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Abstract

Reconstructing personalized animatable head avatars
has significant implications in the fields of AR/VR. Exist-
ing methods for achieving explicit face control of 3D Mor-
phable Models (3DMM) typically rely on multi-view im-
ages or videos of a single subject, making the reconstruc-
tion process complex. Additionally, the traditional ren-
dering pipeline is time-consuming, limiting real-time an-
imation possibilities. In this paper, we introduce CVT-
Head, a novel approach that generates controllable neu-
ral head avatars from a single reference image using point-
based neural rendering. CVTHead considers the sparse
vertices of mesh as the point set and employs the pro-
posed Vertex-feature Transformer to learn local feature de-
scriptors for each vertex. This enables the modeling of
long-range dependencies among all the vertices. Exper-
imental results on the VoxCeleb dataset demonstrate that
CVTHead achieves comparable performance to state-of-
the-art graphics-based methods. Moreover, it enables ef-
ficient rendering of novel human heads with various expres-
sions, head poses, and camera views. These attributes can
be explicitly controlled using the coefficients of 3DMMs,
facilitating versatile and realistic animation in real-time
scenarios. Codes and pre-trained model can be found at
https://github.com/HowieMa/CVTHead.

1. Introduction
Personalized head avatars play a crucial role in a wide

range of applications, including AR/VR, teleconferencing,
and the movie industry. Over the past few decades, there has
been an extensive exploration of personalized head avatars
in the fields of computer graphics and computer vision.
Traditional solution [1] reconstructs a personalized mesh
and texture for the source actor explicitly with 3D head
scans [61, 64]. To perform full face control, 3D Morphable
Models (3DMM) [4, 34] are used as a strong prior of face
geometry. 3DMMs is a parametric model and uses PCA-
based linear blendshapes to explicitly control face shape,
expressions, texture, and head pose independently. How-

ever, 3DMM does not model the facial detail and hair re-
gion of the human face [21]. Recently, with the develop-
ment of Neural Radiance Fields (NeRF) [41], reconstruct-
ing avatars with implicit models becomes popular as it can
reconstruct detailed regions [3, 17, 43]. However, all these
methods are subject-specific and they usually require video
inputs or multi-view images of the same subject, which lim-
its their usage in practice.

Hence, acquiring human avatars from a single image
(i.e., one-shot face reenactment) becomes more and more
popular [14, 31, 49, 52, 54, 59, 60, 67, 70, 74]. Given a facial
image of an actor, the synthetic images can be driven by
videos from other actors. A key step behind these meth-
ods is to decouple the facial appearance and motion in-
formation from the source and driven images. As a re-
sult, mesh-guided face animation has gained significant at-
tention, primarily due to the inherent disentanglement of
identity and expression offered by 3DMM. Generally, one-
shot mesh-guided face animation can be roughly divided
into warp-based and graphics-based. Warp-based meth-
ods [14, 65, 67, 72] employ the motion field to transfer the
driving pose and expression into the source face. These
methods effectively preserve fine facial details and produce
high-fidelity results but only work well for a limited range
of head poses. Graphic-based methods [16,31] learn texture
maps [5] from single-image and apply computer graphics
pipelines to render the animated face image. Thus, it can
maintain performance under large head rotations and guar-
antee the 3D consistency of rendered images. However, the
rendering pipeline is usually computationally heavy [29],
which makes efficient rendering unachievable.

Alternatively, point-based graphics [22] get rid of the
surface mesh and directly use point clouds to model the 3D
geometry. Later on, the point-based neural rendering tech-
niques [2,46,62] augment each RGB point with a learnable
neural descriptor that is interpreted by the neural renderer.
The recent SMPLpix [45] further extends these techniques
from static scenes to dynamic scenes and enables the effi-
cient rendering of human body avatars under novel subject
identities and human poses. Although efficient, these meth-
ods still require multi-view images with calibrated cameras
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to reconstruct the accurate point cloud first. Consequently,
applying these methods to one-shot face reenactment is in-
feasible.

