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Abstract

In this work, we present a method to address the problem
of novel view and time synthesis of complex dynamic scenes
considering the input video is subject to blurriness caused
due to camera or object motion or out-of-focus blur. Neural
Scene Flow Field (NSFF) has shown remarkable results by
training a dynamic NeRF to capture motion in the scene,
but this method is not robust to unstable camera handling
which can lead to blurred renderings. We propose Deblur-
NSFE a method that learns spatially-varying blur kernels
to simulate the blurring process and gradually learns a
sharp time-conditioned NeRF representation. We describe
how to optimize our representation for sharp space-time
view synthesis. Given blurry input frames, we perform both
quantitative and qualitative comparison with state-of-the-
art methods on modified NVIDIA Dynamic Scene dataset.
We also compare our method with Deblur-NeRF, a method
that has been designed to handle blur in static scenes. The
demonstrated results show that our method outperforms
prior work.

1. Introduction

There has been a recent wave of NeRF-based methods
for free-viewpoint rendering of static 3D scenes with im-
pressive results. Even more recently, the research commu-
nity has shifted its focus towards novel space-time synthe-
sis of dynamic scenes that comprises moving objects such
as people or pets. This is sometimes also referred to as free-
viewpoint video and this enables plenty of applications such
as cinematic effects like bullet-time visual effect (as shown
in ”The Matrix”) from monocular videos, free-viewpoint
selfies [23], background-foreground separation [32] (where
foreground refers to objects in motion), virtual 3D telepor-
tation [22] and so on.

*work done during an internship at Futurewei Technologies
fwork done during an internship at Futurewei Technologies

Novel view synthesis for a dynamic scene is a chal-
lenging task. This requires expensive and arduous setups
of multiple-camera capturing rigs which are impractical to
scale. There can be ambiguous solutions as multiple scene
settings can lead to the same observed image sequences and
additionally, moving objects also add to the difficulty of this
problem statement. Recent methods [5,8,9,23,24,29] have
proposed unique solutions to deal with the task of dynamic
novel view-time synthesis but they still have many limita-
tions. Methods like Nerfies [23] and HyperNeRF [24] learn
a static canonical model and handle deformations via a sep-
arate ray bending network whereas methods like NSFF [§]
and DVS [5] learn correspondences over time (or tempo-
ral consistency) via 3D scene flow and display the ability
to handle larger motion (compared to ray bending network-
based methods) in the scene. However, these methods are
not designed to handle unstable camera motion hence pre-
venting their deployment in real world scenarios where blur
is very common.

Although NeRF variants have achieved remarkable suc-
cess in space-time view synthesis, these methods require
carefully captured videos or images with well-calibrated
camera parameters hence limiting them to controlled envi-
ronments. In the past, only a few methods have sufficiently
addressed the problem of novel view synthesis from im-
ages subject to motion or out-of-focus blur. To the best of
our knowledge, Deblur-NeRF [14] is the first method that
can reconstruct sharp NeRF from blurry inputs. Deblur-
NeRF proposed a deformable sparse kernel estimation mod-
ule to simulate the blurring process while training a NeRF
model. More recently, DP-NeRF [7] introduced a rigid blur-
ring kernel that utilizes physical scene priors, and an adap-
tive weight refinement scheme that considers relationship
between depth and blur to render realistic results. These
methods achieve impressive results but they are limited to
static scenes and cannot handle moving objects in the scene.
On the contrary, our proposed method can construct a sharp
NeRF while also handling dynamic scenes.

In this paper, we take best of both the worlds and pro-
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Figure 1. Given a set of blurry source images of a dynamic scene, previous methods struggle to reconstruct sharp renderings of the scene as
shown in the first two rows. Our method is able to produce sharp outputs by recovering the details in the scene. On the rightmost side, the
red boxes show that our method is able to reconstruct a much sharper static background scene compared to DVS (or Dynamic NeRF) [5]

and NSFF [8] as well as the dynamic region shown in the blue boxes.

