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Figure 1. Applications of Hierarchical Diffusion Autoencoders (HDAE). (a) Near-perfect image reconstruction. (b) Disentangled image
manipulation. Our approach disentangles “arched eyebrows” with other related attributes such as “female” and “eyeglasses”. (c) Style
mixing with different levels of features from different images. (d) Multi-modal semantic image synthesis with a layout image and a real
image providing information on style and details.

Abstract

Diffusion models have attained impressive visual quality
for image synthesis. However, how to probe and manipulate
the latent space of diffusion models has not been extensively
explored. Prior work diffusion autoencoders encode the se-
mantic representations with a single latent code, neglecting
the low-level details and leading to entangled representa-
tions. To mitigate those limitations, we propose Hierarchical
Diffusion Autoencoders (HDAE) that exploits the coarse-to-
fine feature hierarchy for the latent space of diffusion models.
Our HDAE converges 2+ times faster and encodes richer
and more comprehensive coarse-to-fine representations of
images. The hierarchical latent space inherently disentan-
gles different semantic levels of features. Furthermore, we
propose a truncated feature based approach for disentangled
image manipulation. We demonstrate the effectiveness of
our proposed HDAE with extensive experiments and appli-
cations on image reconstruction, style mixing, controllable
interpolation, image editing, and multi-modal semantic im-
age synthesis. The code will be released upon acceptance.

1. Introduction

Diffusion models [14, 47] have demonstrated impressive
image generation quality and achieved remarkable success
in various applications, such as text-to-image generation [30,
35], image editing [13, 32, 41], and inpainting [26, 40].

A semantically meaningful, editable, and decodable latent
space is of particular importance in interpreting generative
models as well as applications such as image editing. There
have been various works on designing and manipulating the
latent space of GANs [12, 44, 45]. However, the latent space
of diffusion models has been underexplored. Preechakul et
al. proposed Diffusion Autoencoders (DAE) [32], which
leverages a learnable encoder to discover high-level semantic
representations and leverages a diffusion model to encode the
stochastic variations and decode images from the semantic
latent code and the stochastic latent code.

However, the semantic latent code of diffusion autoen-
coders is simply represented by a single feature vector pre-
dicted by the last layer features of the semantic encoder,
ignoring the rich low-level and mid-level features. Such a
latent space is insufficient to encode the rich information
from images. In practice, we observe that the fine-grained
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representations (e.g., background and low-level details) are
omitted by the semantic encoder and only encoded by the
stochastic encoder, leading to difficulties in manipulating
those fine attributes. Furthermore, different levels of repre-
sentations are entangled within the single holistic semantic
latent code, making it difficult to find a single direction in
the latent space to manipulate a specific attribute without
affecting other attributes.

To mitigate those problems, we design the Hierarchical
Diffusion Autoencoders (HDAE) that exploits the coarse-
to-fine feature hierarchy of the semantic encoder and the
diffusion-based decoder for comprehensive and disentangled
representations. Our design of the hierarchical latent space
is motivated by the observation that feature maps at different
scales correspond to different abstraction levels of features.
The high-resolution feature maps contain low-level features
(e.g., color, texture, and details) and the low-resolution fea-
ture maps contain high-level features (e.g., structure, layout,
abstract attributes). In particular, we extract different lev-
els of features from the semantic encoder and use them to
predict the semantic latent code for the corresponding fea-
ture levels of the diffusion-based decoder. We extensively
investigate different design choices of HDAE, as demon-
strated in Fig.2. Our HDAE converges three times faster
than DAE [32]. Image reconstruction and image editing
experiments demonstrate that the latent representations of
HDAE are richer and more comprehensive than DAE. More-
over, the different semantic levels of features are inherently
disentangled in the hierarchical latent space, and we probe
the hierarchical latent space with style mixing and control-
lable image interpolation experiments.

To further improve the disentanglement of attributes for
image manipulation, we propose to conduct manipulation
with truncated features, based on the observation that the
majority, low-value feature channels are a critical cause of
entanglement. Experiments demonstrate that the truncated
features facilitate disentangled attribute manipulation of face
images, e.g., we can disentangle “old” from “wearing eye-
glasses” so as to edit a face image towards older without
adding eyeglasses to the face.

