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Abstract

State-of-the-art deep neural networks have been shown
to be extremely powerful in a variety of perceptual tasks like
semantic segmentation. However, these networks are vul-
nerable to adversarial perturbations of the input which are
imperceptible for humans but lead to incorrect predictions.
Treating image segmentation as a sum of pixel-wise clas-
sifications, adversarial attacks developed for classification
models were shown to be applicable to segmentation models
as well. In this work, we present simple uncertainty-based
weighting schemes for the loss functions of such attacks that
(i) put higher weights on pixel classifications which can
more easily perturbed and (ii) zero-out the pixel-wise losses
corresponding to those pixels that are already confidently
misclassified. The weighting schemes can be easily inte-
grated into the loss function of a range of well-known ad-
versarial attackers with minimal additional computational
overhead, but lead to significant improved perturbation per-
formance, as we demonstrate in our empirical analysis on
several datasets and models.

1. Introduction

Deep neural networks (DNNs) have been shown to be
extremely powerful in a wide range of perceptual tasks,
such as semantic image segmentation [5,25] for which they
demonstrate an outstanding prediction performance. Se-
mantic segmentation provides comprehensive and precise
information about the given image by assigning each pixel
to a predefined and fixed set of semantic classes resulting
in segmented objects. However, many studies have found
that DNNs are vulnerable to adversarial attacks [2, 3]. Ad-
versarial attacks generate slightly perturbed versions of the
input images which fool the DNN, i.e., change the net-
work predictions at test time, see for example Fig. 1. These
small perturbations are not perceptible to humans making
adversarial examples very hazardous in safety-related ap-
plications like automated driving. Thus, the development

(a) Input image (b) Clean

(c) Perturbed by original attack (d) Perturbed by our method

Figure 1. Semantic segmentation prediction for a clean image,
a perturbed image generated by the original attack proposed in
[16] and a perturbed image created by the same attack using our
uncertainty-weighted loss.

of efficient defense strategies against adversarial attacks is
of highest interest. These strategies either enhance the ro-
bustness of DNNs rendering it more challenging to gener-
ate adversarial examples, or rely on approaches to detect
adversarial attacks. In general, there are three common
approaches to increase the robustness of DNNs. The first
class of approaches aims to enhance the robustness of the
network by modifying the training process (e.g. [15, 31]).
Second, input denoising procedures, like autoencoder based
reconstruction [7] or inpainting [32], are considered to re-
move the perturbation from the input. The third class of
approaches increases the robustness during inference, e.g.
by multi-scale processing [2]. For the detection of adver-
sarial examples, the patch-wise spatial consistency check
[29] and an uncertainty-based method [17] have been pro-
posed. Regardless of strategy, it is a continuous loop be-
tween the development of defense/detection strategies and
adversarial attackers. This also means that the develop-
ment of new faster and stronger attacks is important in order
to strengthen the models against them and thus, enhancing
general model robustness.

Prior works on adversarial attacks focus on the image
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classification task and some of them are transferred to the
semantic segmentation task by treating each pixel labeling
independently as a separate classification task [12, 16, 20].
Moreover, there were adversarial examples specifically de-
veloped for the semantic segmentation task where all pix-
els of an image are attacked until selected pixels have been
misclassified into the target class, i.e., pixels of a selected
class appear or disappear, or even the entire image changes
[8, 21]. In comparison to these methods, the patch-wise
attack [23, 24] perturbs a small rectangular region of the
image aiming to cause prediction errors in the whole im-
age. Recently, the certified radius-guided attack framework
for segmentation models [26] was introduced. The idea is
to disturb pixels with comparatively smaller certified radii
since a smaller theoretically certified radius should relate to
lower robustness to adversarial perturbations.