pose Deblur-NSFF, a method that learns a continuous volu-
metric function mapping a 3D location, direction and time
to reflectance, density and 3D scene motion. We train a
sharp NSFF model by maintaining temporal consistency us-
ing scene flow fields warping loss and by simulating the
blurring process using a Kernel Estimation Network. Dur-
ing inference time, our algorithm is able to generate sharp
novel space-time renderings from blurry input frames. Our
work tackles a novel problem that has not yet been covered
in the previous research, to the best of our knowledge. We
also perform ablation experiments to test specific compo-
nents of our method and provide detailed analysis of our
proposed algorithm.
In summary, the key contributions of this work include:

* We introduce an original problem statement that is vi-
tal to the real-world deployment of NeRF variants for
dynamic scenes and we also propose Deblur-NSFF, a
method that can perform novel space-time synthesis
from videos subject to motion or out-of-focus blur.

* We provide quantitative and qualitative comparison of
our method with previous state-of-the-art methods on
modified NVIDIA Dynamic Scenes Dataset [35] and
show that our method outperforms prior work. We also
discuss how we generated the modified dataset.

» Through our extensive experiments, we analyse impor-
tance of different hyperparameters (i.e. kernel points)

and different components of our method.

* We also provide a qualitative comparison of Deblur-
NSFF with Deblur-NeRF in Sec. 4.3.3 and demon-
strate the importance of our proposed method.

2. Related Work

Neural Radiance Fields for Static Scenes: There have
been numerous methods that build the 3D scene geometry
using point clouds, parametric surfaces and meshes and use
it to render novel views. Recently, NeRF [19], proposed by
Mildenhall ef al., introduced a neural network that takes a
5D input to model the continuous 3D scene by using differ-
entiable volumetric rendering techniques. Success of NeRF
inspired many subsequent works on improving upon differ-
ent aspects and limitations of NeRF including the photo-
metric and geometric quality [2, 3, 18, 30, 34], training and
rendering efficiency [6, 12,20,27] and reducing the number
of input views used [3,21,26,36]. All these works assume
ideal input views that are perfectly captured.

There are few works that have explored non-ideal input,
for example [10, 17,31] consider the case where the camera
poses are not available. [16] disentangles the lighting with
the geometry which helps when the input views have some
inconsistencies. [2] helps in removing aliasing artifacts as
the input images are scaled.

Neural Radiance Fields for General Dynamic Scenes:
Compared to static scenes, this is an even more challeng-
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Figure 2. Visual illustration of our proposed methodology. Please find the details in Sec. 3.2. Note that b represents a single pixel in B i.e.
blurry image. The image used in this diagram has been taken from NVIDIA Dynamic Scenes Dataset [35]

ing problem because along with capturing view-dependent
ambiguities in geometry and appearances, a network trained
for dynamic scene also needs to model deformations in ge-
ometry with varying time. There have been some recent
NeRF-based successful attempts for the task of 4D recon-
struction in space and time, given real monocular RGB
videos [1,8,9,11,13,23,24,29,33,35] or synthetic videos
[4,25].

Tewari et al. [28] categorizes these approaches into:
(a) time-varying NeRFs and (b) controllable NeRFs that
use ray-bending technique to handle deformations. Time-
varying NeRFs are conditioned on encoded time-input [8,
9, 13,33] and assume no prior knowledge of the 3D scene.
These methods rely on learning from different data modal-
ities such as depth, optical flow, segmentation masks, and
camera poses. In addition to data-based learning, these
methods also take advantage of geometric regularization
losses to maintain consistency across time. Although these
methods have shown impressive results and can empirically
handle larger motion, they entangle geometry, appearance
and deformation whereas controllable NeRFs [23-25, 29]
can disentangle deformation from geometry and appearance
by modelling a separate canonical model to map from de-
formed space to canonical space but cannot capture larger
range of motion.

Our focus in this work has been to capture larger range
of motion when the input images are blurry thus our ideas
have been majorly inspired from Neural Scene Flow Fields
(NSFF) [8].

