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Abstract

Low-light image enhancement (LLIE) is the process of

improving the quality of images taken in low-light condi-

tions while striking a balance between enhancing image il-

lumination and maintaining their natural appearance. This

involves reducing noise, enhancing details, and correcting

colors, all while avoiding artifacts such as halo effects or

color distortions. We propose LIVENet, a novel deep neu-

ral network that jointly performs noise reduction on low-

light images and enhances illumination and texture details.

LIVENet has two stages: the image enhancement stage and

the refinement stage. For the image enhancement stage,

we propose a Latent Subspace Denoising Block (LSDB)

that uses a low-rank representation of low-light features

to suppress the noise and predict a noise-free grayscale

image. We propose enhancing an RGB image by elimi-

nating noise. This is done by converting it into YCbCr

color space and replacing the noisy luminance (Y) chan-

nel with the predicted noise-free grayscale image. LIVENet

also predicts the transmission map and atmospheric light

in the image enhancement stage. LIVENet produces an en-

hanced image with rich color and illumination by feeding

them to an atmospheric scattering model. In the refine-

ment stage, the texture information from the grayscale im-

age is incorporated into the improved image using a Spa-

tial Feature Transform (SFT) layer. Experiments on differ-

ent datasets demonstrate that LIVENet’s enhanced images

consistently outperform previous techniques across various

quality metrics. The source code can be obtained from

https://github.com/CandleLabAI/LiveNet.
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Figure 1. Traditional techniques show a significant color differ-

ence from the ground truth. LIVENet restores realistic colors

while reducing noise. The values in parenthesis are (PSNR/SSIM).

1. Introduction

Images taken in low-light conditions, such as at night,

are becoming increasingly common and important due to

evening events, night surveillance systems, and self-driving

cars. However, processing such Low-Light Images (LLIs)

presents crucial challenges. LLIs are often affected by ex-

cessive amounts of noise [40], which may be challenging

to remove without reducing image quality or losing cru-

cial features. Some Low-Light Image Enhancement (LLIE)

techniques amplify this noise, leading to speckles and dis-

tortion in the final images. LLIs suffer from low con-

trast, uneven illumination, and artifacts such as color shifts.

These factors hamper human perception and hinder down-

stream vision tasks such as face identification and semantic

segmentation. These challenges have motivated researchers

to propose several LLIE techniques.

The traditional LLIE techniques may be broadly divided

into two categories: Histogram Equalization (HE)-based

and retinex-based (refer to the supplementary material for

more details). The HE-based techniques [1, 2, 12, 25, 33]

change the image histogram to enhance the contrast. How-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.
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ever, these methods lose image details due to the over-

enhancement of some image areas. This can lead to a

loss of texture and fine details. The retinex-based tech-

niques [3,4,9,14,15,23,28,34] decompose the image into re-

flectance and illumination and then restore reflectance from

illumination-adjusted input using ground-truth enhanced

images. However, these techniques require extensive pa-

rameter tuning, leading to unrealistic colors and noise.

Recent years have seen the introduction of deep-

learning-based LLIE techniques [13, 18, 19, 31, 40]. While

these techniques outperform conventional techniques, they

still suffer from crucial limitations: (i) Low-light images

usually contain a greater proportion of noise compared to

normal-light images. Previous LLIE techniques generally

involve increasing the image’s brightness and adjusting the

contrast to make details more visible. However, these en-

hancements may amplify the noise in the image. (ii) In

low-light conditions, the available light is limited, and the

color information can be distorted or inaccurate. This can

result in color shifts, where the colors in the image may

appear different from their actual appearance in real life.

(iii) LLIs have a limited dynamic range, meaning there is

a slight difference between the brightest and darkest parts

of the image. This limits the amount of texture information

that can be recovered by LLIE techniques, particularly in

very bright or very dark image regions. To address the chal-

lenges mentioned above, we propose LIVENet, a coarse-

to-fine network for low-light image visibility enhancement.