In this paper, we present an uncertainty-based weight-
ing scheme which can be incorporated into the loss function
of any untargeted attack on semantic segmentation models
that is composed out of pixel-wise attacks. Uncertainty in-
formation, such as Monte-Carlo Dropout [11] or maximum
softmax [14], is considered for prediction error [19,28] and
out-of-distribution detection [18]. These works demonstrate
the correlation between uncertainty measures and erroneous
predictions. The idea behind our method is to include un-
certainty information into the loss function of an adversar-
ial attack to degrade the performance of the network even
more. To this end, we consider different white box attacks,
i.e., the attacker has full access to the model including pa-
rameters and loss function used during training. In contrast,
black box methods gain zero knowledge about the model
to attack. The expectations for any attack are low run-
times and computational effort while at the same time hav-
ing powerful perturbation effects. We modify the loss func-
tion of well-known adversarial methods by introducing an
uncertainty-weighted loss. On the one hand, we put higher
weights on pixel classifications which can more easily per-
turbed and on the other hand, we zero-out the pixel-wise
losses corresponding to those pixels that are already con-
fidently misclassified. Thus, our approach can be incorpo-
rated into any attack with minimal additional computational
overhead, but improved perturbation performance. First,
we apply our loss function to pixel-wise attacks for seman-
tic segmentation. Second, we replace the certified radius-
guided loss function introduced in [26] by our uncertainty-
based weighting scheme. Last, we introduce an alternative
approach for the patch-based attack where only a few pixels
are attacked. To this end, we choose randomly a subset of
pixels to attack and apply our loss function in combination
with the pixel-wise iterative fast gradient sign method [16].

In our tests, we employ state-of-the-art semantic seg-
mentation networks [5, 25, 33, 34] applied to the Cityscapes
[9] as well as the Pascal VOC2012 dataset [10] demon-

strating our adversarial attack performance. We apply
our approach to different types of attacks, such as pixel-
level attackers designed for image classification [12, 20]
and pixel-wise attacks developed for semantic segmenta-
tion [26, 27]. The source code of our method is pub-
licly available at https://github.com/kmaag/
Uncertainty-weighted-Loss. Our contributions
are summarized as follows:

• For the first time, we present an uncertainty-based
weighting scheme which can be incorporated into the
loss function for white box adversarial attacks which
has low computationally overhead compared to the
original attack.

• Our method is not designed for a specific adversarial
attack, rather we enhance different types of attackers in
a light-weight manner. We achieve attack pixel success
rate values of up to 99.82% across different network
architectures and datasets.

• We propose an approach which attacks only a subset
of the image pixels, similar to the patch attack, but also
leading to erroneous prediction of the entire image.

The paper is structured as follows. In Sec. 2, we present
various adversarial attacks for the semantic segmentation
task which serve as baselines in our work. We introduce our
method in Sec. 3. In Sec. 4, the numerical results are shown,
followed by a comparison with related work in Sec. 5 and a
conclusion in Sec. 6.

2. Background
In this section, we recall the semantic segmentation task

as well as different previously proposed adversarial attack-
ers to semantic segmentation models. Note, that all de-
scribed attacks belong to the white box setting.

Semantic segmentation To obtain a semantic segmenta-
tion, i.e., pixel-wise classification of image content, each
pixel z of an input image x gets assigned a label ỹz from a
prescribed label space C = {y1, . . . , yc}. A neural network
given learned weights w provides for the z-th pixel a proba-
bility distribution f(x;w)z ∈ R|C| specifying the probabil-
ity for each class y ∈ C denoted by p(·|x)z ∈ R. The pre-
dicted class is then computed by ŷxz = argmaxy∈C p(y|x)z .
To train the semantic segmentation network, a pixel-wise
loss function (generally the cross entropy) is simultaneously
minimized for all pixels z ∈ Z of an image x. The complete
loss function is then given by

L(f(x;w), y) =
1

|Z|
∑
z∈Z

Lz(f(x;w)z, yz) , (1)

where yz denotes the one-hot vector of the label.
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Adversarial attacks A well-known adversarial attack de-
veloped for image classification but also applied to seman-
tic segmentation is the fast gradient sign method (FGSM,
[12]). This (untargeted) single-step attack adds small per-
turbations to the image x leading to an increase of the loss
of

xadv = x+ ε · sign(∇xL(f(x;w), y)) , (2)

where ε describes the magnitude of perturbation, i.e., the
ℓ∞-norm of the perturbation is bounded to be (at most) ε.
This attack is extended to the iterative FGSM (I-FGSM,
[16]) increasing the perturbation strength by

xadv
t+1 = clipx,ε(x

adv
t + α · sign(∇xadv

t
L(f(xadv

t ;w), y))) ,
(3)

where xadv
0 = x, α defines the step size, and a clip function

ensures that xadv
t ∈ [x − ε, x + ε]. The projected gradient

descent (PGD, [20]) attack is similar to the iterative FGSM.
The difference between the two methods is that PGD choose
the starting point randomly within the ℓ∞ ball of interest
(and does random restarts), while I-FGSM initializes to the
original point. These approaches serve as basis for further
elaborated attacks like the orthogonal PGD [4] or DeepFool
[22].