Neural Radiance Fields from Blurry Images: The
methods that we have discussed so far have shown qual-
ity results when the input images are well captured with-
out any artifacts, but they produce undesirable outputs when
the images are exposed to artifacts such as camera motion
blur. A recent method called Deblur-NeRF [14] deals with
blurry input images by learning a Deformation Sparse Ker-

nel module that models the spatially-varying blurring pro-
cess. Another method - DP-NeRF [7] also follows a simi-
lar approach by constraining their blur kernel with physical
scene priors derived from the blurring process during image
acquisition. These methods are limited in their approach to
static scenes and to the best of our knowledge, none has con-
sidered dealing with blurry dynamic scenes. Our work ex-
tends the ideas from Deblur-NeRF [14] to non-rigid scenes
and we also show a comparison with [14] through our ex-
periments in Sec. 4.3.3.

3. Our Methodology

In the section, we discuss our proposed solution in detail.
First, we cover Neural Scene Flow Fields in Sec. 3.1 to keep
this work self-contained. Then, in Sec. 3.2 and Sec. 3.3,
we describe our algorithm and kernel estimation network
respectively. Following this, we talk about how we optimize
our network in Sec. 3.4.

3.1. Background: Neural Scene Flow Fields

To represent a dynamic scene, Neural Scene Flow Fields
(also known as NSFF [8]) extend the idea of Neural Ra-
diance Fields (NeRFs) by modelling 3D motion as dense
scene flow fields. It learns a combination of static and dy-
namic NeRFs. Static NeRF is a time-independent multi-
layer perceptron (MLP), denoted by Fj;*, that takes as input
a position (x) and viewing direction (d), and outputs RGB
color (c), volumetric density (o), and unsupervised 3D
blending weights (v) that determines how to blend RGBo
from static and dynamic representation:

(c,0,v) = F;*(x,d) (1)

Dynamic NeRF, denoted by F. Y, explicitly models a
view-dependent as well as time-dependent MLP that takes
an additional input, i.e., time (t) along with x and d. On
top of color and density, the model also predicts forward and
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Figure 3. Kernel Estimation Network: We train this netowork to learn generalizable spatially-varying blur kernels. The details can be
found in Sec. 3.3. The image used in this diagram has been taken from NVIDIA Dynamic Scenes Dataset [35]

backward 3D scene flow F; = (f;—+41, ft—¢—1) and disoc-
clusion weights Wy = (W;_¢11, Wi—¢—1) to tackle motion
disocclusions in 3D space (described in detail in Section
3.4):

2

where c; and o denote color and volumetric density for
point x at time t. Final color value is estimated using the
blending weights as per the following rendering equations:

(Ctaata]:hwt) = Fedy(x7d7t)

“ 2f
i) = / T3 (2)o?

n

cb
Cy

(2)ci’(2)dz 3)

where

P (2)ei’(2) = v(2)e(2)o(2) +(1-v(2))e(2)ou(z) )

O
and T; denotes transmittance at time ¢, z,, and 2y denote
near depth and far depth along a ray. This output C§°(r;)
is finally trained against C,(r;), i.e., the ground truth RGB
color value at the pixel corresponding to ray r;:

Loy = [|C(re) = Ca(r)l[3- (5)

3.2. Deblur-NSFF

We take the idea of NSFF [8] but instead of rendering
a single ray per pixel, we consider N rays (N = 5 as per
Fig. 2) for each pixel. This is done in order to simulate the
following blurring process:

b(z,y) = c(z,y) ®h (6)

where h is blur kernel, c(x,y) is sharp image that we
want our MLP to learn, b(x, y) is blurred image, and ® de-
notes convolution operator. h is a K x K window and ideally
N should be equal to K2 but since we are training a NeRF
model to obtain c(zx,y), it would be infeasible to project
K? rays as it will shoot up the memory requirements and

training time. Hence, we fix K = 3 (kernel window) with
N = b5 rays in our experiments. In our ablation experi-
ments (Sec. 4.3.2), we have shown quantitative comparison
by altering N and we show that setting N = K? yields in-
significant boost in results.