Our major contributions are:

1. We propose two novel denoising strategies. (i) We

implement GSIP (Gray Scale Image Prediction) and LSDB

(Latent Subspace Denoising Block) modules, which lever-

age the low-rank representation of the noisy dark image to

predict the noise-free grayscale counterparts. (ii) We de-

noise RGB images by transforming the image into YCbCr

color space. We replace the noisy luminance (Y) channel

with a predicted noise-free grayscale image. To our knowl-

edge, this is the first work to propose these strategies in

LLIE operation.

2. To recover the illumination and realistic colors in the

enhanced image, we introduce an Atmospheric Scattering

Model (ASM). The ASM generates the enhanced image

based on the transmission map and atmospheric light pre-

dicted in the image enhancement stage.

3. To overcome the limitation of blurriness and lack of

texture information in enhanced image, we design the re-

finement stage, which leverages the ”Spatial Feature Trans-

form” (SFT) layers to adopt the features from the noise-free

grayscale image into the enhanced image.

Experimental results on LOL-v1 and LOL-v2-real

datasets show that LIVENet outperforms previous networks

on all the metrics (PSNR, SSIM, MAE, and LPIPS). A

sample result is shown in Figure 1. Results on additional

datasets and ablation results provide further insights.

2. Related Work

We now summarize deep-learning-based LLIE tech-

niques, categorized into supervised methods that use paired

low/normal light data for training and unsupervised meth-

ods that use unpaired low-light data for training.

Supervised Methods: LLNet [18] proposes a deep neu-

ral network for image enhancement and denoising. It uses

a stack sparse denoising autoencoder to correlate low-light

images with the corresponding enhanced images. LLNet

generates training paired data by adding synthetic noise

and randomly performing Gamma correction. Neverthe-

less, the link between real-world lighting and noise is not

adequately addressed, resulting in residual noise and over-

smoothing issues. Bread [7] uses YCbCr color space and

suppresses noise in the brightened luma (Y) component un-

der the guidance of illumination. The enhanced luma then

guides the chroma mapper to produce realistic colors. Wang

et al. [37] utilized additional input of segmentation masks

of interpreted LR and spatial feature transformation (SFT)

layer to handle them. LLFlow [38] proposes a normalizing

flow model to capture the relationship between low-light

and normal images. Normalizing flow learns the distribu-

tion of normal images into a Gaussian distribution.

KinD [50], and KinD++ [49] utilize three sub-networks

for illumination and reflection learning. They use illu-

mination as the guidance for the restoration task and ap-

ply denoising on only the reflection component. DCC-

Net [52] separates a color image into grayscale and color

histogram. The former is used to recover textures and struc-

tures, while the latter is used for maintaining color consis-

tency. R2RNet [10] uses a UNet-based network for denois-

ing and an FFT-based approach to extract frequency fea-

tures. By enhancing high-frequency signals, which repre-

sent content or noise, their technique improves image con-

trast and preserves fine details. LIME [8] works by estimat-

ing the illumination of every pixel and refining it according

to a structure prior based on the retinex theory. LIME ef-

fectively restores brightness and contrast; however, it fails

to reduce the noise and creates a color gap between ground

truth and generated enhanced image.

SIRE [5] tries to estimate reflectance and illumination

using a retinex-based weighted variational model. Its out-

put images are rich in colors but are blurry and have smooth

structures around borders due to a lack of denoising. SNR

[42] uses long-range operations (transformer) in image re-

gions with low signal-to-noise (SNR) ratio and short-range

operations (convolution) in image regions with high SNR.

The SNR values across the image guide attention in the

transformer and the final fusion of features of the two

branches. MSRNet [29] extends the single scale retinex

by fusing the results of multiple Gaussian blur functions
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Figure 2. Architecture diagram of LIVENet
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Figure 3. Outputs of various modules in LIVENet. The blue values are (PSNR/SSIM/MAE/LPIPS) metrics. A transmission map and a

grayscale image are single-channel; hence, these metrics are not shown. The improvement in PSNR and SSIM from [Noisy] coarse map

(19.94/0.66) to the Denoised coarse map (27.35/0.75) demonstrates the usefulness of the GSIP and LSDB modules. The improvement in

SSIM and LPIPS from the denoised coarse map (0.75/0.18) to Inormal (0.93/0.11) shows the efficacy of the refinement stage and SFT

layers.

with different variances. However, it suffers from over-

enhancement. The GLAD technique [36] first predicts the

global illumination and then reconstructs the detailed struc-

ture. Although it learns better texture information from the

second stage, it suffers from color distortion due to global

feature extraction in the first stage.