Furthermore, there have been developed adversarial at-
tacks especially for the semantic segmentation task such
as adaptions of the PGD attack [1, 13]. The introduced
ALMA prox attack [27] is based on a proximal splitting to
produce adversarial perturbations with much smaller ℓ∞-
norm in comparison to FGSM and PGD. Recently, a certi-
fied radius-guided (CR) attack framework for segmentation
models was proposed [26]. The certified radius specifies the
size of an ℓp ball around a pixel in which a perturbation is
guaranteed to not change the class predicted for the pixel.
Thus, a larger certified radius indicates more robustness to
adversarial perturbations. The idea of the framework is to
focus on disrupting pixels with relatively smaller certified
radii.

In contrast to attacks adding perturbations to all pix-
els, patch attacks [23] disrupt a small rectangular region
of the image aiming at prediction errors in a much larger
region, i.e., the whole image. In [24], an individual patch
attack is introduced, the expectation over transformation-
based attack, creating robust adversarial examples to per-
turb a range of transformations at the same time. In the real
world scenario, transformations consist of angle and view-
point changes for instance. To generate these strong per-
turbing patches for the semantic segmentation task within
the optimization procedure an extension of the pixel-wise
cross entropy loss is introduced.

There also exist targeted attacks specifically developed
for semantic segmentation. For the stationary segmentation
mask method [8,21,30] the pixels of an image are iteratively
perturbed until most of the pixels have been misclassified as

Figure 2. An illustration of the decision boundaries between three
different classes where ŷx

z is the predicted class of input x, y′′ the
class with second highest probability and y′ another class. The
arrows δ and δ̃ represent distances from x to the decision bound-
aries.

belonging to the target class given by an arbitrary segmenta-
tion defined by the attacker. The dynamic nearest neighbor
method [6,21] is intended to remove one desired target class
(like pedestrians from street scene images) but keep for all
other classes the network’s segmentation unchanged.

3. Uncertainty-weighted loss functions
In the following, we describe the two weighting schemes

which follow different motivations: on the one hand focus-
ing on pixels whose classification is easily perturbable, and
on the other paying no attention to those pixels which are
already misclassified with high confidence.

3.1. Focusing on easily to perturb pixels

Recall, that for creating an adversarial attack we want
to add a perturbation (of a small predefined magnitude) to
the image that changes as many pixel-wise classifications as
possible. Intuitively, due to the restriction of the magnitude
of the perturbation, it makes sense to focus on those pixel
classifications that are easily to perturb. Geometrically, a
small shift of the input is more likely to lead to a differ-
ent classification result as closer the input is to the decision
boundary between the current and other classes. Let ŷxz be
the predicted class for pixel z and lets define y′ to be an-
other class. In a linear model the minimal distance to the
decision boundary separating class ŷxz from class y′ is then
defined by

δ =
p(ŷxz |x)z − p(y′|x)z

||∇x(p(ŷxz |x)z − p(y′|x)z)||2
. (4)

An illustration is given in Fig. 2. If an attack would fo-
cus on the misclassification of only a single pixel it would
make sense to focus at the one with the smallest distance to
the second most likely class. In this case the numerator of
Eq. (4) is given by the probability margin

M(x)z = p(ŷxz |x)z − argmax
y∈C\{ŷx

z }
p(y|x)z . (5)

However, neural networks are not linear models and the at-
tacks aim at the misclassification of all pixels. Therefore,
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the adversarial perturbation of the input does not necessar-
ily points into the direction of shortest distance to a decision
boundary. To take this into account a better indication of
which pixel classification is easiest to attack could be given
by the difference between the highest and lowest class prob-
ability

D(x)z = p(ŷxz |x)z −min
y∈C

p(y|x)z , (6)

which serves as a proxy of maximal distance to a deci-
sion boundary, i.e., the distance to the least likely class. If
the prediction is highly certain, the probability of the least
likely class is equal or close to zero.

