
SLoSH: Set Locality Sensitive Hashing via Sliced-Wasserstein Embeddings

Yuzhe Lu*1, Xinran Liu*2, Andrea Soltoggio3, Soheil Kolouri2
1Carnegie Mellon University 2Vanderbilt University 3Loughborough University

yuzhelu@cs.cmu.edu, xinran.liu@vanderbilt.edu

a.soltoggio@lboro.ac.uk, soheil.kolouri@vanderbilt.edu

Abstract

Learning from set-structured data is an essential prob-
lem with many applications in machine learning and com-
puter vision. This paper focuses on a non-parametric,
data-independent, and efficient learning algorithm from set-
structured data using optimal transport and approximate
nearest neighbor (ANN) solutions, particularly locality-
sensitive hashing. We consider the problem of set retrieval
from an input set query. This retrieval problem requires 1)
an efficient mechanism to calculate the distances/dissimi-
larities between sets and 2) an appropriate data structure
for a fast nearest-neighbor search. To that end, we propose
to use Sliced-Wasserstein embedding as a computationally
efficient “set-2-vector” operator that enables downstream
ANN with theoretical guarantees. The set elements are
treated as samples from an unknown underlying distribu-
tion, and the Sliced-Wasserstein distance is used to com-
pare sets. We demonstrate the effectiveness of our algo-
rithm, denoted as Set Locality Sensitive Hashing (SLoSH),
on various set retrieval datasets and compare our proposed
embedding with standard set embedding approaches, in-
cluding Generalized Mean (GeM) embedding/pooling, Fea-
turewise Sort Pooling (FSPool), Covariance Pooling, and
Wasserstein embedding and show consistent improvement
in retrieval results, both in terms of accuracy and computa-
tional efficiency.

1. Introduction
The nearest neighbor search problem is at the heart of

many non-parametric learning approaches in classification,
regression, and density estimation, with many applications
in machine learning, computer vision, and other related
fields [3, 6, 55]. The exhaustive search solution to the near-
est neighbor problem for N given objects (e.g., images, vec-
tors, etc.) requires N evaluation of (dis)similarities (or dis-
tances), which could be problematic when: 1) the number of
objects, N , is large, or 2) (dis)similarity evaluation is expen-
sive. Approximate Nearest Neighbor (ANN) [5] approaches

*Equal contribution

have been proposed as an efficient alternative for similarity
search on massive datasets. ANN approaches leverage data
structures like random projections, e.g., Locality-Sensitive
Hashing (LSH) [16, 20], or tree-based structures, e.g., kd-
trees [10, 63], to reduce the complexity of nearest neighbor
search. Ideally, ANN approaches must address both these
challenges, i.e., decreasing the number of similarity evalu-
ations and reducing the computational complexity of simi-
larity calculations while providing theoretical guarantees on
ANN retrievals.

Despite the great strides in developing ANN methods,
most existing approaches are designed for objects living in
Hilbert spaces. Recently, however, there has been an in-
creasing interest in set-structured data with many applica-
tions in point cloud processing, graph learning, image/video
recognition, and object detection, to name a few [36,62,70].
Even when the input data itself is not a set, in many appli-
cations, the complex input data (e.g., a natural image or a
graph) is decomposed into a set of more abstract compo-
nents (e.g., objects or node embeddings). Similarity search
for large databases of set-structured data remains an active
field of research, with many real-world applications. In this
paper, we focus on developing a data-independent ANN
method for set-structured data. We leverage insights from
computational optimal transport [12,29,48,61] and propose
a novel LSH algorithm, which relies on Sliced-Wasserstein
Embeddings and enables efficient set retrieval.

Defining (dis)similarities for set-structured data comes
with unique challenges: i) the sets could have different car-
dinalities, and ii) the set elements do not necessarily have
an inherent ordering. Hence, a similarity measure for set-
structured data must handle varied input sizes and should
be invariant to permutations, i.e., the (dis)similarity score
should not change under any permutation of the input set
elements. Generally, existing approaches for defining sim-
ilarities between sets rely on the following two strategies.
First, solving an assignment problem (via optimization) for
finding corresponding elements between two sets and ag-
gregate (dis)similarities between corresponding elements,
e.g., using the Hungarian algorithm, Wasserstein distances,

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2566

Chamfer loss, etc. These approaches are, at best, quadratic
and, at worst, cubic in the set cardinalities.

The second family of approaches relies on embedding
the sets into a vector space and leveraging common similari-
ties in the embedded space. The set embedding could be ex-
plicit (e.g., deep set networks) [36,70] or implicit (e.g., Ker-
nel methods) [11,18,21,32,41,50,51,69]. Also, the embed-
ding process could be data-dependent (i.e., learning based)
as in deep-set learning approaches, which leverage a com-
position of permutation-equivariant backbones followed by
a permutation-invariant global pooling mechanisms that de-
fine a parametric permutation-invariant set embedding into
a Hilbert space [36, 70, 72]. Or, it can be data-independent
as is the case for global average/max/sum/covariance pool-
ing, variations of Janossy pooling [42], and variations of
Wasserstein embedding [26], among others. Recently, there
has been a lot of interest in learning-based embeddings us-
ing deep neural networks and, in particular, transformer net-
works. However, data-independent embedding approaches
(e.g., global poolings) have received less attention.

Contributions. Our paper focuses on non-parametric
learning from set-structured data using transport-based
data-independent set embeddings. Precisely, we consider
the problem where our training data is a set of sets, i.e., X =
{Xi|Xi = {xi

n ∈ Rd}Ni−1
n=0 }Ii=1, (e.g., set of point clouds),

and for a query set X we would like to retrieve the K-
Nearest Neighbors (KNN) from X . We propose the compo-
sition of the Sliced Wasserstein Embedding (SWE) [28, 43]
and Locality Sensitive Hashing (LSH) [16, 20], denoted as
Set Locality Sensitive Hashing (SLoSH), as a fast set re-
trieval mechanism with theoretical guarantees. We treat sets
as empirical distributions and use SWE to embed sets in a
vector space in which the Euclidean distance between two
embedded vectors is equal to the Sliced-Wasserstein dis-
tance between their corresponding empirical distributions.
Such embedding enables the application of fast ANN ap-
proaches, like Locality Sensitive Hashing (LSH), to sets
while providing collision probabilities with respect to the
Sliced-Wasserstein distance. Finally, we provide extensive
numerical results analyzing and comparing our approach
with various data-independent embedding methods in the
literature. To summarize, we devise an approximate nearest
neighbor retrieval algorithm for set-structure data based on
the sliced-Wasserstein distance, denoted as SLoSH, provide
theoretical bounds for the proposed method, and demon-
strate efficient computational complexity and superior re-
trieval performance.