Unsupervised Methods: EnlightenGAN [13] uses a

dual global-local discriminator to handle spatially-varying

light conditions and perceptual loss to learn better features.

It primarily focuses on the light factor and hence, cannot

remedy other defects. DRBN [43] proposes a deep recur-

sive band network, which extracts coarse-to-fine linear band

representations for denoising and image enhancement. Ze-

roDCE [6] and ZeroDCE++ [17] use a deep network to es-

timate image-specific pixel-wise curves and uses them for

dynamic range adjustment. SCI [21] proposes a lightweight

self-calibrated module for illumination learning. It uses

multiple cascaded blocks that share weights.

3. Proposed Method

Overall architecture: Figure 2 shows the architecture

of LIVENet, and Figure 3 shows the output of each mod-

ule. LIVENet is a coarse-to-fine network and is comprised

of two stages: the image enhancement stage and the refine-

ment stage. Conventional retinex-based and deep-learning-

based methods concentrate on improving lighting while ne-

glecting texture and color improvement. Hence, their out-

put images suffer from a structure and color gap. To resolve

these issues, our proposed image enhancement stage com-

prises two modules: GrayScale Image Prediction (GSIP)

and Coarse Map Image Generation (CMIG). GSIP predicts

a noise-free grayscale image, which is utilized in the image

enhancement stage to remove noise from the coarse map

and in the refinement stage to learn texture information from

the enhanced image. CMIG predicts the transmission map

and atmospheric light, which is used to generate a coarse

map image. The coarse map image captures the coarse in-

formation such as lighting and colors; however, it has poor

structure and some noise. The refinement stage refines this

coarse map image to predict the final normal-light enhanced

image. We now describe these modules.

3.1. Stage one: grayscale image prediction (GSIP)

For a given noisy low-light image ( A in Figure 3), GSIP

predicts the grayscale image ( C ) of the normal-light ver-

sion. This grayscale image is a good representation of the

structural information in the image and is less affected by

noise and other artifacts in the low-light image. Thus, by

training GSIP, the network learns to focus on the crucial
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structural features and suppress the noise.

GSIP architecture: Inspired by the efficacy of encoder-

decoder networks for dehazing [30], matting [41], denois-

ing [22], and inpainting [24], we construct GSIP with

encoder-decoder pipeline (Figure 2). The encoder is created

using six residual blocks with squeeze and excitation [11]

module and a proposed “latent subspace denoising block”

(LSDB). The residual blocks perform the feature extraction,

and the LSDB suppresses the noise from extracted features.

Also, to keep a flow of information throughout the network,

the encoder shares skip connections with the decoder. The

ground truth of the grayscale image is generated by convert-

ing the enhanced image into a grayscale image. GSIP uses

L1 loss and SSIM loss for grayscale image reconstruction.

LSDB block: As shown in Figure 4, an image can be

decomposed into a low-rank matrix and a high-rank matrix

using matrix factorization techniques. Here, the low-rank

matrix captures the image’s underlying structure and fine

details, and the high-rank matrix contains the noise. To

leverage this decomposition for denoising, we discard the

high-rank matrix and use the low-rank matrix to estimate

the original image. Since the low-rank matrix is a smooth

approximation of the original image, it is less sensitive to

noise and can be used for effective denoising.

(a) Low-light image (b) Low-rank component (c) High-rank component

Figure 4. Image decomposition into a low-rank component con-

taining the texture information and a high-rank component con-

taining the noise.