In summary, we propose Hierarchical Diffusion Autoen-
coders which exploits the coarse-to-fine features to obtain a
comprehensive and disentangled latent space for diffusion
models. We further propose a novel approach for disentan-
gled attribute manipulation with truncated features. Experi-
ments are conducted on FFHQ, CelebA-HQ, and LSUN Cat
datasets. We demonstrate that our model can capture rich
and disentangled semantic representations with extensive
experiments on image reconstruction, style mixing, control-
lable image interpolation, disentangled image editing, and
multi-modal semantic image synthesis, as shown in Fig.1.

2. Related Work
Diffusion models. Diffusion models have shown great ca-
pability in image synthesis [?, 6, 10, 13, 14, 23, 25–27, 29,
30, 32, 35, 39, 41–43, 47, 49, 50, 52]. Song et al. [49] pro-
posed score-based generative models as a way of modeling
a data distribution using its gradients. Ho et al. [14] pro-
posed denoising diffusion probabilistic models (DDPMs)
which achieved high sample quality based on the score-based
generative models [49] and the diffusion models [47]. In-
spired by the progress, many works improved the sampling
speed [6, 48], sampling quality [29, 50], and conditional
synthesis [10]. Diffusion models have also shown wide ap-
plications in text-to-image generation [30, 35, 39, 43], image
translation [27, 42, 52], image editing [13, 23, 32, 41], image
inpainting [26, 40], video generation [?, 7, 15, 46, 54, 55],
audio generation [8, 59] and text generation [5, 22].
Latent space of generative models. Researchers have made
attempts to interpret and manipulate the latent space of
generative models. The StyleGAN [18] generator maps
the random noise vector to a semantically meaningful la-
tent space, inspiring various follow-up works exploring the
controllability and interpretability of the latent space of
GANs [16, 18, 28, 34, 38, 51, 56]. Various works explored
learning based [37, 53, 57], optimization based [1, 2, 16, 56],
or hybrid [4,62] approaches for GAN inversion, aiming to en-
code an image to the latent space of GANs. GAN inversion
enables diverse image editing methods by manipulating the
latent code. Shen et al. [44] proposed InterfaceGAN which
adopts an SVM to find the semantic directions for attribute
manipulation. Härkönen et al. [12] proposed GANspace
which performed PCA on early feature layers. Some meth-
ods [24, 60, 63] found distinguishable directions based on
mutual information. Recently some works [3, 20, 21, 31]
explored image editing guided by CLIP [33] model. In par-
ticular, Patashnik et al. [31] proposed StyleClip which used
the pre-trained CLIP [33] as the loss supervision to match
the manipulated results with the text condition. Our work
explores the hierarchical latent space of diffusion models.
Latent space of diffusion models. Despite the various work
studying the latent space of GANs, the latent space of dif-
fusion models lack semantic meaning and cannot be easily
applied for semantic manipulation. Latent diffusion [39] ap-
plies diffusion model in the latent space of images instead of
the original image space. DiffusionCLIP [20] conducts im-
age editing by DDIM inversion and model finetuning guided
by CLIP. However, the latent space of diffusion models can-
not be directly manipulated for image editing. Diffusion
autoencoders [32] adopts a semantic encoder to obtain a
meaningful and decodable latent space for diffusion mod-
els. However, such latent space lacks find details and causes
attribute entanglement. We propose the Hierarchical Dif-
fusion Autoencoders which provides a comprehensive and
hierarchical latent space for diffusion models.
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Figure 2. Overview of different network structures. In general, diffusion autoencoders [32] apply the semantic encoder to encode the
semantic latent code, the stochastic encoder (i.e., the DDIM forward process) to encode the stochastic latent code, and the diffusion-based
decoder (i.e., the DDIM reverse process) to generate images based on the latent codes. DAE and DAE(U) are non-hierarchical diffusion
autoencoders. HDAE(E) and HDAE(U) are different variants of our proposed hierarchical diffusion autoencoders. In addition, we show
style mixing and multimodal image synthesis with HDAE, where the low-level and high-level latent codes are from different images.