2. Related Work
Set embeddings (set-2-vector): Machine learning on

set-structured data is challenging due to: 1) permutation-
invariant nature of sets, and 2) having various cardinalities.
Hence, any model (parametric or non-parametric) designed

for analyzing set-structured data has to be permutation-
invariant, and allow for inputs of various sizes. To-
day, a common approach for learning from sets is to use
a permutation-equivariant parametric function, e.g., fully
connected networks [70] or transformer networks [36],
composed with a permutation invariant function, i.e., a
global pooling, e.g., global average pooling, or pooling
by multi-head attention [36]. One can view this process
as embedding a set into a fixed-dimensional representation
through a parametric embedding that could be learned using
the training data and an objective function (e.g., classifica-
tion).

Non-parametric learning from set-structured data re-
mains a relatively understudied area, which is often lim-
ited to the common set-2-vector operators used as global
pooling mechanisms in modern deep learning architectures.
In particular, global average/max/sum and covariance pool-
ing [64] could be considered as the simplest such pro-
cesses. Generalized Mean (GeM) [53] is another set-2-
vector mechanism commonly used in image retrieval ap-
plications, which captures higher statistical moments of the
underlying distributions. Among other notable approaches
are VLAD [7, 22], CroW [24], FSPool [72], Wasserstein
Embedding [26], and SWE [43].

Locality Sensitive Hashing (LSH): A LSH function
hashes two “similar” objects into the same bucket with high
probability, while ensuring that “dissimilar” objects will
end up in the same bucket with low probability. Originally
presented in [20] and extended in [16], LSH uses random
projections of high-dimensional data to hash samples into
different buckets. The LSH algorithm forms the foundation
of many ANN search methods, which provide theoretical
guarantees and have been extensively studied since its con-
ception [3, 4, 6, 33].

We are interested in nearest neighbor retrieval for sets,
and propose to extend LSH to enable its application to set
retrieval. While there has been a few recent works [25, 45]
on the topic of LSH for set queries, our proposed approach
significantly differs from these works. In contrast to [25,
45] and following the work of [43] we provide a Euclidean
embedding for sets, which allows for a direct utilization of
the LSH algorithm and provides collision probabilities as
a function of the set metrics. Notably, while other ANN
methods could also be used in our experiments, LSH allows
us to quantify the probability of having the same hash codes
for two sets as the SW distance between their distribution.

Wasserstein distances: Rooted in the optimal trans-
portation problem [29, 48, 61], Wasserstein distances pro-
vide a robust mathematical framework for comparing prob-
ability distributions that respect the underlying geome-
try of the space. Wasserstein distances have recently re-
ceived abundant interest from the machine learning and
computer vision communities. These distances and their

2567

variations, e.g., Sliced-Wasserstein distances [52] and sub-
space robust Wasserstein distances [47], have been exten-
sively studied in the context of deep generative modeling
[8,19,30,30,38,60], domain adaptation [9,14,15,35], trans-
fer learning [2, 37], adversarial attacks [66, 67] , and adver-
sarial robustness [58].

More recently, Wasserstein distances and optimal trans-
port have been used in the context of comparing set-
structured data. The main idea behind these recent ap-
proaches is to treat sets (with possibly variable cardinali-
ties) as empirical distributions and use transport-based dis-
tances for comparing/modeling these distributions. For in-
stance, [59] proposed to compare node embeddings of two
graphs (treated as sets) via the Wasserstein distance. Later,
[39] and [26] propose Wasserstein embedding frameworks
for extracting fixed-dimensional representations from set-
structured data, and [43] extend this framework to Sliced
Wasserstein Embedding (SWE) in a parametric learning set-
ting as a pooling layer in deep neural networks for sets.
Here, we further extend this direction and propose SWE as
a computationally efficient approach that allows us to per-
form data-independent non-parametric learning from sets.

3. Problem Formulation and Method
3.1. Sliced-Wasserstein Embedding

The idea of Sliced-Wasserstein Embeddings (SWE) is
rooted in Linear Optimal Transport [29, 40, 65] and was
first introduced in the context of pattern recognition from
2D probability density functions (e.g., images) [28] and
more recently in [56]. Naderializadeh et al. [43] extend
this framework to d-dimensional distributions. Consider
a set of probability measures {µi}Ii=1, where we use µi

to represent the i’th set Xi = {xi
n ∈ Rd}Ni−1

n=0 , i.e.,
µi(x) = 1

Ni

∑Ni−1
n=0 δ(x − xi

n) where δ is the Dirac func-
tion. At a high level, SWE can be thought as a permutation
invariant set-2-vector operator, ϕ, such that:

∥ϕ(µi)− ϕ(µj)∥2 = SW2(µi, µj). (1)

Given a defining function [27], gθ : Rd → R, a slice of
µi with respect to gθ can be written as µθ

i := gθ#µi. In this
paper, and without the loss of generality, we use gθ(x) =
x · θ. Moreover, let µ0 denote a reference measure, with µθ

0

being its corresponding slice. The optimal transport map,
i.e., Monge map, between µθ

i and µθ
0 is written as,

T θ
i = F−1

µθ
i

◦ Fµθ
0
, (2)

where F−1
µθ
i

is the quantile function of µθ
i , the inverse of

the cumulative distribution function (CDF). Let id denote
the identity function, the cumulative distribution transform
(CDT) [46] of µθ

i is defined as,

ϕθ(µi) := (T θ
i − id), (3)

For a fixed θ, ϕθ(µi) satisfies the following conditions
(see supplementary material for the proof):

C1. The weighted ℓ2-norm of the embedded slice, ϕθ(µi),
satisfies:

∥ϕθ(µi)∥µθ
0,2

=

(∫
R
∥ϕθ(µi(t))∥22dµθ

0(t)

) 1
2

= W2(µ
θ
i , µ

θ
0),

As a corollary we have ∥ϕθ(µ0)∥µθ
0,2

= 0.