Instead, one can also estimate the mean of the margins
to all other classes

M̄(x)z =
1

|C| − 1

∑
y∈C\{ŷx

z }

p(ŷxz |x)z − p(y|x)z . (7)

Moreover, the entropy

E(x)z = −
∑
y∈C

p(y|x)z · log p(y|x)z (8)

could be a good indicator, since it is often used as uncer-
tainty measure for the semantic segmentation task and it is
related to a weighted mean margin (where each margin is
weighted by log(p(y|x)z), i.e., smaller margins get a higher
weight).

The proposed indicators for the closeness to decision
boundaries can than be used as weighting factors for the
pixel-wise loss functions when calculating the adversar-
ial attacks. Such weighted versions of the FGSM and I-
FGSM method would for example be obtained by replacing
L(f(x;w), y) in Eq. (2) and Eq. (3), respectively, by

LU (f(x;w), y) =
1

|Z|
∑
z∈Z

eU(x)z · Lz(f(x;w)z, yz) (9)

where U(x)z ∈ {1 − M(x)z, 1 − D(x)z, 1 −
M̄(x)z, E(x)z}. The pixels with high uncertainty, i.e.,
larger values of U(x)z , are weighted stronger in the loss
during the adversarial example generation in order to lead as
many pixels as possible to a wrong prediction. We re-scale
the uncertainty values U(x) by the exponential function to
further emphasize high uncertainties.

3.2. Ignoring confidently wrongly classified pixels

If pixels are already predicted incorrectly, it makes no
sense to continue to give them a high weighting. Thus,
it is important to focus on pixels, when applying the loss
function, that are still correctly classified. That is, the loss
of pixels which are already misclassified with sufficiently
high confidence can be neglected. Therefore, during the at-
tack generation process, we set the loss of all pixels which

are misclassified with a probability of at least 75% to zero.
This is achieved by the following weighting scheme

L0(f(x;w), y) =
1

|Z|
∑
z∈Z

1(ŷx
z=ỹz∨p(ŷx

z |x)<0.75)

· Lz(f(x;w)z, yz) (10)

with ground truth class ỹz . The confidence of the misclas-
sification (as measured by p(ŷxz |x)) has to be taken into ac-
count, since the corresponding pixel is still perturbed based
on the gradients of the other pixel-wise loss functions. If
the uncertainty is high, i.e., the confidence is low, this could
shift the pixel accidentally back into the correct class. In
general, our uncertainty-based weighting scheme, LU and
L0, can be inserted into the loss function used in any untar-
geted and pixel-wise adversarial attack.

4. Experiments
In this section, we describe the experimental setting first

and then evaluate our adversarial attack performance.

4.1. Experimental setting

Datasets The experiments are conducted on two datasets,
Cityscapes [9] and Pascal VOC2012 [10] (shorthand VOC).
The latter dataset, for visual object classes in realistic
scenes, consists of 1,464 training and 1,449 validation im-
ages with annotations for different objects of categories per-
son, animal, vehicle and indoor. The Cityscapes dataset,
for semantic segmentation in street scenes, contains 2,975
training and 500 validation images of dense urban traffic in
18 and 3 different German towns, respectively.

Segmentation networks In our tests, we consider four
different pre-trained state-of-the-art networks. Trained on
the Cityscapes dataset, the BiSeNet [33] achieves a mean
intersection over union (mIoU) of 74.37% on the validation
set and the DDRNet [25] of 77.80%. Moreover, we employ
the DeepLabv3+ network [5] trained on Cityscapes obtain-
ing a validation mIoU of 79.61% and on VOC of 76.81%.
The PSPNet [34] achieves a mIoU value of 76.78% on the
VOC validation set.

Adversarial attacks We consider the well-known and in
defense approaches often considered [2,3,7,15] FGSM and
I-FGSM attacks in our tests with parameter setting proposed
in [16]. The step size is given by α = 1 and the perturbation
magnitude by ε = {4, 8, 16} resulting in a number of itera-
tions of n = min{ε + 4, ⌊1.25ε⌋}. The corresponding (it-
erative) FGSM attack is denoted by FGSMε and I-FGSMε.
As another pixel-wise attack originally developed for im-
age classification, we use the PGD attack with parameters
α = 1/30, ε = 1, n = 40 and one restart. In addition, we
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Figure 3. Segmentations for weighted and un-weighted attacks. (a) Input image from the Cityscapes dataset and (e) corresponding ground
truth. Semantic segmentation prediction for perturbed images generated by (b) iterative FGSM, (c) ALMA prox, (d) patch attack, (f) FGSM
with uncertainty-weighted (u.-w.) loss, (g) ALMA prox with u.-w. loss and (h) iterative FGSM with u.-w. loss applied to only a subset of
pixels.