In this paper, we utilize point-based neural rendering to
achieve an efficient and realistic generation of head avatars
from a single image. We direct utilize the sparse vertices
from the FLAME head model [34] as our point set, in-
stead of reconstructing a dense point cloud of the subject
tediously. Specifically, given the vertices from pre-trained
3D face reconstruction networks [16], we learn a local fea-
ture descriptor aligned with each vertex. When learning
the local descriptor of a 3D point from a 2D reference im-
age, pixel-aligned features [11, 23, 26, 48] are a popular
choice. However, these aligned features often become in-
correct when the projected 2D location is occluded in the
source image. To address this challenge, we propose the
Vertex-feature Transformer. This approach treats each ver-
tex as a query token [12] and utilizes transformers [56] to di-
rectly learn the canonical vertex features from the reference
image. By incorporating a global attention mechanism, our
model can capture long-range dependencies within the fea-
tures of all vertices. Thus, the feature descriptor of invis-
ible 3D points can still be reconstructed correctly. Next,
we project the feature descriptor and depth of each vertex
into image space and employ a UNet-like neural rendering
to generate the RGB image. Since the feature descriptor is
aligned with the vertices of the FLAME head model, the
rendered face can be explicitly controlled by the shape, ex-
pression, and head pose coefficients. We name this end-to-
end framework as CVTHead, in short for Controllable head
avatar with Vertex-feature Transformer.

Our major contributions are summarized as follows:

• We propose CVTHead, a one-shot controllable head
avatar framework using point-based neural rendering
that can efficiently render novel human heads under
novel expressions and camera views. To the best of our
knowledge, this is the first work that performs point-
based neural rendering from a monocular face image.

• We propose Vertex-feature Transformer to learn the
vertex descriptor in canonical space from a single im-
age with transformers, and demonstrate its superiority
beyond projection methods.

• By conducting experiments on VoxCeleb1 and Vox-
Celeb2, we establish that our method achieves per-
formance that is on par with the state-of-the-art ap-
proaches, while additionally improving efficiency.

2. Related Work
Mesh-guided Face Reenactment Extensive research has
been conducted on employing 3DMM for the explicit an-
imation of human face images [14, 15, 18, 31, 51, 57, 65,

67, 72]. Mesh-guided face reenactment can be divided
into warp-based and graphic-based. Warping-based meth-
ods [14, 57, 65, 67] warp the source image with explicit
motion fields. For example, given both source and driv-
ing meshes, Yao et al. [67] extract the motion features with
Graph Convolutional Networks. HeadGAN [14] learns the
dense flow field with PNCC [77] and SPADE. Face2Faceρ

[65] calculates the motion with a set of pre-specified 3D
keypoints. However, when faced with significant head ro-
tations, the quality of these approaches drops significantly.
Meanwhile, other methods [16, 21, 31] obtain the animated
face images from the head mesh with the classic graphics
rendering pipeline. In detail, DECA [16] simultaneously
learns both the head mesh and the linear albedo subspace of
the Basel Face Model [44]. To create realistic face photos,
ROME [31] estimates a neural texture and offset for each
vertex from the source image and renders the rigged mesh
with deferred neural rendering technique [53]. Neverthe-
less, these methods still require the time-consuming classic
differentiable rendering [47].

Neural Head Avatars Recently, several works extend
NeRF [2] to model dynamic objects such as virtual avatars
with implicit neural representations [3, 17, 25, 28, 43, 78].
For example, subject-dependent methods such as NerRACE
[17] and RigNeRF [3] use 3DMM-guided deformation neu-
ral fields to enable control over head pose, facial expres-
sion, and viewpoints. Typically, these approaches employ
an optimization-based head tracker [54] as a preprocessing
step to extract accurate 3DMM coefficients from a monocu-
lar video of the subject. Meanwhile, subject-agnostic meth-
ods such as HeadNeRF [25] and MofaNeRF [78] learn the
radiance fields from large-scale multi-view images [64].
When generating an avatar for a novel subject, these meth-
ods require time-consuming inverse rendering optimization
to obtain the latent codes. Most recently, HiDe-NeRF [35]
and OTAvatar [40] employ tri-plane representations [8] to
efficiently extract multi-scale features for each query 3D
point and also use volume rendering to reconstruct images.
Although promising, a limitation of volumetric rendering
is the necessity to sample hundreds of 3D points per ray
and then feed them through the network to render a single
pixel or feature patch. In contrast, our method utilizes a set
of points to represent the head avatar, thereby necessitating
only a single forward pass for rendering.