C2. The distance between two embedded slices satisfies:

∥ϕθ(µi)− ϕθ(µj)∥µθ
0,2

= W2(µ
θ
i , µ

θ
j). (4)

It follows from C1 and C2 that:

SW2(µi, µj) =

(∫
Sd−1

∥ϕθ(µi)− ϕθ(µj)∥2µθ
0,2

dθ

) 1
2

(5)

For probability measure µi, we then define the mapping to
the embedding space via, ϕ(µi) := {ϕθ(µi) | θ ∈ Sd−1}.
Next, we describe the implementation considerations for
SWE in more detail.

3.2. Monte Carlo Integral Approximation

The SW distance in Eq. (5) relies on integration on Sd−1,
which cannot be directly calculated. Following the common
practice in the literature [30, 52], we approximate the inte-
gration on θ via a Monte-Carlo (MC) sampling of Sd−1. Let
ΘL = {θl}Ll=1 denote a set of L unit vectors sampled inde-
pendently and uniformly from Sd−1. We assume an empir-
ical reference measure, µ0 = 1

M

∑M
m=1 δ(x− x0

m) with M
samples. The MC approximation can then be written as:

ŜW
2

2,L(µi, µj) =
1

LM

L∑
l=1

∥ϕθl(µi)− ϕθl(µj)∥22. (6)

Finally, our SWE embedding is calculated via:

ϕ(µi) = [
ϕθ1(µi)√

LM
; ...;

ϕθL(µi)√
LM

] ∈ RLM×1, (7)

which satisfies:

∥ϕ(µi)− ϕ(µj)∥2 = ŜW2,L(µi, µj) ≈ SW2(µi, µj).

As for the approximation error, we rely on Theorem 6 in
[44], which uses Hölder’s inequality and the moments of
the Monte Carlo estimation error to obtain:

E
[
|ŜW2

2,L(µi, µj) − SW2
2(µ, ν)|

]
≤

√
var(W2

2 (µ
θ
i , µ

θ
j))

L
(8)

The upper bound indicates that the approximation error de-
creases with

√
L. The numerator, however, is implicitly de-

pendent on the dimensionality of input space. Meaning that
a larger number of slices L is needed for higher dimensions.

2568

Reference Set,
𝑋! = 𝑥"! ∈ ℝ# "$%

&

Input Set,
𝑋' = 𝑥(' ∈ ℝ# ($%

)!

2

1

3

Random set of 𝐿 vectors sampled from 𝕊#*%	
𝕊#*%	 𝕊#*%	 𝕊#*%	…

𝜃! 𝜃" 𝜃#

2 1 3 2 1 3 2 1 3

𝑇'
+"Sort

1 2 3

𝑇'
+#Sort

𝑔!!(𝑋")

𝑔!!(𝑋#)

𝑔!"(𝑋")

𝑔!"(𝑋#) 1 2 3 1 2 3

𝜋"
!!

𝜋"
!!

𝜋"
!"

𝜋"
!"

… …

𝜙 𝑋" ∈ ℝ$%

𝜙%
𝐿𝑀

𝜙+#
𝐿𝑀

Figure 1. A graphical depiction of Sliced-Wasserstein Embedding (SWE) for a given reference set and a chosen number of slices, L. The
input and reference sets are sliced via L random projections {gθl}

L
l=1. The projections are then sorted and the Monge couplings between

input and reference sets’ slices are calculated following Eq. (9). Finally, the embedding is obtained by weighting and concatenating
ϕθls. The Euclidean distance between two embedded sets is equal to their corresponding ŜW2,L distance/dissimilarity measure, i.e.,
∥ϕ(Xi)− ϕ(Xj)∥2 = ŜW2,L(Xi, Xj) ≈ SW2(Xi, Xj).

3.3. SWE Algorithm

Here we review the algorithmic steps to obtain SWE. We
consider Xi = {xi

n}
Ni−1
n=0 as the input set with Ni elements,

and X0 = {x0
m}M−1

m=0 denote the reference set of M sam-
ples where in general M ̸= Ni. For a fixed slicer gθ we
calculate {gθ(xi

n)}
Ni−1
n=0 and {gθ(x0

m)}M−1
m=0 and sort them

increasingly. Let πi and π0 denote the permutation indices
(obtained from argsort). Also, let π−1

0 denote the ordering
that permutes the sorted set back to the original ordering.
Then we numerically calculate the Monge coupling T θ

i via:

T θ
i [m] = F−1

µθ
i

(
π−1
0 [m] + 1

M

)
(9)

where Fµθ
0
(x0

m) =
π−1
0 [m]+1

M , assuming that the indices
start from 0. Here F−1

µθ
i

is calculated via interpolation. In
our experiments we used linear interpolation similar to [38].
Note that the dimensionality of the Monge coupling is only
a function of the reference cardinality, i.e., T θ

i ∈ RM . Con-
sequently, we write:

ϕθ(Xi)[m] = (T θ
i [m]− gθ(x

0
m)) (10)

and repeat this process for θ ∈ Θ, while we emphasize
that this process can be parallelized. The final embedding
is achieved via weighting and concatenating ϕθls as in Eq.
(7), where the coefficient 1√

LM
allows us to simplify the

weighted Euclidean distance, ∥ · ∥µ0,2, to Euclidean dis-
tance, ∥ · ∥2. Algorithm 1 summarizes the embedding pro-
cess, and Figure 1 provides a graphical depiction of the pro-
cess. Lastly, the SWE’s computational complexity for a set

Algorithm 1 Sliced-Wasserstein Embedding

procedure SWE(Xi = {xi
n}

Ni−1
n=0 , X0 = {x0

m}M−1
m=0 , L)

Generate a set of L samples ΘL = {θl ∼ USd−1}Ll=1

Calculate gΘL
(X0) := {gθl(x0

m)}m,l ∈ RM×L

Calculate π0 = argsort(gΘL
(X0)) and π−1

0 (on m-axis)

Calculate gΘL
(Xi) := {gθl(xi

n)}n,l ∈ RNi×L

Calculate πi = argsort(gΘL
(Xi)) (on n-axis)

for l = 1 to L do
Calculate the Monge coupling T θl

i ∈ RM (Eq. (9))

end for
Calculate the embedding ϕ(Xi) ∈ RM×L (Eq. (7))

return ϕ(Xi)

end procedure

with cardinality |X| = N is O(LN(d+ logN)), where we
assumed the cardinality of the reference set is of the same
order as N . Note that O(LNd) is the cost of slicing and
O(LNlog(N)) is the sorting and interpolation cost.

