations for character-level
bounding boxes.
Evaluation Practices Unless specified, e.g. in ablation
studies, we use the same model and weights in all ex-
periments. We do not perform fine-tuning on individual
datasets. During inference, we filter the model’s output with
a confidence threshold of 0.5 for the detector and 0.8 for the
recognizer. We determine these thresholds on the HierText
validation set and apply them to all experiments.

4.2. Results on End-to-End Text Spotting

4.2.1 Comparison with State-of-the-Art Results

We evaluate the proposed HTS method on ICDAR 2015 In-
cidental [19] and Total-Text [10], the most popular bench-
marks for straight and curved text respectively, and compare
our results with current state-of-the-art. The evaluation of
ICDAR 2015 is case-insensitive and includes several heuris-
tics with regard to punctuation symbols and text length.
In the End-to-End mode, if a ground-truth text starts with
or ends with punctuation, it is considered a true positive
match whether or not the prediction includes those punctu-
ation symbols. In the Word-Spotting mode, both ground-
truth and predictions are normalized by: (1) removing the
’s and ’S suffix; (2) removing dash (’-’) prefix and suffix;
(3) remove other punctuation symbols; (4) only keep nor-
malized words that are at least 3 letters long. The Total-
Text dataset does not provide an evaluation script for text
spotting, and previous works evaluate their results using a
script5 adapted from ICDAR 2015’s. This script inherits the
aforementioned heuristics but computes IoU based on poly-
gons as opposed to rotated bounding boxes. Additionally,
both datasets are evaluated with the help of lexicon lists of
different levels of perplexity6.

To adapt to these heuristics, we transform the output of
HTS by: (1) convert all characters to lower cases; (2) re-

4See Supp. Sect. C. The dataset will be made publicly available.
5https://github.com/MhLiao/MaskTextSpotterV3/

tree/master/evaluation/totaltext/e2e
6https://rrc.cvc.uab.es/?ch=4&com=tasks

move all non-alphanumeric symbols; (3) remove a detec-
tion if it consists of only punctuation symbols; (4) use edit
distance to pick the best-match when lexicons are used.

Table 1 summarizes our evaluation results. We mark
methods with different labels based on: a) the ability to
recognize case-sensitive or case-insensitive characters and
b) whether the underlying models are fine-tuned on the
target dataset. On ICDAR 2015, our proposed HTS sur-
passes the recent state-of-the-art UNITS [20] considerably
and beats previous ones significantly without fine-tuning. In
the Word-Spotting mode, HTS has a large margin of +1.45
/ +0.82 / +0.53 on S/W/G lexicons and almost matches
UNITS on non-lexicon. In the End-to-End mode, HTS also
achieves considerable margins on all lexicon settings. Note
that, the strongest competitor UNITS uses additional train-
ing data from TextOCR [54] while we don’t, demonstraing
the advantage of our method.

On Total-Text, we surpass all current state-of-the-art in
both settings. Some of these prior arts [21, 49, 67] fine-tune
their models on Total-Text which boosts the performance
on this target dataset at the cost of dropping performance
on others. Also note that, some prior arts [21, 22, 26, 44]
limit recognition to case-insensitive letters and no punctua-
tion symbols, while ours operate in a case-sensitive mode, a
more difficult but more important one. This is not reflected
in the scores due to the text normalization rules in the eval-
uation protocol.

4.2.2 Comparison based on HierText’s Eval

We also compare the proposed HTS method with others un-
der the evaluation protocol7 of HierText [34]. The Hier-
Text protocol directly compares predictions against ground-
truth, without normalizing letter cases, punctuation sym-
bols, or filtering based on text lengths. It does not have lex-
icon modes either. Compared with the ICDAR 2015 proto-
col, it provides a more strict and comprehensive comparison
since letter cases, punctuation symbols, and text of different
lengths are all important in real-scenario applications.

For a more fair comparison, we re-train several previ-
ous state-of-the-art methods that have opensourced code by
the time of this work, including MTSv3 [26], TESTR [67]
and GLASS [49], using their open-source codes. We use
the same combination of HierText [34], Total-Text [10],
CTW1500 [66], SynthText [14], and ICDAR 2015 [19] as
training data and evaluate on HierText [34], Total-Text [10],
and ICDAR 2015 [19]. We obtain results on HierText test
set using the online platform8 since the test set annotation
is not released. We are also the first to report results on the
HierText test set [34]. Results are summarized in Table 2.