Neural Point-based Rendering Neural point-based ren-
dering [2, 30, 33, 46, 62] has gained significant attention in
recent years for its ability to generate high-quality images
by directly rendering point clouds from static scenes. Aliev
et al. [2] introduced Neural Point-Based Graphics (NPBG),
which employs learnable neural descriptors to enhance each
point for better rendering. Later on, NPBG++ [46] fur-
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Figure 1. Overview of the CVTHead framework. We employ a pretrained face reconstruction network [16] to obtain the face mesh (Section
3.2) and utilize the proposed verte feature transformers to obtain the feature descriptor of each vertex from the source image (Section 3.3).
We then consider the sparse vertex as point set and use point-based neural rendering to synthesize the image (Section 3.4).

ther predicts the descriptors with a single pass to accelerate
rendering. Meanwhile, SMPLpix [45] extends point-based
neural rendering to generate human avatars under the con-
trol of SMPL [38]. Although SMPLpix is a subject-agnostic
method, it requires registering the SMPL model to ground
truth 3D scans to obtain the RGB color of each vertex. The
most recent PointAvatar [76] models the human head as an
explicit canonical point cloud and continuous deformation
to create realistic and relightable head avatars. However, it
is still subject-dependent and requires a video caption of the
subject to train the model. Our method also employs neural
point-based rendering but simplifies the setting as we only
require a single image of the novel subject.

Transformers in Mesh Over the past few years, trans-
formers [56] have made significant progress in many com-
puter vision tasks [7, 12, 39, 55, 63, 66]. There are a few
works that also apply transformers to mesh data [9, 13, 36,
37, 68, 75]. In detail, METRO [36] apply transformers to
predict the mesh coordinates and 3D joints simultaneously
of the human body [38]. Mesh Graphormer [37] further
utilizes the topology of the mesh with graph convolution
to improve the mesh reconstruction. Both works consider
each vertex as a query token and use transformers to learn
the non-local relationships among vertices. In our work, we
also use transformers to learn the correspondence among
vertex features.

3. Methodology
3.1. Overview

Fig 1 illustrates the overall framework of our CVTHead.
Given both source image Is and driven image Id, we utilize
a pre-trained face reconstruction model [16] to obtain the
source and driven vertex coordinates Vs and Vd ∈ RN×3

of the FLAME model [34] (Sec. 3.2), where N is the
number of vertices in FLAME model. Simultaneously, we
employ the proposed vertex feature transformer to learn
the feature descriptor for all vertices in canonical space
VF ∈ RN×C from the source image (Sec. 3.3), where C
is the number of channels of feature descriptor. Then we
project driven vertices and their corresponding feature de-
scriptors onto the vertex feature image Pd

F ∈ RH×W×C

and the depth image Pd
D ∈ RH×W×1, where H and W is

the height and width of the original image. Next, we con-
duct neural rendering with a U-Net G(·) to generate the syn-
thetic image Î = G(PF,PD) ∈ RH×W×3 (Sec. 3.4). Our
framework enables end-to-end training, allowing the entire
process to be optimized jointly. During inference, our sys-
tem enables the rendered image to be animated with novel
shapes, expressions, head poses, and viewpoints by manip-
ulating the FLAME parameters. This flexibility allows for
the generation of diverse and customizable head avatars.