Once we have the optimized N rays, our algorithm esti-
mates C'(r, Vi € [0,N) as per Eq. (3). Each pixel now
has N associated color values and a sparse blur kernel h
with weights w;Vi € [0,N) predicted by Kernel Estima-
tion Network (KernelNet) as shown in Fig. 3. Using these
values, we simulate the blurring process as per Eq. (6) and
obtain Et(rt) where r; corresponds to a pixel at time ¢ and
B, denotes output blurry image at time ¢. This is further
supervised using the ground truth blurry image B g¢:

‘Cmsefblur = ||Bt(rt) - Bgt(’rt)H%' (7)

As per Eq. (2), Fedy outputs F; for all the points in 3D
space. In our work, we get forward and backward flows for
each sampled point on all the optimized rays. Using F;,
we can offset each point to a neighboring frame ¢ (where
t' € {t—1,t+1}) and volume render with associated color
(cy) and density (o). This shall give us a rendered image
of time ¢’ warped to time ¢, denoted as:

~ zf
Coni(re) = / Ty (2)00 (v (2))cr (vrme (2), dy)dz
! (8)

where
rtﬂtf(z) = I‘t(Z) + ftg,tl (I‘t (Z)) (9)
Instead of tht(ﬁ), we obtain tht(rti)w € [0,N)
and repeat the blurring process using the same blur kernel
for the pixel corresponding to r;. This gives us warped ren-
dered blurry view - ]A3t/_>t(rt) and then our goal is to mini-
mize:

Epho - ||]§t’~>t('rt) - Bgt("“t)”% (10)

3661



More details on temporal photometric consistency loss
(Eq. (10)) are discussed in Sec. 3.4.

3.3. Kernel Estimation Network

As shown in Fig. 2, we render N rays for each pixel and
those optimized rays are determined according to the pre-
dicted blur kernel h. The blur kernel is obtained using Ker-
nel Estimation Network (KernelNet), as visually illustrated
in Fig. 3. Inspired by [14], we use MLP, denoted by G, as
a design choice for KernelNet. G takes a query pixel p, a
canonical kernel h', and a view embedding 1 as inputs, and
outputs Ap, and w;Vi € [0, N) where N < K?:

(Apmwi) = G¢(p7h/71) (11)

where Ay, is the offset for each p; which are pre-defined
positions on the canonical kernel h', and w; is their associ-
ated weight. Note that in Eq. (11), we want our network to
learn optimized blur kernel for each pixel as blurring is a
spatially-varying process, as well as it usually varies with
the viewing direction [14], which justifies the need for a
view-embedding.

To confine the solution obtained from KernelNet, we de-
fine a boundary constant € (= 0.1 in our experiments) and
multiply it with the outputs from Eq. (11). This helps us
keep the neighboring points, that will be considered in pro-
ducing the final blur color for each pixel, closer to the pixel
in consideration.

Inference: During inference, we want to render sharp
novel views. Our model is trained with the following hy-
pothesis: while KernelNet is responsible for simulating the
blurring process, the static and dynamic NeRFs learn a
sharp scene. This implies that while testing, we can get rid
of KernelNet and use trained sharp NeRFs to generate novel
space-time views. Taking advantage of the splatting-based
plane-sweep volume rendering approach [8], we have ren-
dered novel views at fixed times, novel times at fixed views,
and space-time interpolation. Further comparison with dif-
ferent approaches has been shown in Fig. 4 and discussed
in detail in Sec. 4.

3.4. Optimization

Temporal photometric consistency. As introduced in
[8], this loss ensures the consistency of the scene at time
t with the adjacent times ¢’ after accounting for the mo-
tion due to 3D scene flow. We warp the scene from time
t’ to t using the 3D scene flow estimation output from the
Dynamic NeRF (Fgly) which ensures that any motion that
occurred in that time period is undone. We use the warped
point locations x¢/ on the ray ry to query the associated
color (¢) and density (o) at time ¢’. Using the color and
density information we render the image with Cyyy (r¢) as

shown in equation [8]. The blur kernel for the the ray r, cor-
responding to time ¢ is then applied to get the blurry frame
Bt/—n(ﬁ)-