7https://github.com/google-research-datasets/
hiertext/blob/main/eval.py

8https://rrc.cvc.uab.es/?ch=18
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Method
ICDAR 2015 Incidental Total-Text

Word-Spotting End-to-End N Full
S W G N S W G N P R F1 P R F1

MTSv3? [26] 83.1 79.1 75.1 - 83.3 78.1 74.2 - - - 71.2 - - 78.4
MANGO? [44] 85.2 81.1 74.6 - 85.4 80.1 73.9 - - - 68.9 - - 78.9
YAMTS? [22] 86.8 82.4 76.7 - 85.3 79.8 74 - - - 71.1 - - 78.4
CharNet [61] - - - - 83.10 79.15 69.14 65.73 - - 69.2 - - -
TESTR] [67] - - - - 85.16 79.36 73.57 65.27 - - 73.3 - - 83.9

Qin et al.] [45] - - - - 85.51 81.91 - 69.94 - - 70.7 - - -
TTS? [21] 85.0 81.5 77.3 - 85.2 81.7 77.4 - - - 75.6 - - 84.4

GLASS] [49] 86.8 82.5 78.8 71.69* 84.7 80.1 76.3 70.15* - - 76.6 - - 83
UNITS ? [20] 88.1 84.9 80.7 78.7 88.4 83.9 79.7 78.5 - - 77.3 - - 85.0
HTS?] (ours) 89.55 85.72 81.23 78.62 89.38 84.61 80.69 78.81 80.41 75.92 78.10 90.12 80.74 85.17

Table 1. Results for ICDAR 2015 and Total-Text. ‘S’, ‘W’, ‘G’ and ‘N’ refer to strong, weak, generic and no lexicons. ‘Full’ for
Total-Text means all test set words, and is equivalent to the weak setting in ICDAR 2015. ‘-’ means scores are not reported by the papers.
‘*’ means scores are obtained from the open-source code and weights. ? means models are not fine-tuned on individual datasets. ] means
models recognize all symbol classes, including case-sensitive characters and punctuation symbols.

Method ICDAR 2015 Total-Text HierText test
P R F1 P R F1 P R F1

TESTR 65.52 68.08 66.78 59.40 68.33 63.55 65.05 44.89 53.12
MTSv3 63.89 58.88 61.28 64.13 62.85 63.48 66.61 41.29 50.98
GLASS 74.11 63.08 68.15 68.54 60.12 64.05 73.84 57.20 64.47

HTS
(ours) 81.87 68.41 74.53 75.65 69.43 72.40 86.71 68.48 76.52

Table 2. Results under the evaluation protocol of HierText.

Method Line Grouping Paragraph Grouping
P R F1 T PQ P R F1 T PQ

Unified
Detector [34] 79.64 80.19 79.91 77.87 62.23 76.04 62.45 68.58 78.17 53.60

HTS (ours) 82.71 82.03 82.37 80.51 66.31 75.26 75.98 75.62 79.67 60.25

Table 3. Results of geometric layout analysis on HierText test
set. Panoptic Quality, equals to the product of F1 and Tightness.

Our HTS achieves significant advantage over these base-
lines by a large margin on all datasets, proving the effec-
tiveness of our method across straight and curved text, and
sparse and dense text. For ICDAR 2015 and Total-Text,
the performance gap with Tab. 1 highlights the impact of
text normalization and the use of lexicon lists, and that with
such heuristics in evaluation we tend to overestimate the
progress of text spotting method’s accuracy. HierText is a
new dataset that is characterized by its high word density
of more than 100 words per image, a variety of image do-
mains, a diversity in text sizes and locations and an abun-
dance in text lines that have plenty of punctuation symbols.
The recall rate is lower than 45% for TESTR and MTSv3,
and lower than 60% for GLASS, while our proposed HTS
can recall more than 68% of words. That indicates that the
word-centric design of most existing text spotting models is
not optimal for natural images with high text density.

4.3. Results on Geometric Layout Analysis

The proposed HTS is able to estimate the text’s layout
structure in images, as shown in Fig. 4. We further evalu-
ate our model on HierText on the geometric layout analysis

Individual Characters Words

Lines Paragraphs

Figure 4. Qualitative results for layout analysis. We draw char-
acter bounding boxes with different colors to indicate layout at
different levels.

task, and summarize the results in Table 3. HTS achieves
betters scores in the PQ metric on both line (+4.08) and
paragraph grouping (+6.65) compared to Unified Detector.
Most notably, line and paragraph predictions are formed as
union masks of underlying character boxes. This indicates
that our character localization, as well as the word box esti-
mation based on it, are accurate.