3.2. Head Mesh Reconstruction

FLAME [34] is a parametric 3D head model with N =
5023 vertices. It encompasses a mean template Vb ∈ RN×3,
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along with shape blendshapes S ∈ RN×3×L, and expres-
sion blendshapes E ∈ RN×3×K . These blendshapes are
derived from a vast collection of 4D scans of human heads,
allowing FLAME to capture a wide range of facial varia-
tions. Given parameters of facial identity β ∈ RL, expres-
sion ϕ ∈ RK and pose θ ∈ R3k+3 (with k = 4 joints
for neck, jaw, and eyeballs), FLAME first apply β and ϕ
to corresponding blendshapes, resulting in modified vertex
positions. Next, the linear blend skinning (LBS) technique
W (·, ·) is employed to rotate the vertices based on θ. The
final reconstruction of FLAME in world coordinates is cal-
culated by:

M(β, ϕ, θ) = W (Vb + Sβ + Eϕ, θ) ∈ R3n (1)

We employ the pre-trained DECA [16] fD(·) to obtain
β,ϕ,θ and camera parameters c from both source images and
driven images with a single forward, i.e, βs, ϕs, θs, cs =
fD(Is) and βd, ϕd, θd, cd = fD(Id). We also obtain the
deformation of hair and shoulder regions from the source
image with the pre-trained linear deformation model fH(·)
[31] to refine the vertices locations. Then we obtain the
driven vertex coordinates by

Vd = M(βs, ϕd, θd) + fH(Is) ∈ RN×3 (2)

3.3. Vertex-feature Transformer

Motivations In previous approaches that utilize pixel-
aligned features [11,48], the feature descriptor of a given 3D
point is determined by the feature located at its correspond-
ing 2D projection. In detail, given the 3D point ks ∈ Vs,
we project it into the 2D image space by (us, vs, ds) =
Π(ks, cs), where Π(·) represents the orthographic projec-
tion function and cs is the camera parameters of the refer-
ence image obtained from pre-trained DECA. The descrip-
tor of ks is defined as I ′[us, vs], where I ′ is the 2D feature
map of the source image. However, these methods have
several limitations. First, it requires accurate mesh recon-
struction to locate the correct 2D pixels. Moreover, when
the point is invisible, the feature at the 2D projection can-
not represent the real features of that point. For instance, if
the ear is occluded by the face, the projection may result in
capturing features from the eye or nose instead. As a result,
relying solely on the feature at the 2D projection can lead to
incomplete or misleading feature descriptors.

Vertex Feature as Tokens To tackle the aforementioned
problem, we propose a solution wherein we treat each ver-
tex as an individual query token and leverage the attention
mechanism of transformers to acquire its corresponding fea-
tures from the image feature tokens. This approach avoids
the need for a fixed 2D projection and allows for more flex-
ible learning. Specifically, we employ N learnable em-
bedding vectors Xv ∈ RN×C′

to represent the feature de-
scriptors associated with each vertex in canonical space and

name it as Vertex Tokens, where C ′ is the number of chan-
nels. To further encode the location information of each ver-
tex, we incorporate the sine positional encoding [56] to its
corresponding image space coordinates (us, vs) and depth
ds, denoting as Es

uv and Es
dep, respectively. Finally, the

vertex query token is defined as X̃v = Xv +Es
uv +Es

dep.
On the other hand, we train a CNN encoder E(·) to extract
feature maps from the source image Is and flatten the 2D
features into a sequence of tokens Fs = E(Is) ∈ Rhw×C′

.
We also apply the 2D sine positional encodings [12] to en-
code spatial information, denoted as E. Finally, the image
token is defined as Xs

F = Fs +E.