Previous methods [26, 27, 51] have used low-rank rep-

resentation for image denoising; however, the optimization

process of the low-rank image is time-consuming and non-

differentiable. In this paper, we propose a differentiable

LSDB inspired by [47] for LLI denoising. Figure 5 shows

the architecture of LSDB, where F1 and F7 correspond to

input LLI and low-rank component (respectively) of Figure

4. LSDB uses 3 × 3 convolution for feature extraction and

1× 1 convolution for subspace decomposition. The feature

map F1 is first fed into 3× 3 convolution to extract shallow

features for subspace decomposition. These features are fed

to two 1× 1 convolution + GELU to obtain a low-rank rep-

resentation of LLI. We use matrix multiplication between

feature maps to obtain the latent space decomposition of

LLI. We add shallow feature output and output of matrix

multiplication (F6) to obtain the denoised feature map F7.

F1
Conv
3x3

CxHxW

Conv
1x1

c’xHxW

Conv
1x1

c’xHxW

Conv
1x1

CxHxW CxHxW

F2
Reshape

c’xHW

F3
Reshape
+Trans

F5
Trans

HW x c’

F4

F6

Reshape+
Trans

F7

HWxC c’xC HWxC

CxHxW

Conv
1x1

Conv
1x1

Conv
1x1

Figure 5. Proposed LSDB (inspired from [47])

3.2. Stage one: coarse map image generation
(CMIG)

Existing LLIE techniques [5, 45, 46] face challenges in

restoring fine detail and brightness due to the low SNR in-

herent in low-light images, as well as the loss of image con-

trast and color saturation. To mitigate this challenge, we

propose a CMIG module (Figure 2), which aims to improve

illumination and reduce color distortion in a low-light im-

age Ilow ( A in Figure 3). CMIG uses an encoder-decoder

network where the encoder consists of six residual convo-

lution blocks with squeeze and excitation for feature ex-

traction and two parallel branches in the decoder for pre-

diction of transmission map (t) and atmospheric light (A).

CMIG uses L1 loss to predict the transmission map and at-

mospheric light.

Atmospheric scattering model (ASM): The transmis-

sion map ( B ) represents the ratio of original scene radiance

to the incident light that has not been scattered by the atmo-

sphere. The atmospheric light is the global illumination that

has been scattered by the atmosphere and reaches the cam-

era, and it is a global constant for a given image. These

two components are essential for accurately estimating the

scene’s radiance and generating an image with improved

brightness and color balance. Atmospheric scattering oc-

curs when light interacts with particles in the atmosphere,

leading to changes in the appearance of images taken under

certain conditions, such as low-light environments. ASM is

a mathematical algorithm that simulates how light behaves

as it interacts with the atmosphere, accounting for scatter-

ing, absorption, and reflection factors. We use ASM to ob-

tain an image that preserves important features and has en-

hanced illumination and visibility. ASM uses the equation

1. Here J(x) represents the enhanced image ( D ). The de-

tailed steps for generating the coarse map are provided in

the supplementary material.

J(x) =
Ilow(x)−A

t(x)
+A (1)

Removing noise from ASM output: A downside of

ASM is that it can increase the noise while enhancing il-

lumination. This unequal noise distribution produces vari-

ous problems in the LLIE process, including color bleeding.

Excessive blue channel denoising results in color bleeding

and aberrations. Thus, the noise in the coarse map image
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can propagate and get amplified during the subsequent im-

age enhancement process, leading to further degradation of

the image quality.

The ASM output is a coarse map in RGB space. The

noise is typically distributed equally across all three color

channels in the RGB color space. So, it is difficult to re-

move noise from the RGB color space. It is well known

that different color spaces show different noise distribu-

tions in constituent channels. Hence, we propose address-

ing the above issue by changing the color space from RGB

to one that separates luminance and chrominance, such as

CIELAB, CIELUV, and YCbCr. Of these, we prefer YCbCr

since it is a linear color space. The YCbCr color space di-

vides the spectrum into a luminance channel (Y) and two

chrominance channels (Cr and Cb). We note that (1) the

noise distribution is contained in the luminance (Y) chan-

nel only (2) the human eye is more sensitive to changes in

luminance than color changes, so noise in the luminance

channel has a higher effect on the perceived quality of the

image. Therefore, we focus on reducing noise in the lumi-

nance channel while preserving the color information in the

chrominance channels. To realize this, we first convert the

ASM-generated coarse map image from RGB color space

to YCbCr color space ( E ). Then, our key idea is to replace

its Y channel with the noise-free grayscale image predicted

by the GSIP module ( C ). We call the resultant image a

denoised coarse map in GrayCbCr space ( F ). We convert

this image back to RGB color space ( G ) and feed it to the

refinement stage.