3.4. SLoSH

Our proposed Set Locality Sensitive Hashing (SLoSH)
leverages the SWE to embed training sets, Xtrain =
{Xi|Xi = {xi

n ∈ Rd}Ni−1
n=0 }, into a vector space where we

can use LSH to perform ANN search. We treat each input
set Xi as a probability measure µi(x) = 1

Ni

∑Ni

n=1 δ(x −

2569

xi
n). For a reference set X0 with cardinality |X0| = M

and L slices, we embed the input set Xi into a (RLM)-
dimensional vector space using Algorithm 1. With abuse
of notation we use ϕ(µi) and ϕ(Xi) interchangeably.

Given SWE, a family of (R, c, P1, P2)-sensitive LSH
functions, H , will induce the following conditions,

• If ŜW2,L(Xi, Xj) ≤ R, then Pr[h(ϕ(Xi)) =
h(ϕ(Xj))] ≥ P1, and

• If ŜW2,L(Xi, Xj) > cR, then Pr[h(ϕ(Xi)) =
h(ϕ(Xj))] ≤ P2

For amplifying the gap between P1 and P2, one can
use g(Xi) = [h1(ϕ(Xi)), ..., hk(ϕ(Xi))], which results
in a code length k for each input set, Xi. Finally, if
ŜW2,L(Xi, Xj) ≤ R, by using T such codes, gt for
t ∈ {1, ..., T}, of length k, we can ensure collision at least
in one of gts with probability 1− (1− P k

1)
T .

4. Experiments

We evaluated SLoSH against other set-2-vector ap-
proaches using Generalized Mean (GeM) pooling [53],
Global Covariance (Cov) pooling [64], Featurewise Sort
Pooling (FSPool) [71], and Wasserstein Embedding [26] on
various set-structured datasets. We note that while FSPool
was proposed as a data-dependent embedding, here we de-
vise its data-independent variation for fair comparison. In-
terstingly, FSPool can be thought as a special case of our
SWE embedding where L = d and ΘL is chosen as the
identity matrix. To evaluate these methods, we tested all
approaches on point cloud MNIST dataset (2D) [17, 34],
ModelNet40 dataset (3D) [68], and the Oxford Buildings
dataset (8D) [49]. We conducted experiments on CPU (10
cores, 16 GB memory) and macOS 12.4 operating system.

4.1. Baselines

Let Xi = {xi
n ∈ Rd}Ni−1

n=0 be the input set with Ni

elements. We denote [Xi]k = {[xi
n]k}

Ni−1
n=0 as the set of all

elements along the k’th dimension, k ∈ {1, 2, ...d}. Below
we provide a quick overview of the baseline approaches,
which provide different set-2-vector mechanisms.

Generalized-Mean Pooling (GeM) [53] was originally
proposed as a generalization of global mean and global max
pooling on Convolutional Neural Network (CNN) features
to boost image retrieval performance. Given the input Xi,
GeM calculates the (p-th)-moment of each feature, f (p) ∈
Rd, as:

[f (p)]k =

(
1

Ni

Ni∑
n=1

([xi
n]k)

p

) 1
p

(11)

When pooling parameter p = 1, we end up with average
pooling. While as p → ∞, we get max pooling. In prac-
tice, we found that a concatenation of higher-order GeM
features, i.e., ϕGeM (Xi) = [f (1); ...; f (p)] ∈ Rpd, leads to
the best performance, where p is GeM’s hyper-parameter.

Covariance Pooling [1,64] presents another way to cap-
ture second-order statistics and provide more informative
representations. It was shown that this mechanism can be
applied to CNN features as an alternative to global mean/-
max pooling to generate state-of-the-art results on facial ex-
pression recognition tasks [1]. Given input set Xi, the un-
biased covariance matrix is computed by:

C =
1

Ni − 1

Ni∑
n=1

(xi
n − µi)(x

i
n − µi)

T , (12)

where µi =
1
Ni

∑Ni

n=1 x
i
n. The output matrix can be further

regularized by adding a multiple of the trace to diagonal en-
tries of the covariance matrix to ensure symmetric positive
definiteness (SPD), Cλ = C + λtrace(C)I where λ is a
regularization hyper-parameter and I is the identity matrix.
Covariance pooling then uses ϕCov(Xi) = flatten(Cλ).

Featurewise Sort Pooling (FSPool) [71] is a powerful
technique for learning representations from set-structured
data. In short, this approach is based on sorting features
along all elements of a set, [Xi]k:

f = [Sorted([Xi]1), ..., Sorted([Xi]d)] ∈ RNi×d (13)

The fixed-dimensional representation is then obtained via
an interpolation along the Ni dimension of f . More pre-
cisely, a continuous linear operator W is learned and the in-
ner product between this continuous operator and f is evalu-
ated at M fixed points (i.e., leading to weighted summation
over d), resulting in a M -dimensional embedding.

Given that we are interested in a data-independent set
representation, we cannot rely on learning the continuous
linear operator W . Instead, we perform interpolation along
the Ni axis on M points and drop the inner product alto-
gether to obtain a (M × d)-dimensional data-independent
set representation. The mentioned variation of FSPool is
similar to the Sliced-Wasserstein Embedding when L = d
and ΘL = Id×d, i.e., axis-aligned projections.

Wasserstein Embedding (WE) was described in [65]
and the follow-up works [13,26,31] as an isometric Hilber-
tian embedding of probability measures such that the Eu-
clidean distance between the embedded vectors approxi-
mates the 2-Wasserstein distance W2. Assume the input
set Xi = {xi

n ∈ Rd}Ni−1
n=0 are i.i.d. samples from the prob-

ability distribution pi, and let us define p0 as the reference
distribution with samples X0 = {x0

m ∈ Rd}Mm=0. Wasser-
stein embedding for Xi can be computed by

WE(Xi) = (Fi −X0)/
√
M ∈ RN×d (14)

2570

Table 1. Results of baselines and our approach on three set retrieval tasks (full table with std in supplemental material). For each method,
we show their time complexity to embed sets and their performance measured by Precision@k and accuracy. Compared to GeM-N, Cov
and FSPool, SLoSH significantly improves performance. Compared to WE, SLoSH achieves comparable performance on 2/3 tasks while
being significantly faster, which is critical for ANN solutions. This accuracy-efficiency trade-off is better illustrated in Figure 2.