4.4. Ablation Studies

To better understand the effectiveness of our design
choices, we conduct ablation studies and summarize the re-
sults in Tab. 4. Different from the previous sections, here
we use 1024× 1024 as input image resolution.
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Single FFN Prediction Head

Location and Shape Decoupling Prediction Head

Figure 5. Qualitative comparison between Single FFN predic-
tion head (Top) and the proposed Location and Shape Decoupling
Module (LSDM) prediction head (Bottom) for Bezier curve poly-
gons. The original images are turned to gray for clearer views.

Abaltion Total-Text HierText Val
P R F1 P R F1

Full 72.33 62.95 67.31 86.54 67.03 75.55
w/o LSDM 68.79 56.12 61.81 86.75 60.97 71.61

Mask-based detection 64.52 54.39 59.02 84.87 63.52 72.66
Word-level detection 71.54 58.61 64.43 80.71 51.94 63.21

MaX-DeepLab 70.16 59.32 64.28 87.66 65.07 74.69

Table 4. Ablation results as evaluated on the text spotting task.

LSDM We replace our LSDM prediction head with a single
FFN branch prediction head to produce the Global Bezier
directly, and remove the 2 loss items on AABB. We use
λ5 = 3 for the weight of this loss, which is larger than
λ1−3 to compensate for the difference of loss scales. The
model is trained on the same combination of HierText and
CTW1500. As shown in Tab. 4, removal of LSDM results
in a sharp drop of text spotting performances on both Total-
Text (-5.50) and HierText validation set (-3.94). Fig. 5
further demonstrates that LSDM is important for the learn-
ing of text shapes. Without LSDM, predicted location is
only roughly correct but its shape is inaccurate. This shows
that training Bezier prediction head with L1 loss on diverse
datasets could be dominated by the location learning and
thus shape prediction fails. The proposed LSDM, on the
other hand, can solve this issue by separating and balancing
the learning of location and shape.
Mask v.s. Polygon One main difference between our UDP
with Unified Detector [34] is that UDP produces polygons
as output as opposed to masks. In this ablation study, we use
the mask outputs as detections and find minimum-area ro-
tated bounding boxes instead of using the predicted Bezier
polygons. This results in a significant drop in Total-Text
(-8.29) and a less severe drop in HierText (-2.89). Mask

representation is unsuitable for curved text spotting since it
is non-trivial to crop and rectify with masks. Note that Hier-
Text consists mostly of straight text and is thus less affected.
Word Based v.s. Line Based OCR We train HTS on Hi-
erText and Total-Text for the word spotting task, as op-
posed to line-level. The line-based model is better than the
word based model on both Total-Text (+2.88), a sparse text
dataset, and HierText (+12.34), a dense text dataset (Tab. 4).
The recall rate on HierText drops by (-15.09) if the model
detects words instead of lines. It is consistent with Tab. 2,
where word-based current arts have much lower scores on
the dense HierText dataset.
Choice of Backbone We train two versions of HTS, one
with MaX-DeepLab as the backbone and the other with
KMaX-DeepLab as backbone. HTS with KMaX-DeepLab
achieves +3.03 / +0.86 better F1 scores on Total-Text
and HierText respectively, demonstrating the advantage of
KMaX-DeepLab, a follow-up model of MaX-DeepLab. In
addition to improved accuracy, the KMaX-DeepLab version
of HTS can run at a much higher speed, with a 5.6 FPS
on average on HierText, while the MaX-DeepLab version
is 1.2 FPS, when measured on A100. Adopting KMaX-
DeepLab benefits both accuracy and latency.

4.5. Limitations

Latency On a A100 GPU, our method runs at 7.8 FPS
on ICDAR 2015 and Total-Text, and 5.6 FPS on HierText
which is an order of magnitude more dense, while TESTR
[67] runs at 10.2 FPS on HierText. We believe a faster
backbone for UDP can help. Sharing features for UDP and
L2C2W i.e. making it end-to-end trainable will also save
computations.
Line labels The training of UDP requires line level annota-
tions which are limited in few public datasets. However,
it is relatively low-cost to annotate line grouping on top
of existing word-level polygons. Line grouping of ground-
truth words can also be accurately estimated using heuris-
tics based on word size, location, and orientation.
Character Localization Benchmark datasets used in this
work do not provide character-level labels so we are unable
to evaluate the accuracy of our character localization. We
can only use word level text spotting and layout analysis
results as a proxy as it highly depends on character local-
ization quality.

5. Conclusion

In this paper, we propose the first Hierarchical Text Spot-
ter (HTS) for the joint task of text spotting and layout analy-
sis. HTS achieves new state-of-the-art performance on mul-
tiple word-level text spotting benchmarks as well as a geo-
metric layout analysis task.
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