3.3. Stage two: Refinement stage

Motivation: By using a combination of a dark channel

prior and a bright channel prior to create the transmission

map, stage one can understand the amount of enhancement

required by different image regions. The denoised coarse

map image ( G ) is free from color distortion and has fine

illumination. Nevertheless, it suffers from two limitations:

(1) It fails to recover texture information due to LLI’s lim-

ited dynamic range of pixel values. (2) Using residual con-

volution to extract features from the dark image results in

blurriness and smoothness while denoising. To mitigate

these limitations, we propose the refinement stage, which

seeks to learn the missing structure and improve color and

lighting in the coarse map image.

Architecture: We feed the coarse map image ( G ) and

the noise-free grayscale image ( C ) generated by GSIP into

the refinement stage. The refinement stage consists of two

encoders: a fully convolutional encoder for learning struc-

tural information from the grayscale image and an encoder

with SFT layers [37] for enhancing the illumination of the

coarse map image. The lateral connections between the two

encoders allow the network to incorporate both global and

local information from the grayscale image while preserv-

ing the detailed features in the denoised coarse map im-

age. The refinement stage uses L1 loss and SSIM loss

for normal-light image reconstruction.

SFT layer: The SFT layer was originally proposed for

image super-resolution tasks. It was used for learning tex-

ture information with the help of segmentation probability

maps as a prior condition. We adopt the SFT layer for the

LLIE task. The SFT layer adjusts the distribution of the

denoised coarse map based on features extracted from the

grayscale image.

Based on the prior condition Ψ, the SFT layer seeks to

train a mapping function M that outputs modulation pa-

rameters (γ, β). Here, prior condition Ψ can be represented

as probability maps from grayscale image features, and the

mapping function maps the coarse map to an enhanced im-

age, given prior condition Ψ. To perform this mapping,

SFT performs an affine transformation on the coarse map

by scaling and shifting the input features by γ and β, re-

spectively. γ and β parameters assist in adjusting structural

features in the enhanced image. SFT can be stated math-

ematically as equation 2. Here, ⊙ denotes element-wise

multiplication. The SFT layer preserves the spatial dimen-

sions; hence, it can perform both feature-wise and spatial-

wise transformations. This enables it to recover structural

information.

SFT (F |γ, β) = γ ⊙ F + β (2)

4. Experimental Results and Analysis

For details on the experimental platform and metrics, re-

fer to supplementary. To ensure uniformity, we have con-

ducted experiments with all previous techniques ourselves.

We use the models trained on the same dataset for LOL-v1

[40] and LOL-v2-real [44] datasets since the ground-truth

images are available. For showing results on the unpaired

datasets, viz., DICM [16], LIME [8], MEF [20] NPE [35],

and VV [32], we have used the model trained on the LOL-

v1 dataset.

Quantitative Results: Table 1 summarizes the quanti-

tative results. We omit a few networks, viz., LIME [8],

SIRE [5], MSRNet [29], GLAD [36], EnlightenGAN [13],

and LLNet [18] from the comparison because the recent net-

works that we compare against, viz., DCCNet, LLFlow and

SNR, have already outperformed them.

Our proposed LIVENet achieves the highest PSNR and

the lowest MAE on both datasets, indicating that its results

are closest to the ground truth. LIVENet can recover struc-

tures (shown by higher SSIM [39]), suppress noise, and re-

trieve color (shown by higher PSNR). Its output images are

more realistic (shown by lower MAE) and best aligned with

the human vision (shown by low LPIPS [48]).