Figure 4. Comparison of uncertainty measures M , D, M̄ and E
used for weighting loss functions of different adversarial attacks
for the DeepLabv3+ network applied to the Cityscapes dataset.

employ various adversarial example generation techniques
specifically designed for the semantic segmentation task.
Firstly, we consider the ALMA prox attack with default
parameters using the implementation of [27]. For the de-
scribed attacks above, we employ the model zoo1 including
the pre-trained models. Secondly, for the certified radius-
guided approach [26], we use the provided code with two
parameter settings, i.e., ℓ2-norm with ε = 1 and ℓ∞-norm
with ε = 0.004 (hyperameters all under default setting).
Lastly, we consider the patch attack [24] using the available
repository with default parameters applied to the BiSeNet
and the DDRNet tested on the real world Cityscapes dataset.

The model used to compute the certified radius-guided
method re-scales the VOC images to 473 × 473 which we
keep also for the other attacks. Since the Cityscapes dataset
provides high-resolution images of size 1024×2048, we re-
scale the image size to 512 × 1024 for the computation of

1https://github.com/open-mmlab/mmsegmentation

the adversarial examples to reduce the amount of memory to
run a full backward pass. Figure 3 (top row) shows semantic
segmentation predictions for a few attacks applied to the
Cityscapes dataset and the BiSeNet network.

Evaluation metrics To access the performance of the ad-
versarial attackers, we use the attack pixel success rate
(APSR) [27] which is defined by

APSR =
1

|Z|
∑
z∈Z

argmax
y∈C

p(y|x)z ̸= ỹz (11)

with ground truth class ỹz . This metric measures the num-
ber of falsely predicted pixels and thus, successfully at-
tacked pixels. Furthermore, we consider the difference of
the mIoU obtained on clean images and the mIoU obtained
on perturbed images as performance metric, denoted by
∆mIoU. Note, this metric is bounded by the mIoU value
on clean images.

4.2. Comparison of different weighting schemes

In Sec. 3.1, we introduced four different measures for es-
timating which pixel classification can easily be disturbed:
the probability margin M , the difference between the high-
est and lowest probability value D, the mean of the mar-
gins M̄ , and the entropy E. The first experiment aimed
at analysing which of these measures performs best. For
that, we have computed the different weighted attacks on
the DeepLabv3+ network applied to the Cityscapes dataset.
Figure 4 shows a comparison of the performance in terms
of APSR and ∆mIoU. The scores are fairly close and for
the weaker (FGSM) as well as stronger attacks (PGD and
ALMA prox) all measures lead to almost the same results.
For all attacks, the values resulting from weighting with the
difference between the highest and lowest probability D and
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the mean of the margins M̄ are almost equal. Overall, the
probability margin performs the worst, while the entropy
shows slight improvements for the iterative FGSM attack.
These results indicate, that it is advantageous to consider
the margin for more than one class and that higher weight-
ing margins to more likely classes (as approximately done
by the entropy) is also beneficial. Thus, for the following
experiments, we consider only the entropy as uncertainty
measure.

4.3. Evaluation of uncertainty-weighted attacks

A comparison between the attack performance of the
original proposed attacks and the attacks resulting from
replacing the original loss function with our incorporated
uncertainty-weighted loss function, i.e., Eq. (9) with en-
tropy as uncertainty measure and Eq. (10), is given in Fig. 5
for the Cityscapes dataset and in Fig. 6 for the VOC dataset.
We observe increased APSR and ∆mIoU performance for
larger magnitudes of perturbation for the non-iterative as
well as the iterative FGSM attacks. Our approach clearly
outperforms the original FGSM attack, as well in its simple
as in its iterative version. Examples of segmentations stem-
ming from the original I-FGSM as well as the uncertainty-
weighed counterpart (L0) are shown in Fig. 3 (b) and (f),
respectively. We obtain the largest performance boost for
the PGD attack where the incorporation of the weighting
leads up to 62.5 percentage points (pp) higher APSR val-
ues. A closer inspection shows, that the original PGD attack
performs poorly for the Cityscapes dataset. The reason for
this is that using this attack, the same wrong class is often
predicted for all pixels of an image. However, if the pertur-
bation fails to do that, only a few pixels are predicted incor-
rectly. But with the uncertainty-weighted loss (L0), almost
all images are predicted incorrectly. Alma prox is compar-
atively the strongest attack and achieves APSR values of
over 99%. It is therefore difficult to improve the results any
further, see for example Fig. 3 (c) and (g). The APSR val-
ues for the original attack and our uncertainty-based weight-
ing scheme are very similar, although we can enhance the
∆mIoU values for the Cityscapes dataset. In general, the
more extreme weighted loss function L0 outperforms the
entropy-weighted loss function LE for both datasets and in-
vestigated networks. This behavior is in the nature of the
weighting manner, i.e., in L0 pixels that are certainly incor-
rectly predicted are set to zero in the loss function and are
therefore no longer considered, while in LE only a weaker
weighting is applied. We also experimented with a com-
bination of both loss functions which however did not in-
crease the attack performance over using L0 alone.