Point MNIST 2D ModelNet 40 Oxford 5k
Precision@k/Accuracy Precision@k/Accuracy Precision@k/Accuracy

Methods Complexities k=4 k=8 k=16 k=4 k=8 k=16 k=4 k=8 k=16
GeM-1 (GAP) O(Nd) 0.10/0.11 0.10/0.10 0.10/0.10 0.14/0.17 0.14/0.19 0.14/0.21 0.29/0.35 0.25/0.31 0.22/0.29
GeM-2 O(Nd) 0.29/0.32 0.29/0.35 0.29/0.37 0.30/0.34 0.28/0.36 0.25/0.37 0.38/0.53 0.31/0.40 0.27/0.38
GeM-4 O(Nd) 0.39/0.45 0.39/0.47 0.38/0.49 0.34/0.39 0.31/0.39 0.28/0.39 0.09/0.09 0.09/0.09 0.09/0.09
Cov O(Nd2) 0.25/0.26 0.25/0.28 0.25/0.28 0.45/0.51 0.43/0.52 0.41/0.52 0.35/0.55 0.30/0.37 0.26/0.33
FSPool O(NdlogN) 0.75/0.80 0.74/0.81 0.72/0.81 0.51/0.58 0.48/0.58 0.44/0.58 0.43/0.50 0.36/0.53 0.36/0.44
WE O(N3logN) 0.89/0.92 0.88/0.92 0.86/0.92 0.71/0.76 0.68/0.76 0.64/0.75 0.54/0.70 0.47/0.68 0.39/0.61
SLoSH (L = d) O(NdlogN)) 0.78/0.82 0.76/0.83 0.74/0.82 0.40/0.46 0.38/0.47 0.35/0.46 0.43/0.54 0.36/0.53 0.30/0.45
SLoSH (L > d) O(NLlogN) 0.89/0.92 0.88/0.92 0.86/0.92 0.63/0.68 0.59/0.67 0.55/0.65 0.52/0.69 0.45/0.67 0.37/0.61

where Fi is the Monge map between pi and p0, approxi-
mated via the barycentric projection from the optimal trans-
port plan. Note that the optimal transport plan is solved
using linear programming with complexity O(N3 log(N)).

4.2. Implementation Details

For all datasets, we first calculate the set-2-vector em-
beddings for all baselines and SWE. Then, we apply
Locality-Sensitive Hashing (LSH) to the embedded sets and
report Precision@k and accuracy (from majority voting) for
all approaches on test sets. We use the LSH implementation
from FAISS library [23]. For all methods, we use a hash
code length of 1024, and we report our results for different
number of nearest neighbors k = 4, 8, and 16. For SLoSH,
we consider two different settings for the number of slices,
namely, L = d, and L > d. We repeat the experiments five
times per method and report the mean Precision@k and ac-
curacy in Table 1. In all experiments, the hyperparameters
are selected based on the sensitivity analysis on the vali-
dation set in Section 4.5. To improve reproducibility, we
submitted code in our supplemental material.

4.3. Datasets

Next, we cover details of the three datasets utilized in our
experiments to demonstrate the superiority of SLoSH.

Point Cloud MNIST 2D [17] consists of 60,000 train-
ing samples and 10,000 testing samples. Each sample is
a 2-dimensional point cloud derived from an image in the
original MNIST dataset [34]. The sets have various cardi-
nalities in the range of |Xi| ∈ [34, 351].

ModelNet40 [68] contains 3-dimensional point clouds
converted from 12,311 CAD models in 40 common object
categories. We used the official split with 9,843 samples
for training and 2,468 samples for testing. We sample Ni

points uniformly and randomly from the mesh faces of each
object, where Ni = ⌊ni⌋, ni ∼ N (512, 64). To avoid any
orientation bias, we rotate the point clouds by 45 degrees

Oxford 5KModelNet 40Point Cloud MNIST

Figure 2. We present a wall clock analysis to demonstrate the
trade-off between the accuracy and computational efficiency of
different methods. Compared to WE, SLoSH offers comparable
performance but is faster. Compared to other baselines, SLoSH
improves accuracy by a large margin while adding little computa-
tional time, except when the data dimension is high (Oxford 5K).

around the x-axis. Finally, we normalize each sample to fit
within the unit cube to avoid any scale bias.

The Oxford Buildings Dataset [49] has 5,062 images
containing eleven different Oxford landmarks. Each land-
mark has five corresponding queries leading to 55 queries
over which an object retrieval system can be evaluated. In
our experiments, we used a pretrained VGG16 [57] on Im-
ageNet1k [54] as a feature extractor, and use the features
in the last convolutional layer as a set representation for an
input image. We resize the images without cropping, which
leads to varied input size images, and therefore gives set
representations with varied cardinalities. We further per-
form a dimension reduction on these features using PCA to
obtain sets of features in an (d = 8)-dimensional space.

4.4. Results

We show the main experimental results in Table 1. We
see that SLoSH provides a consistent improvement on re-
trieval performance for all datasets when compared with
non-distribution-based methods, especially when L > d.
When compared with WE, SLoSH presents comparable re-
trieval performance on Point MNIST 2D and Oxford 5k

2571

Figure 3. We provide a qualitative analysis of SLoSH. For each
dataset, we show three sample queries and their retrieved samples,
where green border highlights samples with the same class as the
queries while red border denotes samples with a different class
from the queries.

while providing a significant speed boost as shown in Fig-
ure 2, where we present an analysis of embedding time
against retrieval accuracy for all methods to demonstrate
their accuracy-efficiency trade-off. While WE provides
strong performance, its high computational complexity may
defeat the purpose of ANN algorithms. In Figure 3, we pro-
vide a qualitative analysis of sample queries and retrieved
samples by SLoSH. On Point MNIST, SLoSH is able to re-
trieve with high precision; the only irrelevant sample is a
digit 3 when the query is digit 8, and the two indeed resem-
ble each other. For ModelNet40, we noticed that SLoSH is
fairly good at retrieving samples for airplanes and bottles,
but rather bad at retrieving samples for cups. We observe
that for the cup query, SLoSH often retrieves irrelevant sam-
ples from vase, bowl and flowerpot. We argue that these
classes are inherently harder to distinguish for two reasons:
1) they share similar attributes, and 2) their scales are not

considered after normalization, which provide critical class
information. Finally, for Oxford 5K, SLoSH also delivers
decent retrieval performance. Since the quality of retrieval
also depends on extracted convolution features, we believe
SLoSH could benefit from a more powerful visual encoder.