The calculation of loss over regions which get disoc-
cluded due to motion in the scene is ambiguous. To help
with this, we let the Dynamic NeRF (ngy) also output dis-
occlusion weights Wy = (W¢—¢41, Wst—1) € [0, 1]. The
weights (w;_¢11,Wi_¢_1) decide the contribution of the
temporal photometric consistency loss at each location in
the scene to the total loss. To calculate W;, we first volume
render the weights along a ray r¢ using the density values
from time #’. We then use this accumulated weight (Wt/*)t)
for each 2D pixel as the weightage of the temporal photo-
metric consistency loss as shown in the equations:

A 2f
Wit (re) = / Ty (2) o (rier (2)) Wi (r4(2))dz
’ (12)
To avoid the trivial solution, we add /; regularization to
force the dissocclusion weights to be near 1, resulting in the
following equation for the loss:

Lpho = Z Z Wyt (re) By (re) — Bu(ry)|3

re t'eN(t)
FAY  fwi (x4) = 1,
(13)

where A is a regularization parameter which is kept as
0.1 asin [8].

Alignment Loss: We need to add further regularization
to train KernelNet as well as gear NeRF model towards
learning a sharp representation of the scene. Without any
constraints, the NeRF model together with the optimized
kernel might learn to map well to blurry ground truth image
but during inference, we may have some unexpected dis-
tortions because we produce renderings using NeRF model
without KernelNet. To avoid this, the sparse kernel is ini-
tialized such that the optimized rays are close to the input
ray and the kernel weights corresponding to the optimized
rays are similar to gaussian kernel representation. This will
ensure that when we start the training, all the kernel points
are near the pixel centers. Further, one of the optimized
rays is forced to be close to the input ray as shown in the
equation below:

llao — pl| (14)

where qg corresponds to a fixed index in the output from
KernelNet. In a nutshell, the overall loss function is:

£align =

L= Emsefblur + Cpho + )\align»calign (15)

here we keep Aqiign = 0.1.

3662



Method Dynamic Only Full
PSNR (1) | SSIM (1) | LPIPS (}) | PSNR (1) | SSIM (1) | LPIPS ({)
DynamicNeRF 17.22 0.36 0.39 20.61 0.49 0.39
NSFF 20.76 0.59 0.31 24.15 0.70 0.32
Ours 21.14 0.64 0.22 25.19 0.79 0.23

Table 1. Quantitative comparison for complete NVIDIA Dynamic Scene Dataset [

]. Metrics reported here are calculated by taking an

average along all the scenes. Metrics for individual scenes are reported in Tab. 2.

Scene PSNR (1) SSIM (1) LPIPS ()
DVS | NSFF | Ours | DVS | NSFF | Ours | DVS | NSFF | Ours
Playground | 17.33 | 2091 | 2252 | 070 | 0.58 | 0.72 | 044 | 041 | 0.27
Jumping 22.88 | 25.61 | 2605 | 0.65 | 079 | 0.83 | 026 | 022 | 0.15
Balloon 1 1659 | 22.04 | 2292 | 034 | 065 | 0.74 | 048 | 035 | 0.24
Balloon2 | 21.08 | 2529 | 2571 | 047 | 070 | 0.80 | 041 | 038 | 0.24
DynamicFace | 13.82 | 18.50 | 20.50 | 028 | 0.63 | 0.78 | 051 | 034 | 0.25
Skating 2499 | 30.16 | 31.72 | 0.68 | 0.86 | 091 | 025 | 021 | 0.14
Truck 2620 | 27.22 | 2854 | 0.74 | 079 | 0.84 | 033 | 028 | 0.18
Umbrella | 22.01 | 23.50 | 23.58 | 044 | 060 | 0.66 | 050 | 0.38 | 0.31

Table 2. Quantitative comparison for each scene in NVIDIA Dynamic Scenes Dataset [

] with DVS [5] and NSFF [12].