The runtimes are given in Tab. 1 for the different attack-
ers. The results are averaged over the number of valida-
tion images and measured on a NVIDIA A40 GPU. The
runtimes for the weighted loss functions are quite compa-

rable and we quote the highest value here. Incorporating
our uncertainty-based weighting scheme into existing ad-
versarial attack generation models increases the runtimes
negligible but improves the performance greatly. Using our
proposed weighting scheme, the I-FGSM16 attack as well
as the PGD attack attain similar performance values as the
strong ALMA prox attack, but at lower runtimes. Only
needing about 3 to 5% of the runtime of ALMA prox, the
advantage is especially drastic for the iterative FGSM. Note,
the original attacks only achieve weaker performance.

4.4. Comparison with CR attack

The certified radius-guided approach is similar to
our uncertainty-based weighting scheme as both methods
weight the pixel-wise losses of the adversarial example gen-
erator to achieve a high attack success rate. We use the
framework provided in the original paper [26] and replace
their CR weighting procedure with our uncertainty-based
one to have a fair comparison of both methods. As shown
in Sec. 4.3, the L0 loss function performs best and is used in
the following experiments. In Tab. 2 (left), the numerical re-
sults are shown for the VOC dataset and the PSPNet. Note,
the code for more datasets and models is not released by the
authors up to now. With up to 26.62 pp higher APSR and
8.86 pp higher ∆mIoU values, our approach clearly out-
performs the CR method for both parameter settings and
evaluation metrics. Moreover, in Tab. 2 (right) the runtimes
for the adversarial attackers are given where “clear” means
that the underlying attack is considered without any weight-
ing scheme in the loss function. Our approach shows only
a minimally extended runtime, while the CR method shows
a runtime 1.4 times larger. Thus, the proposed weighting
scheme substantially improves over the CR based weight-
ing in terms of performance and runtime.

4.5. Perturbation of a reduced number of pixels

Patch attacks disrupt a small rectangular region of the
image aiming at prediction errors in a much larger region,
i.e., the whole image. We propose an alternative to the
patch attack where also only a few pixels are perturbed. To
this end, we choose randomly a subset of pixels to attack
and apply our uncertainty-based loss function in combina-
tion with the iterative FGSM. Note, we disturb the same
number of pixels like the considered patch method. Both
methods are difficult to compare since the expectation over
transformation-based attacking patch trains the attacker to
successfully perturb the image over a range of transforma-
tions while our method perturbs only random pixels with
the I-FGSM attack. Our aim is to propose another way of
attacking only a few pixels and achieving at the same time
a high prediction damage. In Fig. 7, the performance re-
sults of the patch attack for the Cityscapes dataset are given
in comparison to our approach using various magnitudes
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(a) DeepLabv3+ (left) and BiSeNet (right) (b) DeepLabv3+ (left) and BiSeNet (right)

Figure 5. APSR (a) and ∆mIoU (b) results for different attacks on two networks trained on the Cityscapes dataset.

(a) DeepLabv3+ (left) and PSPNet (right) (b) DeepLabv3+ (left) and PSPNet (right)

Figure 6. APSR (a) and ∆mIoU (b) results for different attacks on two networks trained on the VOC dataset.