4.5. Sensitivity Analysis

Next, we provide a sensitivity analysis of our approach
with respect to three key hyperparameters of SLoSH: hash
code length, number of slices, and reference sets.

Sensitivity to code length. For all datasets, we study the
sensitivity of the different embeddings to the hashing code
length used in LSH. We vary the code length from 16 to
1024, and report the average of Precision@k over five runs.
Figure 4 shows the outcome of this study. We observe that
as we increase the hash code length, SLoSH, gains consis-
tent performance boosts, empirically validating the positive
correlation between collision probability and code length
shown in 3.4. The superiority of SLoSH compared to other
baselines across different code lengths also suggests it has
a higher lower bound (P1) for similar samples.

Sensitivity to the number of slices. Next, we study the
sensitivity of SLoSH to the choice of number of slices, L,
for the three datasets. We measure the average Precision@k
over five runs for various number of slices and for different
code lengths and report our results in Figure 5. Overall, we
observe that increasing the number of slices brings better
performance, which supports our theoretical results in 8. In
addition, we observe that for low-dimensional set retrieval
tasks such as Point MNIST (2-D) and ModelNet40 (3D), 16
slices are enough for SLoSH to reach the best performance.
By contrast, on higher-dimension sets, such as Oxford 5k
(8D), SLoSH requires a larger number of slices (128) be-
fore the performance saturates. This is anticipated as we
mentioned in 3.2 that the upper bound of MC’s approxima-
tion error is implicitly dependent on the set dimension.

Sensitivity to the reference. Finally, we study SLoSH’s
sensitivity to the choice of its reference set, X0. We mea-
sure the performance of SLoSH on the three datasets and
for various code lengths, when the reference set is formed
by 1) using K-Means on the elements of all sets, 2) sam-
pling the dataset, 3) sampling a uniform distribution, and
4) sampling a normal distribution. We find that on Point
MNIST and ModelNet40, using a reference from KMeans
or existing samples outperforms using a reference from ran-
dom sampling, especially when the hash code length size is
small, though we observe that the gap closes up when we
increase the hash code length. By contrast, on Oxford 5k,
we find that using reference from random sampling results
in better performance. This suggests that the optimal refer-
ence set might be data-independent. To get the best perfor-
mance from SLoSH, we recommend using a validation set
to select the best reference set.

2572

k=4 k=8 k=16

Po
in

t M
N

IS
T

M
od

el
N

et
40

O
xf

or
d

5k

Figure 4. We show a sensitivity analysis of different methods re-
garding the hash code length of LSH. We notice that distribution-
based pooling (SWE, FSPool) benefit more from longer hash
code length than non-distribution-based pooling methods (GeM-
1, GeM-2, GeM-4, Cov).

k=4 k=8 k=16

Po
in

t M
N

IS
T

M
od

el
N

et
40

O
xf

or
d

5k

Figure 5. We provide a sensitivity analysis of SLoSH with respect
to the number of slices used to construct SWE. Generally, we find
increasing the number of slices improves retrieval performance,
but there exists a saturation point after which more slices don’t
further boost performance.

5. Conclusion

We described a novel data-independent approach for
Approximate Nearest Neighbor (ANN) search on set-
structured data, with applications in set retrieval. We

k=4 k=8 k=16

Po
in

t M
N

IS
T

M
od

el
N

et
40

O
xf

or
d

5k

Figure 6. We present a sensitivity analysis on the choice of refer-
ence sets for SLoSH when using different code lengths. We find
that SLoSH’s sensitivity to the reference sets is related to hash
code length, and there is not one reference function that achieves
optimal performance on all datasets.

treat set elements as samples from an underlying distribu-
tion, and embed sets into a vector space in which the Eu-
clidean distance approximates the Sliced-Wasserstein (SW)
distance between the input distributions. We show that
for a set X with cardinality |X| = N , our framework
requires O(LN(d + Log(N))) (sequential processing) or
O(N(d+ log(N))) (parallel processing) calculations to ob-
tain the embedding. We then use Locality Sensitive Hashing
(LSH) for fast retrieval of nearest sets in our proposed em-
bedding. We provide, for the first time, the probability of
collision of LSH codes for sets as a function of the Sliced
Wasserstein distance between the sets’ corresponding em-
pirical distributions. We then demonstrate the performance
of SLoSH, in terms of retrieval accuracy as well as com-
putational efficiency on three different set retrieval tasks:
Point Cloud MNIST, ModelNet40, and the Oxford Build-
ings datasets. We demonstrate a significant retrieval accu-
racy boost over other data-independent baselines as well as
a great boost in computational efficiency over the Wasser-
stein Embedding (WE). Finally, through various sensitiv-
ity studies, we demonstrate the impact of hash code length,
number of slices, and choice of reference set on SLoSH’s
retrieval performance.

Despite its strong performance, we note that it might
be currently challenging to apply SLoSH on higher-
dimensional sets. Since SLoSH inherits the theoretical
properties of SWE, we need a larger number of slices to
get higher-quality embeddings when dealing with high-
dimensional sets. We plan to propose methods to deal with
this issue in future works.

2573

References
[1] Dinesh Acharya, Zhiwu Huang, Danda Pani Paudel, and Luc

Van Gool. Covariance pooling for facial expression recogni-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 367–374,
2018. 5

[2] David Alvarez Melis and Nicolo Fusi. Geometric dataset dis-
tances via optimal transport. Advances in Neural Information
Processing Systems, 33, 2020. 3

[3] Alexandr Andoni and Piotr Indyk. Near-optimal hashing al-
gorithms for approximate nearest neighbor in high dimen-
sions. In 2006 47th annual IEEE symposium on founda-
tions of computer science (FOCS’06), pages 459–468. IEEE,
2006. 1, 2

[4] Alexandr Andoni, Piotr Indyk, Huy L Nguyn, and Ilya
Razenshteyn. Beyond locality-sensitive hashing. In Pro-
ceedings of the twenty-fifth annual ACM-SIAM symposium
on Discrete algorithms, pages 1018–1028. SIAM, 2014. 2