3. Methodology

3.1. Preliminaries

Diffusion probabilistic models. Denoising diffusion prob-
abilistic models (DPMs) [14] is a class of generative mod-
els. The forward process defines a Markov chain gradually
adding Gaussian noise to an image x0, generating a sequence
of images x0, x1, · · · , xT . The reverse process iteratively
removes noise from the noisy image xt by sampling from
p(xt−1|xt). The noise ϵθ(xt, t) is predicted by a U-Net
which takes the noisy image xt and timestep t as input. The
model is trained with the L2 loss between the predicted noise
and the actual noise ∥ϵ− ϵθ(xt, t)∥22

Song et al. [48] proposed Denoising Diffusion Implicit
Model (DDIM) with a deterministic forward process. By
matching the marginal distribution of DDPM, it shares the
same training objective and solution with DDPM. We can
run the DDIM generation process backward deterministically
to obtain the noise map xT , which represents the stochastic
latent codes of the image x0.
Diffusion autoencoders. In pursuit of a meaningful latent
space, Preechakul et al. [32] proposed Diffusion Autoen-
coders. They apply a convolutional neural network as the
semantic encoder to encode images into a semantic vector
zs = Encϕ(x0) and apply the DDIM forward process as a
stochastic encoder that encodes the image x0 ∈ RH×W×3

to a stochastic variant xT ∈ RH×W×3. The DDIM reverse
process acts as the decoder which models pθ(xt−1|xt, zs)
and iteratively generates x0 given the semantic latent code
zs and the stochastic latent code xT . The DDIM adopts a

U-Net structure with shared parameters for each timestep,
and the U-Net is conditioned by the semantic code zs and
timestep t by adaptive group normalization layers (AdaGN).
The semantic latent vector zs ∈ R512 captures the meaning-
ful and decodable representations that can be used for image
reconstruction and manipulation.

3.2. Hierarchical Diffusion Autoencoders

The semantic latent code in diffusion autoencoders is a
512-dimensional feature vector. Such representations bring
two limitations. Firstly, the single feature vector from the
final layer of the semantic encoder omits the low-level and
mid-level features, making it not sufficient to encode the
comprehensive semantic information in the images. Em-
pirically, we observe that the images reconstruction and
manipulation results with diffusion autoencoders suffer from
insufficient details. Secondly, the holistic feature represen-
tation ignores the intrinsic fine-grained-to-abstract and low-
level-to-high-level hierarchy of visual features.
Design space of latent representations and network archi-
tectures. To address those issues, we propose hierarchical
diffusion autoencoders which explore the hierarchical se-
mantic latent space of diffusion autoencoders. In particular,
we keep the architecture of the diffusion-based decoder and
explore the design space of the semantic encoder and the
latent space, as shown in Fig. 2.

– DAE, i.e., diffusion autoencoders. The Naı̈ve diffu-
sion autoencoders [32] leverage a naı̈ve CNN-based
semantic encoder, where the semantic code is extracted
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(a) Male (b) Young

Figure 3. The empirical cumulative distribution function of
the element values in the normalized classifier weights n̂. Most
elements of n̂ are of low values, and only a few are of high values.

from the last layer of the semantic encoder, followed
by global average pooling and fully-connected layers.

– DAE(U), i.e., diffusion autoencoders with U-Net seman-
tic encoder. We replace the naı̈ve encoder in DAE with
a U-Net encoder, denoted by DAE(U). With the skip
connections and downsampling-upsampling design, the
last layer of the U-Net might be able to capture both
low-level and high-level features. The spatial feature
map from the last layer of the U-Net is mapped into a
512-dimensional feature vector zs.

– HDAE(E), i.e., hierarchical diffusion autoencoders with
naı̈ve semantic encoder. To exploit the feature hierar-
chy of the diffusion autoencoders, we extract differ-
ent semantic levels of feature maps from the seman-
tic encoder to predict the hierarchical semantic latent
codes z1s , z

2
s , · · · , zLs . The different levels of semantic

features are fed into the corresponding levels of the
diffusion-based decoder.

– HDAE(U), i.e., hierarchical diffusion autoencoders
with U-Net semantic encoder. HDAE(U) also adopts
the hierarchical latent space design but leverages a se-
mantic encoder with the U-Net structure.