LPIPS is a human perception metric. LIVENet sig-

nificantly improves the LPIPS metric over most previous
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(a) Input (5.61) (b) ZDCE (15.6) (c) ZDCE++ (17.59) (d) SCI(13.60) (e) RNet (17.32) (f) KinD (13.14)

(g) KinD++ (13.36) (h) SNR (15.68) (i) DCCNet (18.05) (j) LLFlow (18.63) (k) GT (inf) (l) LIVENet (19.78)

(m) Input (8.87) (n) ZDCE (15.01) (o) ZDCE++ (15.74) (p) SCI (13.75) (q) RNet (19.30) (r) KinD (12.97)

(s) KinD++ (15.02) (t) SNR (22.58) (u) DCCNet (22.43) (v) LLFlow (21.39) (w) GT (inf) (x) LIVENet (23.13)

Figure 6. Results on LOL-v1 dataset. The number in parenthesis shows image PSNR. GT=ground-truth

Table 1. Results on the LOL-v1 and LOL-v2-real dataset. The

best and second-best results are shown in bold and underlined, re-

spectively.

LOL-v1 LOL-v2-real

Model PSNR SSIM MAE LPIPS PSNR SSIM MAE LPIPS

ZeroDCE (CVPR-20) [6] 14.36 0.49 0.18 0.45 12.37 0.44 0.24 0.50

ZeroDCE++ (TPAMI-21) [17] 15.34 0.57 0.23 0.33 12.66 0.45 0.24 0.45

SCI (CVPR-22) [21] 16.44 0.54 0.19 0.39 16.7 0.54 0.27 0.34

RetinexNet (BMVC-18) [40] 17.23 0.48 0.14 0.46 15.98 0.72 0.17 0.41

KinD (MM-19) [50] 19.36 0.84 0.11 0.18 18.11 0.81 0.13 0.27

KinD++ (IJCV-21) [49] 21.32 0.85 0.08 0.23 18.85 0.81 0.12 0.24

SNR (CVPR-22) [42] 22.75 0.80 0.09 0.19 20.15 0.83 0.12 0.17

DCCNet (CVPR-22) [52] 22.97 0.85 0.08 0.14 20.47 0.75 0.13 0.11

LLFlow (AAAI-22) [38] 23.84 0.86 0.07 0.14 22.58 0.82 0.08 0.16

LIVENet (Ours) 24.68 0.87 0.07 0.14 23.19 0.84 0.07 0.12

methods, suggesting that LIVENet is best aligned with hu-

man vision. The unsupervised methods (ZeroDCE, Ze-

roDCE++, and SCI) are inferior to the supervised ap-

proaches (KinD, KinD++, RetinexNet, SNR, DCCNet,

LLFlow, and LIVENet) in maintaining the quality of en-

hanced images. The unsupervised methods cannot learn

noise suppression from reference images, leading to poor

PSNR. ZeroDCE was designed for low-light images with

poor contrast and saturation but not for noisy LLIs. Hence,

it produces inferior results (high LPIPS) on LOL-v1 and

LOL-v2-real datasets, which have a noticeable amount of

noise. SCI uses a self-calibrated module for illumination

learning, which enhances exposure stability but disregards

noise suppression.

RetinexNet employs a denoising tool (BM3D) to clean

the reflectance component. After the illumination factor

is extracted, the dark regions of the image contain much

higher noise than the brighter regions. In such a case, using

a denoiser that performs uniform denoising on all the image

areas is no longer appropriate. Due to this, RetinexNet pro-

duces an image with higher noise (low PSNR of 17.23) and

unrealistic colors (high LPIPS of 0.46).

Table 2 shows the naturalness image quality evaluator

(NIQE) score for unpaired datasets. LIVENet achieves the

best NIQE scores on all the datasets except the NPE dataset,

where it is the second best. Table 2 also shows a detailed

parameter comparison between LIVENet and the baseline

model. LIVENet has 16.66M params.

Table 2. NIQE metric (lower is better) results on the five unpaired

datasets: DICM, LIME, MEF, NPE, and VV.