Figure 7. APSR results for the BiSeNet (left) and the DDRNet
(right) applied to the Cityscapes dataset for a comparison between
the patch attack and our approach (iterative FGSM attack with
uncertainty-weighted loss applied to only a subset of pixels).

of perturbation for the I-FGSM attack. For the BiSeNet,
we need a perturbation magnitude of 32 to outperform the
patch attack in terms of APSR, while for the DDRNet a
magnitude of 16 is sufficient. In Fig. 3 (d) and (h), a quali-
tative result of the patch attack and our approach is shown.
Both attacks perturb the prediction in different ways, i.e.,
the patch attack targets the upper part of the image while
our approach focuses on the lower part. This observation is
not specific to the shown example but holds more generally
for segmentations of the discussed adversarial examples.

5. Related work

The only similar work to our uncertainty-based weight-
ing scheme is the certified radius-guided approach pro-
posed in [26] focusing on the attack of pixels with relatively
smaller certified radii. While we use different uncertainty
measures that are simple to compute or set values in the
loss function to zero, the calculation of the certified radius
for each pixel produces high computational overhead which
is reflected in the runtimes of the method. In addition to the
more expensive calculation and longer runtimes, the attack
performance is also worse compared to our method.

The patch attack [24] perturbs only a few pixels of an im-
age, i.e., a rectangular region of fixed size. The expectation
over transformation-based method trains the attacker to suc-
cessfully perturb the image over a range of transformations.
In contrast, our approach also perturbs only a small number
of pixels (exactly the same number as the patch attack) but
uses the I-FGSM procedure with uncertainty-weighted loss
and targets only a specific image. Therefore, both methods
are not comparable with each other, rather, they demon-
strate two different ways to create a high degree of attack
damage to the image while perturbing only a few pixels.
Figure 3 shows that both attacks focus on different regions,
so combining both attacks could be interesting.
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FGSM4 FGSM8 FGSM16 I-FGSM4 I-FGSM8 I-FGSM16 PGD ALMA prox

Cityscapes Deep- orig 0.16 0.16 0.16 0.74 1.50 3.01 60.15 64.75
Labv3+ ours 0.16 0.16 0.16 0.77 1.53 3.07 61.72 66.80

BiSe- orig 0.14 0.14 0.14 0.24 0.36 0.56 9.81 16.81
Net ours 0.15 0.15 0.15 0.24 0.36 0.56 10.05 17.74

VOC Deep- orig 0.08 0.08 0.08 0.34 0.69 1.39 27.41 30.76
Labv3+ ours 0.08 0.08 0.08 0.35 0.71 1.43 28.16 31.55

PSP- orig 0.08 0.08 0.08 0.32 0.64 1.28 26.21 29.91
Net ours 0.09 0.09 0.09 0.33 0.65 1.30 26.96 30.21

Table 1. Runtimes (sec. per frame) for different adversarial attacks with original loss function in comparison to our uncertainty-weighted
loss for both datasets and different networks.

APSR ∆mIoU
ℓ2 ℓ∞ ℓ2 ℓ∞

orig 59.92 82.50 61.36 67.89
L0 (ours) 86.54 99.69 70.22 73.46

clean 3.64
orig 5.18
ours 3.70

Table 2. APSR and ∆mIoU results for the PSPNet applied to
the VOC dataset comparing the CR framework with our approach
(left). Corresponding runtimes in seconds per frame for the un-
derlying attack without weighting scheme, the CR loss function as
well as our approach (right).

Potential negative societal impact

Adversarial attacks are generally considered to be mali-
cious, as they can compromise the security of neural net-
works and rapidly degrade performance. However, the de-
velopment and especially the free availability are of highest
interest to develop detection and defense methods to prevent
attacks.

6. Conclusion and outlook
In this work, we proposed an uncertainty-based weight-

ing scheme which can be incorporated into the loss function
of any untargeted attack on semantic segmentation models
that is composed out of pixel-wise attacks. We exploited
the correlation between uncertainty measures and erroneous
predictions to strongly degrade the prediction performance
of neural networks. The expectations for any attack are low
runtimes and computational effort while at the same time
having powerful perturbation effects. Our approach can be
applied to any attack with minimal computational overhead
compared to the original attack, but results in significantly
enhanced perturbation performance. We achieved attack
pixel success rate values of up to 99.82% across different
network architectures and datasets. Moreover, we presented
a method which attacks only a subset of the image pixels,
similar to the patch attack, but also leading to an erroneous
prediction of big parts of the image.

As a further improvement, we plan to develop an

uncertainty-weighted loss function for targeted adversarial
attacks as our approach is limited to untargeted attacks.
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