Experiments demonstrate that the hierarchical structures
of HDAE(E) and HDAE(U) provide richer semantic repre-
sentations and more efficient training, and that HDAE(U) is
the best-performed architecture design.
Advantages and applications of HDAE. Firstly, while the
latent space of DAE lacks low-level details, the hierarchical
latent space of HDAE encodes comprehensive fine-grained-
to-abstract and low-level-to-high-level features, leading to
more accurate and detail-preserving image reconstruction
and manipulation results. Secondly, the feature hierarchy
naturally enables applications such as style mixing (illus-
trated in Fig. 2), multimodal semantic image synthesis, and
controllable image interpolation, as demonstrated in Sec. 4.

(a) Brown Hair

(b) Smiling

Figure 4. The values of the 5×512-dimensional n̂, visualized by
levels. (1) Most values are of low values and truncating those values
lead to better disentanglement. (2) Feature hierarchy is shown.

3.3. Disentangled Image Manipulation with Trun-
cated Features

With a linear classifier trained with the semantic vectors,
diffusion autoencoders [32] can be applied for image ma-
nipulation. We can edit an image by moving the semantic
vector towards the direction n, which is obtained from the
weights of the linear classifier for the target attribute.

A critical issue for image editing is the entanglement of
features in the latent space. For example, in face editing,
“old” is often entangled with “wearing glasses”, and “arched
eyebrows” is often entangled with “female”. By analyzing
the distribution of the classifier direction n, we propose an
approach to disentangle attributes by adjusting n.

In our HDAE models with L hierarchical layers, we con-
catenate the 512-dimensional semantic codes from each of
the L layers into a single vector and derive the classifier
direction n ∈ R512×L. We derive the normalized classifier
weights n̂ as follows:

n̂i =
|ni| −min

i
(|ni|)

max
i

(|ni|)−min
i
(|ni|)

(1)

As shown by the empirical cumulative distribution func-
tion and the visualization of the values of n̂ in Fig. 3 and
Fig. 4, most values are relatively low, and only a few values
are high. We hypothesize that the few high-value elements in-
dicate the dominant direction of an attribute classifier, while
the majority, low-value elements are noisy and may lead to
attribute entanglement. In particular, we denote the set of
the top-k largest values of n̂ as top-k(n̂), and truncate the n
accordingly as follows.

n′
i =

{
ni, if n̂i ∈ top-k(n̂)
0, else (2)

Our experiments in Fig. 10 validate that the truncated n′

leads to better-disentangled image manipulation.
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Figure 5. Ablation study of different architecture designs for
image reconstruction on FFHQ dataset. MSE and LPIPS are
evaluated on the test set. Both variants of HDAE outperform DAE
baselines. HDAE(U) achieves the best image reconstruction perfor-
mance. We adopt HDAE(U) as our best model in experiments.

4. Experiments

4.1. Experimental settings

Following Diffusion Autoencoders [32], we train the hi-
erarchical diffusion autoencoders on FFHQ [18] dataset and
train the attribute classifiers on CelebA-HQ [17] dataset.

The ablation study in Sec. 4.2 is trained on 128 × 128
images and other results are derived from models trained
on 256 × 256 images. More implementation details and
experimental settings can be found in the appendix.

4.2. Ablation Study

We conduct ablation studies to test the effectiveness of
the design choices of diffusion autoencoders and hierarchical
diffusion autoencoders demonstrated in Fig. 2. We split the
FFHQ dataset into 65,000 images for training and 5,000
for testing. For a fair comparison, we add another baseline,
denoted as DAE(2560), where the semantic code dimension
of DAE is expanded from 512 to 2560, sharing the same
size as the semantic code dimension (512× 5) of our HDAE
models. We report the image reconstruction quality on the
test set, evaluated by pixel-wise MSE and the perceptual
quality, in Fig. 5. We draw the following conclusions:

– The hierarchical diffusion autoencoders perform much
significantly better than non-hierarchical ones. As illus-
trated in Fig. 5, both variants of hierarchical diffusion
autoencoders, HDAE(E) and HDAE(U), perform sig-
nificantly better and converge much faster than DAE,
DAE(2560), and DAE(U). The image reconstruction
performances of HDAE(E) and HDAE(U) at 340K
steps are better than the performances of DAE and
DAE(U) at 1,020K steps.