Method DICM LIME MEF NPE VV Parameters (M)

ZeroDCE 4.7602 5.4574 4.7800 4.9092 4.8553 0.070

ZeroDCE++ 4.4424 5.3330 4.7028 4.9658 5.0044 0.010

SCI 4.4700 5.1141 4.5076 4.9733 5.0498 0.005

RetinexNet 4.8895 5.9931 4.9269 5.5785 5.6219 0.450

KinD 4.0515 4.9392 4.9287 4.7428 4.5471 8.110

kinD++ 4.4110 4.8626 4.2931 4.3225 4.8295 8.280

SNR 3.6947 4.5159 4.2671 4.6744 5.9617 40.01

DCCNet 3.6815 4.5188 4.0105 3.6023 4.6076 13.18

LLFlow 3.8409 4.6777 4.0863 4.3470 4.0940 1.700

Ours 3.6024 4.2188 3.8937 3.8931 3.4433 16.66

Qualitative results on LOL-v1 dataset (Figure 6): Ze-

roDCE, ZeroDCE++, and RetinexNet have been abbrevi-

ated as ZDCE, ZDCE++, and RNet, respectively. LIVENet

significantly enhances the results by suppressing huge noise
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(a) Input (b) KinD (c) KinD++ (d) SNR (e) DCCNet (f) LLFlow (g) LIVENet

(h) Input (i) KinD (j) KinD++ (k) SNR (l) DCCNet (m) LLFlow (n) LIVENet

Figure 7. Qualitative results on the DICM dataset (Row 1) and the LIME dataset (Row 2)

(a) Input (b) KinD (c) KinD++ (d) SNR (e) DCCNet (f) LLFlow (g) LIVENet

(h) Input (i) KinD (j) KinD++ (k) SNR (l) DCCNet (m) LLFlow (n) LIVENet

(o) Input (p) KinD (q) KinD++ (r) SNR (s) DCCNet (t) LLFlow (u) LIVENet

Figure 8. Qualitative results on the MEF (row 1), NPE (row 2), and VV (row 3) datasets

and revealing more realistic colors. ZeroDCE and Ze-

roDCE++ have increased the brightness, as evident from

the first (b, c) and third row(n, o). SCI applies a zero-shot

learning strategy without a reference image. This strategy

cannot produce satisfying results in challenging cases and

suffers from low contrast, as shown in the first row (d) and

third row (p). RetinexNet improves illumination but fails to

produce natural colors due to the smoothness gained from

the denoiser. Similarly, KinD and KinD++ images suffer

from darkness and do not adjust the illumination correctly.

Qualitative results on DICM and LIME datasets

(Figure 7): For comparison, we choose the best five meth-

ods, viz., KinD, KinD++, SNR, DCCNet, and LLFlow. We

have used the network trained with the LOL-v1 dataset to

obtain these results. The green rectangle magnifies the

small area of the image to highlight finer details. For the

image in the first row (DICM dataset), KinD and KinD++

perform excessive enhancement, leading to the loss of some

of the original colors. The region inside the green rectangle

shows that LIVENet (by virtue of using LSDB) has signif-

icantly reduced the noise in the dark shadow image (first

row). DCCNet decouples the RGB image into a grayscale

image and a color histogram. It improves illumination in

the bright region but fails to eliminate noise in the dark

region, as shown in the person’s shadow. The SNR tech-

nique applies the “signal-to-noise ratio” prior with a trans-

former. This transformer distributes its focus evenly across

all patches, regardless of illumination. This effect can be

seen from the lamp region (second row), which is overly

saturated with surrounding pixels.
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Our proposed CMIG uses a bright channel to create

the transmission map ground truth, and it also uses the

dark channel prior as a supplement to correct the over-

enhanced transmission map for the bright object area. Its

usefulness can be observed in the image in the second row,

where LIVENet properly enhances the image without over-

enhancing the source of light (lamp) or the surrounding area

of the light.

Qualitative results on MEF, NPE, and VV datasets

(Figure 8): Notice that the images produced by KinD and

KinD++ show the wrong color information. For the candle

image in the first row, SNR and DCCNet-generated images

show the color of the left bowl as orange due to the presence

of the candle. By contrast, LIVENet produces an image

with a more realistic bowl color. LIVENet can effectively

improve the quality of indoor objects and landscapes (rows

1 and 2), leading to an image with more realistic face color

and reduced noise (row 3). Overall, LIVENet generalizes

well on a wide variety of low-light images.