Transformers The input to the transformer is the con-
catenation of both image tokens Xs

F and vertex tokens
X̃v, i.e, X = [X̃v,X

s
F] ∈ R(N+hw)×C′

. The standard
transformer encoder layer [56] consists of alternating layers
of the multi-headed self-attention (MHSA) and multi-layer
perceptron (MLP). First, three linear projections are applied
to transfer X into three matrices of equal size, namely the
query Q, the key K, and the value V. The self-attention is
calculated by:

SA(X) = Softmax(
QKT

√
D

)V, (3)

For MHSA, H self-attention modules are applied to X sep-
arately, and each of them produces an output sequence. We
utilize the state of the vertex tokens at the output of the
transformer encoder and employ a linear transformation to
modify its dimensionality, thereby acquiring the vertex de-
scriptor VF ∈ RN×C .

The vertex-feature transformer has several benefits.
Firstly, it eliminates the need for a fixed 2D projection to
determine the corresponding feature for each vertex. In-
stead, it leverages attention mechanisms to identify the rel-
evant feature, introducing a higher degree of flexibility. The
transformer incorporates positional encoding to encode lo-
cation information, further enhancing its adaptability and
versatility. Additionally, the global attention mechanism of
transformers facilitates long-range correspondence among
all vertex features. Even when the projection of a vertex
is occluded, the vertex feature can still be obtained from
neighboring regions or symmetrical vertices.

3.4. Neural Vertex Rendering

Given the learned vertex feature VF, we further use neu-
ral point-based rendering to generate synthetic images. Dur-
ing the training, we use the driven vertex Vd to reconstruct
the driven image. In detail, we first project the driven ver-
tices kd ∈ Vd into image space with the driven camera
parameter cd, i.e., (ud, vd, dd) = Π(kd, cd). Subsequently,
we create the vertex projection features Pd

F ∈ RH×W×C .
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For each vertex kd, along with its corresponding descriptor
vF ∈ RC , we assign the descriptor to location (ud, vd) in
the vertex projection features [45]:

Pd
F[⌊ud⌋, ⌊vd⌋] = vF (4)

We keep the features of the nearest vertex when two ver-
tices are projected into the same pixel on Pd

F. For all pixels
without projection (i.e., the background pixel), we assign a
constant value. Similarly, we also project the depth dd value
into a depth image PD which satisfies Pd

D[⌊ud⌋, ⌊vd⌋] =
dd. Finally, we concatenate Pd

F and Pd
D and employ a U-

Net G(·) to generate the synthetic image Îd as well as the
binary foreground mask M̂d, i.e.,

(Îd, M̂d) = G([Pd
F,P

d
D]). (5)

3.5. Training

During the training time, we randomly sample Is and
Id from the same video. We fixed the pre-trained DECA
and only update the parameters of vertex-feature transform-
ers and neural render. Following [31], we use the L1 loss
LL1, VGG perceptual loss Lvgg [27], face recognition loss
Lid [6], and adversarial loss [20, 58] La to measure the dif-
ference between the reconstructed driven image Îd and the
ground truth Id. We use the Dice loss to match the predicted
segmentation masks. The total loss is calculated by:

L = λL1LL1+λvggLvgg+λidLid+λsegLseg+λaLa (6)

, where λL1, λvgg , λid, λseg and λa is the corresponding
weights of each loss term.

4. Experiments
4.1. Experimental Set up

Dataset For a fair comparison with previous works, we
conduct experiments on VoxCeleb1 [42] and VoxCeleb2
[10]. VoxCeleb1 contains around 20k video sequences
of over 1000 actors and VoxCeleb2 contains around 150k
videos of over 6000 actors. Note that, ROME [31] carefully
selects a subset of around 15k high-quality video sequences
from VoxCeleb2 for training and evaluation, which is not
publicly available. We directly use all VoxCeleb2 videos in-
stead. Following [49], each frame is cropped into 256×256
and normalized to [−1, 1]. We follow the identity-based
split thus all subjects in the validation set are unseen by
the model. Besides, we apply an off-the-shelf face parsing
network [69] to obtain the foreground mask of each frame,
which is considered as the pseudo ground truth.