Model Setting SSIM↑ LPIPS↓ MSE↓

StyleGAN2(W) [19] - 0.677 0.168 0.016
StyleGAN2(W+) [19] - 0.827 0.114 0.006
VQ-GAN [11] - 0.782 0.109 3.61e-3
VQ-VAE2 [36] - 0.947 0.012 4.87e-4
HFGI [53] - 0.877 0.127 0.0617
DDIM [48] T=100, 1282 0.917 0.063 0.002

DAE [32] T=100, 1282, random xT 0.677 0.073 0.007
HDAE(U) (ours) T=100, 1282, random xT 0.793 0.038 2.96e-3

DAE [32] T=100, 1282, encoded xT 0.991 0.011 6.07e-5
HDAE(U) (ours) T=100, 1282, encoded xT 0.993 0.009 5.01e-5

Table 1. Image reconstruction evaluation of models trained on
FFHQ and tested on CelebA-HQ. HDAE(U) outperforms DAE
with random stochastic code xT , indicating that HDAE(U) encodes
richer details than DAE. HDAE(U) with encoded xT achieves state-
of-the-art, near-perfect reconstruction.

Task HDAE(U) DAE HDAE(U)+TF DAE+TF Similar

Image Reconstruction 82.5% 11.7% - - 5.8%
Image Manipulation 65.7% 3.6% - - 30.7%
Disentangled Image Manipulation 22.8% 1% 76.2% 0% -

Table 2. Human perceptual evaluation on image reconstruc-
tion, image manipulation and disentangled image manipulation.
Since DAE and HDAE(U) achieve near-perfect reconstruction for
naked human eyes, we conduct the human perceptual evaluation
on image reconstruction with random stochastic code xT . “+TF”
denotes image manipulation with truncated features.

– The U-Net structure for the semantic encoder has a
negative effect on DAE, but benefits HDAE. As demon-
strated in Fig. 5, DAE(U) performs worse than DAE,
but HDAE(U) performs better than HDAE(E).

– HDAE(U) is the best-performing model. Therefore, we
adopt HDAE(U) in the following experiments.

4.3. Image Reconstruction

Setup. Image reconstruction quality reflects how well the
latent representations encode the image information, espe-
cially the details. We evaluate the image reconstruction
quality of different approaches: GAN inversion methods
(StyleGAN2 [19] with W space, pretrained StyleGAN2 with
W+ space, VQ-GAN [11], HFGI [53]), VAE-based method
(VQ-VAE2 [36]), and diffusion-based methods (DDIM [48],
and DAE [32], and our HDAE(U)). All these models are
trained on FFHQ [18] and tested on 30,000 images from
CelebA-HQ [17]. To validate the potential of our model be-
yond the face domain, we show image reconstruction results
on cat datasets by training the models on LSUN [58] Cat
and testing on the AFHQ Cat [9]. In addition, we show our
image reconstruction results on LSUN Bedroom and LSUN
Horse datasets. DDIM, DAE, and HDAE(U) are trained
on images of size 128 × 128 and we use T = 100 for in-
ference. Structural Similarity SSIM, Pixel-wise MSE, and
perceptual quality metric LPIPS [61] are adopted to evaluate
the image reconstruction quality. To illustrate what infor-
mation is encoded by the stochastic encoder, we show the
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Figure 6. Quantitative results of image reconstruction. We evalu-
ate the image reconstruction experiments on the face, cat, bedroom,
and horse images. HDAE(U) with random stochastic code xT (7th
row) preserves more details in backgrounds, appearance, expres-
sions, and identity information than DAE with random stochastic
code xT (6th row). HDAE(U) and DAE with encoded stochastic
code xT (4th and 5th row) attain near-perfect reconstruction. “N.A.”
denotes not applicable for this model.

