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Abstract

We propose an algorithm for taming Normalizing Flow
models — changing the probability that the model will pro-
duce a specific image or image category. We focus on Nor-
malizing Flows because they can calculate the exact gener-
ation probability likelihood for a given image. We demon-
strate taming using models that generate human faces, a
subdomain with many interesting privacy and bias consid-
erations. Our method can be used in the context of privacy,
e.g., removing a specific person from the output of a model,
and also in the context of debiasing by forcing a model to
output specific image categories according to a given dis-
tribution. Taming is achieved with a fast fine-tuning pro-
cess without retraining from scratch, achieving the goal in
a matter of minutes. We evaluate our method qualitatively
and quantitatively, showing that the generation quality re-
mains intact, while the desired changes are applied.

1. Introduction

Generative models are increasing in popularity [26],
partly due to the exponential growth in deep neural net-
work techniques [19, 29, 35, 43]. In this work, we focus
on generative models of human faces which, some might
say, are becoming dangerously powerful. Synthetic images
or videos of real people can be easily generated and used to
spread misinformation [60], to harass [46], and to con [14].
Thus, a company developing a generative model might be
interested, before releasing it to the public, in preventing the
model from synthesizing the faces of certain celebrities2.
Furthermore, a generative model might have been trained
on biased data and thus under-represent certain groups of
the population. In this case, it would be desirable to de-

1We trained a model on CelebA [41], containing 15% more females than males
with a binary Male/Female label. We hope that future datasets will annotate gender
more fluidly.

2For example: https://labs.openai.com/policies/content-
policy
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Figure 1. Applications of our method. A demonstration of our
method for two different purposes, by changing the generation
likelihood of different images. Colors of image frames correspond
to colors of graph points. (Top) A model was tamed to reduce the
likelihood of an image (Forget), while preserving the likelihood
for the rest of the distribution (Remember). (Bottom) Debiasing
a model that generates female faces with higher probability than
males1, so as to balance the generation likelihood.

bias the model3. In the same spirit, generative models are
often more likely to synthesize images of the individuals
that were used for training the model [8, 9]. But, following
the GDPR [48] “Right to Be Forgotten” approach, a per-
son may request the company to re-train the model without
their images — a just cause, but also a time consuming and
expensive process.

Common to all these scenarios is the need to change the
probability of a given pretrained generative model to gen-
erate certain individuals or demographics. In short, what
is needed is a method to tame a model. In this work, we
take a step towards solving this problem, suggesting an al-
gorithm to tame normalizing flows [15, 16, 34, 37, 49]. We
focus on normalizing flows because they provide an explicit
probabilistic density function along a bijection between the
image and latent spaces. We tame the model by fine-tuning
it while constraining its output distribution. The constraint
is twofold: forcing resemblance to the original model’s dis-

3For example: https://openai.com/blog/reducing-bias-and-
improving-safety-in-dall-e-2/
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tribution, while also adhering to the target probability of the
taming process. We refer to these two different aspects of
taming as remembering and forgetting, describing whether
we wish to preserve the model’s behavior (remember) or
guide the model away from some outputs (forget)4.

We propose a novel task: controlling probability estimat-
ing generative models such as Normalizing Flows, with a
fast and simple approach, taming the model in minutes. We
demonstrate our method on human faces — a domain with
inherent privacy and bias concerns that our method can alle-
viate. After taming, the output distribution changes accord-
ing to the target distribution, while preserving image gen-
eration quality. Our method applies probability measures
directly to our loss and evaluation process. An illustration
of different applications of our method is shown in Fig. 1.

Our main contributions are: (1) a general technique for
taming normalizing flows, (2) applications of taming for
privacy, by censoring specific individuals from the model’s
output, and (3) applications of taming for fairness, by mod-
ifying the frequency of attributes (e.g., male vs. female) in
the model’s output.

2. Related work
Density estimation. Many generative models use max-

imum likelihood [40] to provide parametric density estima-
tions. Some approaches are implicit such as GANs [19],
while others are explicit, such as VAEs [35] and the re-
cent state-of-the-art Diffusion Models [29,53]. We focus on
explicit approaches, specifically on models that provide an
explicit tractable probability density function [49, 56, 57],
since we can use that density to evaluate and quantify
whether we move images away from the density modes.

Model editing. Generative model editing deals with
methods that fine-tune a model in order to apply small
changes to it. Bau et al. [5] allow users to choose spe-
cific changes on generated images and fine-tune the model’s
weights to apply them. Wang et al. [58] apply a user-chosen
image warp on several examples to later fine-tune a model
that produces images according to the warp. Cherepkov et
al. [12] fine-tune a model to incorporate semantic changes
and discover emerging semantics, but cannot edit a model
according to a pre-determined goal.

Our work differs from the aforementioned methods that
alter the behavior of the model globally. We, on the other
hand, provide the ability to focus on specific areas in the
latent space, without changing the whole domain. For a
multi-modal generative model this virtue is vital, as local
changes can be relevant only to specific outputs that reside
in a specific mode. For a face generating model, instead of
changing an attribute across all outputs, e.g. forcing a smile,

4Our approach does not technically fit the terms of forgetting and remembering,
but rather emphasizing or preserving vs. de-emphasizing or abandoning. For simplic-
ity, we use the terms remember and forget.

our method enables elimination only of specific images of
people that do not smile. Moreover, since our method uses a
normalizing flow, in contrast to the methods above that use
a GAN [19], we provide an exact evaluation of the latent
distribution edit that we perform.