Implementation Details We use the same CNN encoder
E(·) as in ROME [31], which downsamples 16× of the

original image. Naturally, our vertex-feature transformer
is able to process arbitrary sizes of mesh. However, due to
the quadratic computation complexity w.r.t. the sequence
length of the transformer, it’s hard to model all N = 5023
tokens. Thus, we use the coarse mesh of the FLAME model
with N ′ = 314 tokens in our vertex-feature transformer and
use the decoder of Spiralnet++ [19] to upsample the vertex
features after the transformer, which serializes the neigh-
boring vertices based on triangular meshes. Our vertex-
feature transformer has 6 transformer encoder layers and
the head of MHSA is set to 4. The feature dimension is set
to C ′ = 128 and C = 32. Our model is implemented using
PyTorch and optimized with the Adam optimizer [32] for a
duration of 200 epochs. The learning rate is set to 1e − 4
and the batch size is set to 16. λL1, λvgg, and λseg are set
to 1.0, and λid and λa are set to 0.1.

Metrics Following previous works [31], we evaluate our
CVTHead on both self-reenactment and cross-identity reen-
actment. In self-reenactment, the source and driving im-
age come from the same video. In this scenario, the driv-
ing image can be viewed as the ground truth. We use
the following metrics to measure the reconstruction qual-
ity between the driving image and the synthesized results:
(1)L1 loss on the masked region; (2) peak signal-to-noise
ratio (PSNR); (3) learned perceptual image patch similarity
(LPIPS) with pre-trained AlexNet [73], and (4) multi-scale
structured similarity (MS-SSIM). In the cross-identity reen-
actment, the source and driven image come from different
subjects. Given the source image of one subject, We random
sample a different subject in the validation set as the driving
image. This evaluation requires the model to fully disentan-
gle the identity and expression information. Since ground
truth is unavailable, this task can only be evaluated by some
proxy metrics. In detail, we use (1) FID [24] to evaluate
the image realism; (2) CSIM [71], which measures the co-
sine similarity of the identity embeddings from a pre-trained
model between the source image and the synthesized image;
and (3) image quality assessment (IQA) [50]

4.2. Results of talking-face synthesis

We first evaluate the performance of our method on
talking-face synthesis. To the best of our knowledge,
ROME [31] is the only method that share the same setting
with our method, i.e., one-shot mesh-based face reenact-
ment based on graphics without warping field. Thus, we
mainly compare our method with ROME [31]. Besides, we
also compare with warping-based methods including First-
Order Motion Model (FOMM) [49] and the Bi-Layer [70].

Self-reenactment The quantitative comparison results
are summarized in Table 1. It is noteworthy that our
CVTHead achieves comparable performance with previous
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Source ROME OursDriven

Figure 2. Qualitative comparisons of self-reenactment on Vox-
Celeb1. The 1st column is the source image. The 2nd column is
the driving image, which can be considered as the ground truth.
The 3rd column is the results from ROME, and the 4th column is
the result from our CVTHead.

Dataset VoxCeleb1

Method L1 ↓ PSNR ↑ LPIPS ↓ MS-SSIM ↑
FOMM [49] 0.048 22.43 0.139 0.836
Bi-Layer [70] 0.050 21.48 0.108 0.839
ROME [31] 0.048 21.13 0.116 0.838
Ours 0.041 22.09 0.111 0.840

Dataset VoxCeleb2

Method L1 ↓ PSNR ↑ LPIPS ↓ MS-SSIM ↑
FOMM [49] 0.059 20.93 0.165 0.793
ROME [31] 0.050 20.75 0.117 0.834
Ours 0.042 21.37 0.119 0.841

Table 1. Results of self-reenactment on the VoxCeleb1 and Vox-
Celeb2 (↑ means larger is better, ↓ means smaller is better.)