images reconstructed from DAE and HDAE(U) with their
corresponding xT as well as random xT for comparison.
Quantitative results. The results Tab. 1 demonstrate that:
(1) HDAE(U) achieves near-perfect image reconstruction
performance, outperforming previous GAN inversion meth-
ods, VAE-based approaches, and diffusion-based approaches.
(2) Comparing image reconstruction results with the xT en-
coded by a stochastic encoder and random xT , some detail-
related information is encoded by the stochastic encoder.
(3) The image reconstruction performance degrades more
for DAE than HDAE(U) when replacing xT encoded by
the stochastic encoder with a random xT , indicating that
in HDAE(U) more information is encoded in the semantic
encoder and less information is encoded by the stochastic
encoder.
Qualitative results. The qualitative results of image re-
construction are shown in Fig. 6. Previous GAN inversion
approaches PSP [37] and HFGI [53] cannot preserve back-
ground and details of the original images, while DAE and
HDAE(U) with encoded xT reconstruct images nearly iden-
tical to the input images. Comparing DAE with random xT

with HDAE(U) with random xT , we find that HDAE(U) with
random xT preserves background and details better. DAE
with random xT fails to reconstruct the details, such as the

��
5 ��

6Latent codes 
from A:

Source B

So
ur

ce
 A

��
1 ��

2 ��
3 ��

4 ��
1 ��

2 ��
3 ��

4 ��
5 ��

6

Figure 7. Style mixing results with hierarchical latent space.
z1s ,z2s ,z3s ,z4s represent the low-level latent codes and z5s ,z6s represent
the high-level latent codes. Given the real images in red boxes, we
can mix the high-level latent codes from source A(B) and low-level
latent codes from source B(A).

eyes of the cat, the interior decoration of the bedroom, and
the legs of the horse. This observation indicates that the
semantic encoder of HDAE(U) encodes more comprehen-
sive features, allowing detail-preserving applications such
as image manipulation. More examples are in the appendix.
Human perceptual evaluation. We conduct a human per-
ceptual evaluation, where users are asked to vote for the
image reconstruction quality of HDAE(U) with random xT

and DAE with random xT in Tab. 2. We collect 450 votes
from 15 participants, and the results are shown in Tab. 2.
Users clearly prefer the image reconstruction results by our
HDAE(U) over DAE. More details are in the appendix.

4.4. Interpreting the Hierarchical Latent Space

The plot in Fig. 4 indicates a strong correlation between
feature levels and attributes. For instance, “brown hair” is
correlated with the low-level feature layers 1 and 2, while
“smiling” is correlated with the high-level feature layer 4. It
reveals the hierarchical latent space where different layers
represent different abstraction levels of the representations.
We visualize the latent space hierarchy by style mixing and
controllable image interpolation experiments.
Style mixing. To interpret and visualize the hierarchical
latent space, we mix the high-level latent codes z5s , z

6
s from

image A(B) and the low-level latent codes z1s , z
2
s , z

3
s , z

4
s from

image B(A), and use the mixed latent codes to generate a
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Figure 8. Controllable image latent space interpolation along different paths. Given the real images in red boxes, the first path shows the
image interpolation changing from low-level latent codes to high-level latent codes. The second path shows the reverse interpolation process
from high-level to low-level. The third path shows the smooth interpolation between two images by smoothly interpolating z5s .

new image, as shown in Fig. 2. Fig. 7 shows a clear hierarchy
of the latent space. z1s , z

2
s , z

3
s , z

4
s control the spatial details

such as background, color, and lighting, and z5s , z
6
s control

the high-level semantics and image structure such as pose,
gender, face shape, and eyeglasses.
Controllable image interpolation. Image interpolation
based on semantic codes is a common way to visualize and
verify the properties of the latent space. With our hierar-
chical latent space, we can control different paths of image
interpolation, as shown in Fig. 8. Given the leftmost and
rightmost real images in red boxes, in the first row, we in-
terpolate from left to right by changing low-level features
first and then high-level features. In the second row, the
interpolation is conducted in a reverse way, from high-level
features to low-level features. In the third row, we illustrate
the continuous changes between the two images in the sec-
ond row. Results indicate that z1s , z

2
s , z

3
s control lighting and

color, z4s controls background, z5s controls gender and z6s
controls pose.