[5] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Ap-
proximate nearest neighbor search in high dimensions. In
Proceedings of the International Congress of Mathemati-
cians: Rio de Janeiro 2018, pages 3287–3318. World Sci-
entific, 2018. 1

[6] Alexandr Andoni and Ilya Razenshteyn. Optimal data-
dependent hashing for approximate near neighbors. In Pro-
ceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 793–801, 2015. 1, 2

[7] Relja Arandjelovic and Andrew Zisserman. All about vlad.
In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pages 1578–1585, 2013. 2

[8] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks. In Interna-
tional conference on machine learning, pages 214–223.
PMLR, 2017. 3

[9] Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Normal-
ized wasserstein for mixture distributions with applications
in adversarial learning and domain adaptation. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 6500–6508, 2019. 3

[10] Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Communications of the ACM,
18(9):509–517, 1975. 1

[11] Oren Boiman, Eli Shechtman, and Michal Irani. In defense
of nearest-neighbor based image classification. In 2008 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–8. IEEE, 2008. 2

[12] Nicolas Bonnotte. Unidimensional and evolution methods
for optimal transportation. PhD thesis, Université Paris 11,
France, 2013. 1

[13] Nicolas Courty, Rémi Flamary, and Mélanie Ducoffe.
Learning wasserstein embeddings. arXiv preprint
arXiv:1710.07457, 2017. 5

[14] Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rako-
tomamonjy. Optimal transport for domain adaptation. IEEE
transactions on pattern analysis and machine intelligence,
39(9):1853–1865, 2016. 3

[15] Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi
Flamary, Devis Tuia, and Nicolas Courty. Deepjdot: Deep
joint distribution optimal transport for unsupervised domain
adaptation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 447–463, 2018. 3

[16] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S
Mirrokni. Locality-sensitive hashing scheme based on p-
stable distributions. In Proceedings of the twentieth an-
nual symposium on Computational geometry, pages 253–
262, 2004. 1, 2

[17] Cristian Garcia. Point cloud mnist 2d, 2020. 5, 6
[18] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard

Schölkopf, and Alex Smola. A kernel method for the two-
sample-problem. Advances in neural information processing
systems, 19:513–520, 2006. 2

[19] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
Wasserstein GANs. In Advances in Neural Information Pro-
cessing Systems, pages 5767–5777, 2017. 3

[20] Piotr Indyk and Rajeev Motwani. Approximate nearest
neighbors: towards removing the curse of dimensionality.
In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 604–613, 1998. 1, 2

[21] Tony Jebara, Risi Kondor, and Andrew Howard. Probability
product kernels. The Journal of Machine Learning Research,
5:819–844, 2004. 2

[22] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick
Pérez. Aggregating local descriptors into a compact image
representation. In 2010 IEEE computer society conference
on computer vision and pattern recognition, pages 3304–
3311. IEEE, 2010. 2

[23] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
scale similarity search with gpus. arXiv preprint
arXiv:1702.08734, 2017. 6

[24] Yannis Kalantidis, Clayton Mellina, and Simon Osindero.
Cross-dimensional weighting for aggregated deep convolu-
tional features. In European conference on computer vision,
pages 685–701. Springer, 2016. 2

[25] Haim Kaplan and Jay Tenenbaum. Locality sensitive hash-
ing for set-queries, motivated by group recommendations. In
17th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020. 2

[26] Soheil Kolouri, Navid Naderializadeh, Gustavo K Rohde,
and Heiko Hoffmann. Wasserstein embedding for graph
learning. In ICLR, 2021. 2, 3, 5

[27] Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland
Badeau, and Gustavo Rohde. Generalized sliced wasserstein
distances. In Advances in Neural Information Processing
Systems, pages 261–272, 2019. 3

[28] Soheil Kolouri, Se Rim Park, and Gustavo K. Rohde. The
Radon cumulative distribution transform and its application
to image classification. Image Processing, IEEE Transac-
tions on, 25(2):920–934, 2016. 2, 3

[29] Soheil Kolouri, Se Rim Park, Matthew Thorpe, Dejan
Slepcev, and Gustavo K Rohde. Optimal mass transport:
Signal processing and machine-learning applications. IEEE
Signal Processing Magazine, 34(4):43–59, 2017. 1, 2, 3

2574

[30] Soheil Kolouri, Phillip E. Pope, Charles E. Martin, and Gus-
tavo K. Rohde. Sliced Wasserstein auto-encoders. In Inter-
national Conference on Learning Representations, 2019. 3

[31] Soheil Kolouri, Akif B Tosun, John A Ozolek, and Gus-
tavo K Rohde. A continuous linear optimal transport ap-
proach for pattern analysis in image datasets. Pattern recog-
nition, 51:453–462, 2016. 5

[32] Soheil Kolouri, Yang Zou, and Gustavo K Rohde. Sliced-
Wasserstein kernels for probability distributions. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4876–4884, 2016. 2

[33] Brian Kulis and Kristen Grauman. Kernelized locality-
sensitive hashing for scalable image search. In 2009 IEEE
12th international conference on computer vision, pages
2130–2137. IEEE, 2009. 2

[34] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
5, 6

[35] Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and
Daniel Ulbricht. Sliced wasserstein discrepancy for unsuper-
vised domain adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10285–10295, 2019. 3

[36] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Se-
ungjin Choi, and Yee Whye Teh. Set transformer: A frame-
work for attention-based permutation-invariant neural net-
works. In International Conference on Machine Learning,
pages 3744–3753. PMLR, 2019. 1, 2

[37] Xinran Liu, Yikun Bai, Yuzhe Lu, Andrea Soltoggio, and
Soheil Kolouri. Wasserstein task embedding for measuring
task similarities. arXiv preprint arXiv:2208.11726, 2022. 3

[38] Antoine Liutkus, Umut Simsekli, Szymon Majewski, Alain
Durmus, and Fabian-Robert Stöter. Sliced-wasserstein flows:
Nonparametric generative modeling via optimal transport
and diffusions. In International Conference on Machine
Learning, pages 4104–4113. PMLR, 2019. 3, 4

[39] Grégoire Mialon, Dexiong Chen, Alexandre d’Aspremont,
and Julien Mairal. A trainable optimal transport embedding
for feature aggregation and its relationship to attention. In In-
ternational Conference on Learning Representations, 2021.
3