methods over all metrics. Figure 2 illustrates the qualita-
tive comparisons. We also add on the predicted soft mask
as in [31] to compare its quality. The first three rows show-
case scenarios with minimal head rotations and predomi-

nantly frontal source images. In such cases, both ROME
and CVTHead exhibit similar performance. However, when
the source images depict side views while the driving im-
ages present frontal views, ROME tends to generate im-
ages with blurry foreground masks in the occluded regions
of the source image. Furthermore, ROME often renders
these concealed areas in darker colors. These observations
indicate that ROME struggles to effectively learn the fea-
tures of occluded regions and fails to capture the correspon-
dence between mesh vertices. Conversely, our CVTHead
addresses these limitations by leveraging transformers to
capture long-range dependencies among vertices. These ob-
servations suggest that ROME does not effectively learn the
features of occluded regions and does not capture the cor-
respondence between mesh vertices. In contrast, our CVT-
Head addresses these two issues by leveraging transformers
to capture long-range dependencies among vertices.

Dataset VoxCeleb1

Method FID ↓ CSIM ↑ IQA ↑ FPS ↑
FOMM [49] 39.69 0.592 37.00 64.3
Bi-Layer [70] 43.8 0.697 41.4 20.1
ROME [31] 29.23 0.717 39.11 12.9
Ours 25.78 0.675 42.26 24.3

Dataset VoxCeleb2

Method FID ↓ CSIM ↑ IQA ↑ FPS ↑
FOMM [49] 61.28 0.624 36.20 64.3
ROME [31] 53.52 0.729 37.34 12.9
Ours 48.48 0.712 40.27 24.3

Table 2. Results of cross-identity reenactment.

Cross-identity Reenactment We proceed to evaluate our
method in comparison to other methods for cross-identity
reenactment. The quantitative comparison results are pre-
sented in Table 2. Strikingly, we achieve similar perfor-
mance on the assessed metrics as ROME, indicating the
effectiveness of our method in cross-identity reenactment
tasks. Furthermore, we provide qualitative results in Figure
3, showcasing the ability of our method to generate images
with desired expressions, head poses, and other attributes.
Notably, warping-based methods usually cannot maintain
the identity information such as face shape from the source
image. For mesh-guided methods, ROME tends to generate
lower-quality images when local regions are occluded in the
source image. In contrast, our method demonstrates the ca-
pability to maintain the quality of all local regions even in
such challenging scenarios.

Inference time comparison We also evaluate the infer-
ence time of each model, considering the complete duration
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Source Image Driving Image ROME OursFOMM Bi-Layer

Figure 3. Qualitative comparisons of cross-identity reenactment
on VoxCeleb1.

of 3D mesh reconstruction, the vertex deformation model,
and the rendering process. To provide a comprehensive
analysis, we report the average FPS (Frames per Second)
based on 1000 runs performed on a single RTX 3090Ti.
The results are presented in the last column of Table 2. No-
tably, warping-based method is more efficient as they don’t
need the tedious rendering and mesh reconstruction. ROME
achieves a modest 12.9 FPS, while our CVTHead model
achieves a significantly higher rate of 24.3 FPS. This out-
come highlights the superior efficiency of the point-based
neural rendering approach compared to traditional graphic-
based rendering methods.

4.3. Results of 3DMM-based Face Animation

After obtaining the vertex descriptors using the vertex
feature transformer, the resulting face can be further manip-
ulated by adjusting the coefficients of the FLAME model
[34], which control expression ϕ, pose θ, face shape β, and
camera views c. The ability to explicitly control these co-
efficients enables us to generate faces of the same subject
with different expressions, face shapes, and camera views,
as illustrated in Figure 4. This result demonstrates that the
learned feature descriptors exhibit a strong alignment with
the vertices in the canonical space. Consequently, neural
point-based rendering can serve as a viable alternative to
traditional graphic-based rendering methods. Moreover, we
intentionally select two distinct source images of the same

subject. Interestingly, the generated images, utilizing vertex
features from these distinct sources, exhibit a striking re-
semblance. This intriguing observation further underscores
the effectiveness and robustness of our method.