4.5. Image Manipulation

Detail-preserving image manipulation with HDAE. With
the linear attribute classifiers for the latent codes, we can edit
real images by manipulating the semantic latent codes with
the classifier direction. Fig. 9 shows the image manipulation
results on HFGI [53], StyleClip [31], DAE [32], and our
HDAE(U). DAE and HDAE(U) are trained on FFHQ, and the
linear attribute classifiers are trained on the CelebA-HQ. As
demonstrated in Fig. 9, our HDAE(U) preserves the details
(e.g., background, face identity, and the forehead pendant)
of the input image better than other approaches. The image
manipulation results demonstrate that the representations
learned by our HDAE are rich and semantically meaningful.
More examples can be found in the appendix.
Disentangled image manipulation with truncated fea-
tures. As introduced in Sec. 4.5, we leverage the truncated

H
FG

I
D
AE

H
D
AE

(U
)

Age- Age+ Smile- Smile+Input

St
yl
eC

lip

Figure 9. Comparisons on real image manipulation between
HFGI [53], StyleClip [31], DAE [32] and HDAE(U). HDAE(U)
preserves the details (e.g., face identity, background, and the fore-
head pendant) in the original image better than other approaches.

features for disentangled image manipulation. We compare
the qualitative results of image manipulation with truncated
features (k = 24) and without truncated features (k = 3072)
on DAE and HDAE(U). We also compare with GAN-based
methods HFGI [53] and StyleClip [31]. As shown in Fig. 10,
for the naı̈ve manipulation without truncation, “old” is en-
tangled with “eyeglasses”, “arched eyebrows” is entangled
with “female”, and “female” is entangled with “makeup”.
Our HDAE(U) with truncated features successfully disen-
tangles those attributes and gives the best results compared
with other methods. The truncated features with k = 24
effectively disentangle the attributes for manipulation, and
the attributes become more entangled as k increases (from
k = 24 to k = 3072). An ablation study of k and more
examples are in the appendix.
Human perceptual evaluation. We conduct user percep-
tual evaluations on the image manipulation and disentangled
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Figure 10. Disentangled attribute manipulation results. HDAE(U) is trained on FFHQ [18] with image resolutions 256 × 256. We
preserve the top k largest values for the truncated features. “w/ TF” denotes using truncated features and k = 24 gives the best manipulation
results in terms of attribute disentanglement (see appendix for ablation on k). “w/o TF” is the comparison experiment without truncated
features, where we can observe severe attribute entanglements: old - wearing eyeglasses, arched eyebrows - female, female - makeup. “N.A.”
denotes not applicable for this model.
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Figure 11. Multi-modal semantic image synthesis. Our HDAE
conducts style mixing with the layout information from the seman-
tic layout map and details from the source image.

image manipulation results of HDAE(U), DAE, HDAE(U)
with truncated features and DAE with truncated features.
For image manipulation, we collect 1,575 votes from 15 par-
ticipants. For disentangled image manipulation, we collect
2,100 votes from 15 participants. Results in Tab. 2 indicate
that HDAE(U) performs better than DAE, and that HDAE(U)
with truncated features performs better than HDAE(U), DAE,
and DAE with truncated features. Details are in the appendix.
Discussion. The hierarchical latent space and truncation-
based approach are orthogonal approaches to improve image
manipulation from different perspectives. The feature hierar-
chy provides a comprehensive and semantically meaningful
latent space. The truncation-based approach empowers dis-
entangled image manipulation. Therefore, HDAE(U) with
truncated features shows the best detail-preserving and dis-
entangled image manipulation results.

4.6. Other Applications

Multi-modal semantic image synthesis. We train an extra
layout encoder that maps the semantic label map into the

latent space of HDAE. HDAE can synthesize images based
on the high-level features from a semantic label map and
the low-level features from a real image. We can control the
layout with the label map, and control the style and details
with the image, as shown in Fig. 11.
Unconditional image synthesis. By training a latent DDIM
model to predict the latent codes, our model can be leveraged
for unconditional image synthesis. Results and more details
can be found in the appendix.

5. Conclusion
We present Hierarchical Diffusion Autoencoders (HDAE)

which leverages the feature hierarchy to build a hierarchical
latent space for diffusion models. The latent representations
are rich and comprehensive, with a coarse-to-fine hierarchy.
We further propose a novel disentangled attribute manipula-
tion approach with truncated features. Extensive experiments
and applications on image reconstruction, style mixing, con-
trolled image interpolation, disentangled image editing, and
multimodal semantic image synthesis are conducted to vali-
date the effectiveness of our approach.
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