Scene PSNR (1) SSIM (1) LPIPS (})
DVS | NSFF | Ours | DVS | NSFF | Ours | DVS | NSFF | Ours

Playground | 15.19 | 18.61 | 19.00 | 030 | 056 | 0.62 | 041 | 035 | 0.24
Jumping 1743 | 19.59 | 1958 | 040 | 056 | 0.58 | 030 | 027 | 0.21
Balloon1 | 1358 | 1848 | 1835 | 0.19 | 046 | 047 | 061 | 034 | 0.26
Balloon2 | 1890 | 2244 | 23.02 | 034 | 0.62 | 071 | 037 | 035 | 0.21
DynamicFace | 1340 | 22.01 | 2325 | 0.16 | 0.75 | 0.82 | 045 | 029 | 0.15
Skating 1825 | 21.69 | 22.39 | 046 | 067 | 072 | 031 | 028 | 0.19
Truck 2442 | 2626 | 26.88 | 0.67 | 0.76 | 0.79 | 029 | 026 | 017
Umbrella | 16.66 | 17.02 | 16.68 | 034 | 041 | 041 | 044 | 036 | 0.30

Table 3. Quantitative comparison on dynamic regions for each scene in Dynamic Scenes Dataset [

4. Experimental Details & Analysis

Dataset Generation: To test our proposed methodology,
we have used NVIDIA Dynamic Scene Dataset [35] and
added synthetic blur to it. We have used Gaussian Blur by
torchvision [15] to introduce blur to random frames by fix-
ing kernel size to 3 x 3 and taking random values of sigma
as it helps to randomize the blur kernel used for each im-
age. We have randomly selected = 80% of the frames and
blurred them for training our models. During evaluation,
we use ground truth sharp images against the synthesized
results by our trained network.

4.1. Quantitative Analysis

Similar to NSFF [&], we also consider 24 frames per
scene corresponding to single camera for training and use
remaining 11 held-out camera views per time frame for
evaluation. We have reported PSNR, SSIM, and LPIPS met-
rics values for novel-view synthesis for the entire dataset in
Tab. 1 and scene-wise values in Tab. 2. Our approach out-
performs prior work in all the considered metrics for both

] with DVS [5] and NSFF [12].

dynamic regions as well as the entire scene. Even for scene-
wise comparison, our methods performs better on all the
scenes in the Dynamic Scenes dataset [35]. Compared to
NSFF (second best method), Deblur-NSFF achieves an im-
provement of 4.3%, and 12.8%, in PSNR and SSIM respec-
tively, and a decrease of 28.12% in LPIPS value for full
scene.

4.2. Qualitative Analysis

We have shown qualitative comparison with DVS [5] and
NSFF [8] in Fig. 4. In each scene, we have selected one
static and one dynamic region. DVS and NSFF both do a
great job in capturing the motion in scene by treating the
dynamic regions of the scene as time-dependent and view-
dependent effects but these methods are not specifically de-
signed to handle blur in the scene. Our method can produce
sharp results even when the model is trained on blurry in-
put frames. As shown in second row of Fig. 4, in red box,
our method captures sharper background and we can also
better see the teeth of the balloon whereas in blue box, we
can see the text “open” much clearer as compared to DVS
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Figure 5. Qualitative Comparison of our method with Deblur-NeRF [14]. Please check description in Sec. 4.3.3.

and NSFF. In third row (in Fig. 4) the lines of the stairs are
sharpest in our results whereas in DVS and NSFF they are
relatively smoothened. In blue box, we can see some arti-
facts in the reflection (of what looks like a tree) which are
also resolved in our results and other details of the window
are also more perceivable. For space-time view synthesis,
we used the same approach as NSFF during evaluation. For

better comparison, it is recommended to watch the supple-
mentary videos.

4.3. Ablation Experiments

4.3.1 Camera Origins

As stated in [14], Eq. (6) is a close approximation of the
blurring process but it assumes that while capturing a pixel
P, the camera origin o remains the same for all the neigh-
boring pixels that fall within the kernel window h. Inspired
by the physical blurring process, we include optimizing for
camera origins corresponding to each pixel as part of our
ablation experiments. This basically requires changes in
Eq. (11) which now also outputs A:
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(AOi’Api7wi) = G¢(pah/71) (16)

As shown in Fig. 2, we project optimizedrays from a
single camera origin. Instead of fixing a single camera ori-
gin corresponding to an optimized blur kernel, we now take
N camera origins. We have shown a quantitative compari-
son of this approach with our proposed baseline in Tab. 4.
Shifting camera origins gives us marginal improvement in
performance while also increasing the training time by ap-
proximately 1 hour for reach 10k iterations.