[40] Caroline Moosmüller and Alexander Cloninger. Linear opti-
mal transport embedding: Provable fast wasserstein distance
computation and classification for nonlinear problems. arXiv
preprint arXiv:2008.09165, 2020. 3

[41] Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo,
and Bernhard Schölkopf. Learning from distributions via
support measure machines. In Proceedings of the 25th In-
ternational Conference on Neural Information Processing
Systems-Volume 1, pages 10–18, 2012. 2

[42] Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak
Rao, and Bruno Ribeiro. Janossy pooling: Learning
deep permutation-invariant functions for variable-size in-
puts. In International Conference on Learning Representa-
tions, 2019. 2

[43] Navid Naderializadeh, Joseph F Comer, Reed Andrews,
Heiko Hoffmann, and Soheil Kolouri. Pooling by sliced-
wasserstein embedding. Advances in Neural Information
Processing Systems, 34:3389–3400, 2021. 2, 3

[44] Kimia Nadjahi, Alain Durmus, Lénaı̈c Chizat, Soheil
Kolouri, Shahin Shahrampour, and Umut Şimşekli. Statis-
tical and topological properties of sliced probability diver-
gences. In Advances in Neural Information Processing Sys-
tems, 2020. 3

[45] Parth Nagarkar and K Selçuk Candan. Pslsh: An index struc-
ture for efficient execution of set queries in high-dimensional
spaces. In Proceedings of the 27th ACM International Con-
ference on Information and Knowledge Management, pages
477–486, 2018. 2

[46] Se Rim Park, Soheil Kolouri, Shinjini Kundu, and Gustavo K
Rohde. The cumulative distribution transform and linear pat-
tern classification. Applied and Computational Harmonic
Analysis, 45(3):616–641, 2018. 3

[47] François-Pierre Paty and Marco Cuturi. Subspace robust
wasserstein distances. In International Conference on Ma-
chine Learning, 2019. 3

[48] Gabriel Peyré and Marco Cuturi. Computational optimal
transport. arXiv preprint arXiv:1803.00567, 2018. 1, 2

[49] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and
Andrew Zisserman. Object retrieval with large vocabularies
and fast spatial matching. In 2007 IEEE conference on com-
puter vision and pattern recognition, pages 1–8. IEEE, 2007.
5, 6

[50] Barnabás Póczos and Jeff Schneider. Nonparametric estima-
tion of conditional information and divergences. In Artificial
Intelligence and Statistics, pages 914–923. PMLR, 2012. 2

[51] Barnabás Póczos, Liang Xiong, and Jeff Schneider. Non-
parametric divergence estimation with applications to ma-
chine learning on distributions. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial In-
telligence, pages 599–608, 2011. 2

[52] Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot.
Wasserstein barycenter and its application to texture mixing.
In Scale Space and Variational Methods in Computer Vision,
pages 435–446. Springer, 2012. 3

[53] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-
tuning cnn image retrieval with no human annotation. IEEE
transactions on pattern analysis and machine intelligence,
41(7):1655–1668, 2018. 2, 5

[54] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 6

[55] Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk.
Nearest-neighbor methods in learning and vision. IEEE
Trans. Neural Networks, 19(2):377, 2008. 1

[56] Mohammad Shifat-E-Rabbi, Xuwang Yin, Abu Hasnat Mo-
hammad Rubaiyat, Shiying Li, Soheil Kolouri, Akram Al-
droubi, Jonathan M Nichols, and Gustavo K Rohde. Radon
cumulative distribution transform subspace modeling for im-

2575

age classification. Journal of Mathematical Imaging and Vi-
sion, 63:1185–1203, 2021. 3

[57] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 6

[58] Aman Sinha, Hongseok Namkoong, and John Duchi. Certi-
fying some distributional robustness with principled adver-
sarial training. In International Conference on Learning
Representations, 2018. 3

[59] Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López,
Bastian Rieck, and Karsten Borgwardt. Wasserstein
weisfeiler-lehman graph kernels. Advances in Neural Infor-
mation Processing Systems, 32:6439–6449, 2019. 3

[60] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bern-
hard Schoelkopf. Wasserstein auto-encoders. In Interna-
tional Conference on Learning Representations, 2018. 3

[61] Cédric Villani. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008. 1, 2

[62] Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar
Posner, and Michael A Osborne. On the limitations of rep-
resenting functions on sets. In International Conference on
Machine Learning, pages 6487–6494. PMLR, 2019. 1

[63] Ingo Wald and Vlastimil Havran. On building fast kd-trees
for ray tracing, and on doing that in o (n log n). In 2006 IEEE
Symposium on Interactive Ray Tracing, pages 61–69. IEEE,
2006. 1

[64] Qilong Wang, Jiangtao Xie, Wangmeng Zuo, Lei Zhang, and
Peihua Li. Deep cnns meet global covariance pooling: Bet-
ter representation and generalization. IEEE transactions on
pattern analysis and machine intelligence, 2020. 2, 5

[65] Wei Wang, Dejan Slepčev, Saurav Basu, John A Ozolek, and
Gustavo K Rohde. A linear optimal transportation frame-
work for quantifying and visualizing variations in sets of im-
ages. International journal of computer vision, 101(2):254–
269, 2013. 3, 5

[66] Eric Wong, Frank Schmidt, and Zico Kolter. Wasserstein ad-
versarial examples via projected sinkhorn iterations. In In-
ternational Conference on Machine Learning, pages 6808–
6817. PMLR, 2019. 3

[67] Kaiwen Wu, Allen Wang, and Yaoliang Yu. Stronger and
faster wasserstein adversarial attacks. In International Con-
ference on Machine Learning, pages 10377–10387. PMLR,
2020. 3

[68] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015. 5, 6

[69] Liang Xiong and Jeff Schneider. Learning from point sets
with observational bias. In Proceedings of the Thirtieth Con-
ference on Uncertainty in Artificial Intelligence, pages 898–
906, 2014. 2

[70] Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh,
Barnabás Póczos, Ruslan Salakhutdinov, and Alexander J
Smola. Deep sets. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Sys-
tems, pages 3394–3404, 2017. 1, 2

[71] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett.
Fspool: Learning set representations with featurewise sort
pooling. arXiv preprint arXiv:1906.02795, 2019. 5

[72] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett.
Fspool: Learning set representations with featurewise sort
pooling. In International Conference on Learning Represen-
tations, 2020. 2

2576