4.4. Ablation Studies

Vertex deformation We utilize the linear deformation
model fH(·) from ROME [31] to deform the vertices of
the hair and shoulder region. In this study, we conduct an
ablation experiment where we train CVTHead without this
vertex deformation module, instead employing the default
FLAME mesh with a bald head. The results presented in Ta-
ble 3 demonstrate that the removal of the vertex deformation
(“D.” in short) has only a minor impact on the performance.
Interestingly, Figure 5 reveals that the synthesized images
from CVTHead, both with and without vertex deformation,
appear nearly identical. Furthermore, even in cases where
the subject has fluffy or long hair that extends beyond the
head area, the absence of vertex deformation in CVTHead
does not hinder its ability to generate the correct hairstyle.
These results indicate that the local vertex descriptor can
effectively capture the necessary features.

Method L1 ↓ PSNR ↑ LPIPS ↓ MS-SSIM ↑
CVTHead (w/o D.) 0.041 22.47 0.121 0.842
CVTHead 0.041 22.09 0.111 0.840

Table 3. Ablation study on the vertex deformation module. We
evaluate the performance of self-reenactment on the VoxCeleb1.

Method L1 ↓ PSNR ↑ LPIPS ↓ MS-SSIM ↑
Pixel-aligned features 0.045 21.81 0.107 0.841
CVTHead 0.041 22.09 0.111 0.840

Table 4. Ablation study on the pixel-aligned features

Pixel-aligned features In our work, we design the ver-
tex feature transformers to learn the vertex feature. In this
study, we consider the pixel-aligned features as the base-
line, which project the 3D vertex into 2D and choose the
corresponding pixel from the image. We follow the ar-
chitecture design in S3F [11] and use a UNet-like feature
extractor and sample features of each vertex with its cor-
responding 2D projection. Table 4 indicates that this ap-
proach yields a marginally lower PSNR, but a slightly im-
proved LPIPS score. As shown in Figure 6, this design can
maintain more detailed local features such as hair due to
the high-resolution features. Thus, a slightly better LPIPS
is achieved. However, when the point is occluded in the
source image, the synthesized image tends to generate blur
and shadow in these areas if they are visible in the driving

6137



Source Image

Novel View

Neutral Face Neutral Face( )+30∘Neutral Face( )−30∘ Neutral Face( )+15∘Neutral Face( )−15∘

Novel Face Shape (Identity) Novel Expression

Figure 4. Qualitative results of face animation with novel views, novel face shapes (identity), and novel expressions.

Source Image Driving Image ours with D. mesh with D. mesh w.o. D.ours w.o. D.

Figure 5. Ablation study of CVTHead with and without the vertex
deformation model for hair and shoulder region (D. in short)

pose, which is the reason of the worse PSNR. These results
suggest that pixel-aligned methods cannot capture the cor-
rect features due to the ambiguity of depth. In this case,
when a large head rotation happens, this method encounters
the same issue as warp-based methods.

Source Image Driving Image Pixel-aligned CVTHead

Figure 6. Ablation study of vertex features.

5. Limitations
While our method demonstrates effective face animation

capabilities from a single image, one potential limitation is
that the performance of our approach heavily relies on the
accuracy of the 3D mesh reconstruction, specifically utiliz-
ing DECA [16] in our setup. In certain challenging scenar-
ios, DECA may struggle to fully disentangle the shape and
expression factors from the driving images. Consequently,
CVTHead may generate images that differ in expressions or
head poses from the intended outcome. This highlights the
need for further advancements in the accuracy and robust-
ness of 3D mesh reconstruction techniques to address such
limitations.

6. Conclusion
In this paper, we propose a novel approach for generat-

ing explicitly controllable head avatars from a single ref-
erence image, utilizing point-based neural rendering. We
treat the sparse vertices of the head mesh as a point set and
leverage the vertex-feature transformer to learn the local
feature descriptor for each vertex. Through our research,
we demonstrate that point-based rendering can effectively
replace traditional graphic-based rendering methods, offer-
ing enhanced efficiency. Moreover, we envision that our
method can be seamlessly integrated with various genera-
tive tools, such as diffusions, to further enhance the quality
of generated images and we consider this as future work.
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