A major challenge in LLIE is reflection, which can lead

to overexposure and saturation in the image. When a bright

light source is present in the scene, it can reflect off surfaces

such as windows, as shown in the landscape image (second

row), creating an overexposed area. Due to this, DCCNet

and SNR create artifacts around the reflection area while

enhancing the overexposed region, as seen from the green

color in the window. LIVENet handles overexposed regions

much better and creates the least amount of artifacts.

5. Ablation study

Table 3 summarizes the ablation results.

1. Architecture-related ablation: On removing the

LSDB module, the output images become more blurry and

noisy. For obtaining results “w/o SFT”, we replace the SFT

block with a normal residual connection and feed the con-

catenated grayscale and coarse map as input to the network.

The decrease in SSIM indicates a lack of texture informa-

tion in the final result. Removal of the GSIP module leads

to increased noise and erroneous colors. In the “w/o GSIP

module” version, we generate the coarse map without re-

placing the Y color channel in the image enhancement stage

and refine the coarse map without the SFT layer in the re-

finement stage. There is a higher amount of noise on not

replacing the Y color channel of the YCbCr coarse map

with a noise-free grayscale image. In summary, out of all

the constituents in the image enhancement stage, the GSIP

module has the highest contribution towards final quality.

On skipping the refinement module, the output lacks refined

structural information and realistic illumination.

2. Loss-related ablation: An entry such as “with L1

loss” indicates that only L1 loss, and no other loss, was

used. On removing the SSIM loss function, the SSIM met-

ric degrades, and on removing the L1 loss, the PSNR metric

Table 3. Ablation results on LOL-v1 dataset

Approach PSNR SSIM MAE LPIPS

Full Network 24.68 0.87 0.07 0.14

1. Architecture related ablation

W/o LSDB 22.65 0.84 0.09 0.16

W/o SFT 22.91 0.85 0.08 0.15

W/o GSIP module 22.01 0.84 0.08 0.22

W/o replacing Y channel 22.88 0.85 0.09 0.15

W/o Refinement Module 21.78 0.74 0.09 0.26

2. Loss related ablation

With L1 loss 22.31 0.81 0.09 0.24

With SSIM loss 23.47 0.87 0.07 0.15

With perceptual loss 23.09 0.83 0.08 0.16

With L1 + perceptual loss 23.36 0.86 0.08 0.14

With charbonnier loss 22.32 0.81 0.09 0.24

3. Training methodolody related ablation

WGAN-GP 23.44 0.85 0.08 0.16

Pix2Pix 23.37 0.86 0.08 0.14

4. Image size related ablation

256 × 256 24.86 0.87 0.05 0.15

128 × 128 25.2 0.89 0.05 0.11

degrades. Thus, the SSIM loss function helps predict the

grayscale image and refined outcomes; and L1 loss helps

remove noise. The perceptual loss helps in learning higher-

level features but fails to remove noise from the image.

Even using L1 + perceptual loss, the results are inferior to

those with L1 +SSIM loss. Charbonnier loss is less sensitive

to outliers and provides a more robust optimization. How-

ever, it penalizes large and small errors equally, leading to a

smoothing effect that blurs the sharp edges or details.

3. Training methodology related ablation: Utiliz-

ing WGAN+GP training results in higher quality out-

comes compared to Pix2Pix, demonstrating that the gradi-

ent penalty improves the network’s convergence. The dis-

criminative loss functions used in GANs are meant to im-

prove perceptual quality, which is not the best measure for

enhancing low-light images. LLIE usually requires special-

ized metrics, such as the measures of image illumination,

noise, and texture, to achieve optimal results. Neverthe-

less, both these methodologies are inferior to our non-GAN-

based training approaches since LIVENet does not use any

GAN component.

4. Image size-related ablation: Our technique remains

effective with different image sizes.

6. Conclusion

We propose LIVENet for low-light image enhancement.

We introduce techniques for retaining texture and color.

Our novel idea is to remove noise from the coarse map by

replacing the Y component of the YCbCr color space with

a grayscale image. We propose a differentiable latent sub-

space denoising block by representing low-light features in

low-rank structures. The refinement stage refines the global

color and local texture information. Detailed experiments

validate the effectiveness of our technique. Our future work

involves extending LIVENet to handle low-light videos by

considering both temporal and spatial information.
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