Scene PSNR (1) SSIM (1) LPIPS ()
Ours Ours Ours | Ours | Ours | Ours

w/o shift | w/ shift w/o w/ w/o w/
Playground 22.52 22.54 0.72 | 0.73 | 0.27 | 0.26
Jumping 26.05 26.06 0.83 | 0.84 | 0.15 | 0.16
Balloon 1 22.92 22.91 0.74 | 073 | 024 | 0.25
Balloon 2 25.71 25.72 0.80 | 0.80 | 0.24 | 0.24
DynamicFace 20.50 20.50 0.78 | 0.77 | 0.25 | 0.24
Skating 31.72 31.73 0.91 092 | 0.14 | 0.14
Truck 28.54 28.53 0.84 | 085 | 0.18 | 0.17
Umbrella 23.58 23.57 0.66 | 0.66 | 0.31 0.30

Table 4. Ablation experiments: Quantitative comparison for
each scene in NVIDIA Dynamic Scene Dataset. w/ means our
method with origin shift as explained in Sec. 4.3.1 and w/o means
without, 7.e., our baseline method.

4.3.2 Kernel Points

In Fig. 3, we have shown 4 neighboring points for a pixel
of interest pg. To study the importance of number of kernel
points, Deblur-NeRF [14] ablates the value of this hyper-
parameter and concluded that setting N = 5 yields optimal
performance. Increasing N beyond 5 gives minor improve-
ment while significantly shooting up the training time and
computational memory requirements. Decreasing N less
than 5 notably affects the performance with respect to both
SSIM and PSNR values. To test this, we train our method
by setting N = 9 and report the results obtained in Tab. 5

Scene PSNR (1)
N=5| N=9

SSIM (1)
N=5|N=9

LPIPS (})
N=5| N=9

Playground | 22.52 | 2260 | 072 | 075 | 027 | 026

Table 5. Ablation experiments: Quantitative comparison for dif-
ferent values of IN.

4.3.3 Comparison with Deblur-NeRF

This problem of 3D novel-view synthesis of dynamic scenes
where the frames are subject to blur is rather under-explored
topic. To the best of our knowledge, only Deblur-NeRF

deals with this problem but that too specifically for static
scenes. More recently, DP-NeRF [7] also focused on the
same problem statement for static scenes. Although Deblur-
NeRF has been designed to deal with static scenes and it is
expected to fail when tested on dynamic scenes, we still
show its comparison with our method to stress upon the rel-
evance of our work to capture motion while sharpening the
scene.

In Fig. 5, we have shown qualitative comparison with
Deblur-NeRF [14] on blurred scenes from NVIDIA Dy-
namic Scenes dataset. Although Deblur-NeRF does a great
job in sharpening the static regions in the scene, it shows
clear artifacts in the dynamic regions. In contrast, our
method is able to recover full scene.

=5 x ra Vi | Iy
(a) Our method is unable to recover minute details such as face expressions.
! [ T e
i i > 4 3 I
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(b) Our method produces artifacts during time interpolation

Figure 6. Limitations of our method and potential for future work.

5. Final Discussion
5.1. Limitation

Our method is not able to recover minute details in the
scene such as facial definition of a person, as shown in
Fig. 6a. Our method does a great job at space interpolation
but the results show artifacts when we do time interpola-
tion or space-time interpolation. We have shown these re-
sults in Fig. 6b. These outputs are currently obtained using
splatting-based plane-sweep volume rendering approach [§]
for time-interpolation and as per our results, we can say that
there’s a scope of improvement here.

5.2. Conclusion

To summarize, we have proposed an effective solution
to render sharp novel view and time synthesis of dynamic
scenes from blurry inputs. Our extensive experiments on
NVIDIA Dynamic Scenes dataset solidify our proposals
and signify the importance of our method. We believe that
handling blur for sharp space-time interpolation is rather
under-explored area and we hope that our work will encour-
age future research in this field.
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