Debiasing models. Deep learning models are now inte-
grated in many crucial systems, e.g., finance [3] and medical
diagnosis [1]. Thus, ensuring the fairness of these models is
crucial. There are various approaches to reduce model bias.
Pre-processing and in-processing approaches, e.g., chang-
ing the training data [6, 17, 47] and using different training
loss modulation techniques [4, 59, 63]. Unlike these meth-
ods, our work can be used on a given pre-trained model,
without any prior demand on the training data.

Some post-processing methods constrain the sampling
space [13, 30, 54, 61] but assume low-dimensional latent
spaces (such as in GANs [19] and VAEs [35]), making
them not suitable for normalizing flows. Restricting certain
queries is also problematic as it allows easy deception [44].

Our approach changes the model itself, instead of chang-
ing the sampling space. This allows us to control models,
as they are integrated in constantly changing environments.

Closest to our work is Kong and Chaudhuri [38] that
proposed a method that enables data forgetting from a pre-
trained GAN, which can also be used for debiasing. In con-
trast, our work is demonstrated on normalizing flows, pro-
viding an exact probability density evaluation of the edits.
Moreover, our method can be applied locally on much less
data, as shown in Sec. 4.1.

Continual learning. Continual learning (also known
as lifelong-learning) is the field of teaching new tasks to a
model sequentially. A fundamental problem in this domain,
described as catastrophic forgetting [20, 36], is that while
learning new tasks, models tend to forget the previous ones.
We discuss how adjusting a normalizing flow can alter the
generation probability of specific data. This can be thought
of as teaching the model a new task (reducing the probabil-
ity of some outputs), while preserving the knowledge of the
original task (generating images as the model did before),
similarly to continual learning. While relevant work in this
field focuses on preventing forgetting, we can also choose
to forget. In addition, prior work has focused mainly on
discriminative tasks rather than generative ones.

Machine unlearning. Machine unlearning [7] refers to
the process of removing the effect that certain training data
have on a model’s weights after training [11, 23]. If a user
requests to delete their data, some privacy regulations [48]
require the data to be deleted, together with the effect it had
on any models trained on it. As opposed to approaches that
aim to delete training data from trained models [18, 55, 62],
we focus on changing the model’s behavior regardless of
whether the data we deal with belongs to the training set
or not. Carlini et al. [8, 9] and Haim et al. [24] demon-
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strate methods that extract training data from models. In our
work, we do not focus on leaking a model’s training data,
but rather on changing the model’s behavior with respect to
some data distribution.

3. Method

We first define the problem at hand, followed by some
technical background and a description of our approach.

3.1. Problem definition

Taming a normalizing flow model involves modifying its
behavior with respect to some data. This includes images of
an identity it was trained on, training images sharing some
property, or even images out of the training set. For con-
sistency of exposition, we describe the taming procedure as
decreasing likelihood of certain data points (i.e., images).
That is, forgetting these points. Nevertheless, we also use
taming in the opposite direction — increasing the likelihood
of certain data for model debiasing (Sec. 4.2).

After taming, the behavior of the model should remain
the same across the entire output space, except for the spe-
cific data we choose to forget. This implies three conflicting
important goals: (1) The probability of producing images
from the set we are trying to forget should be close to zero.
We refer to this goal as forgetting. (2) For all images ex-
cept the ones we would like to forget, the probability dis-
tribution to produce these outputs should be as similar as
possible to the original model. We refer to this goal as re-
membering. (3) The quality of image generation should stay
intact. An illustration of this concept on a 2D toy example
is shown in Fig. 2.

There are many types of generative models that can pro-
duce photorealistic faces [32–34]. In this work we focus
on normalizing flows, as they explicitly represent the im-
age distribution (unlike the implicit nature of, e.g., GANs),
meaning that we can reason about probabilities and incor-
porate them into our losses, as explained below.

3.2. Normalizing flows

A normalizing flow is an invertible transformation of a
probability density from a simple distribution to a more
complex one. The initial density “flows through”, to yield a
different, yet normalized, density, and thus it is called a nor-
malizing flow. As shown in previous work [15, 16, 21, 50]
and in more recent progress [10, 22, 28, 37], the key behind
these models is training an invertible function that maps
samples from the data distribution domain to a tractable and
easily sampled latent domain. At inference, since the map-
ping is invertible, a mapping in the opposite direction allows
the transition from latent vectors to the image space. We
intend to model a parametric probability density function
given a set of examples.
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Figure 2. A 2D example with a RealNVP [16] normalizing flow.
The image space X contains data points sampled from 5 Gaussians
with different means. The prior distribution in the latent space Z is
Gaussian. Given a normalizing flow that maps Z → X , we tame
the model to produce the same image space X , apart from the
middle Gaussian, which we wish to remove. (Each Gaussian rep-
resents a person, and we would like to forget one person.) (Train)
Prior to our method, the inverse flow was trained to map points
from X to Z . To generate samples, the flow is used to map Z to
X . (Forget) We apply our method: latent vectors that were ini-
tially mapped to the center Gaussian now have a lower likelihood
of being drawn from the prior distribution. (Sample) Now that we
tamed the model, when we sample from Z , the points are mapped
(with high probability) to the 4 Gaussians.

Formally, let Z ∈ RM be a random vector with a
density function pθ(z) parameterized by θ ∈ Θ. Let
fθ : RM → RM be a bijection function (parameterized by
θ) with an inverse f−1

θ , such that fθ(Z) = X and
f−1
θ (X) = Z. We denote the domain and range of fθ as
Z and X respectively, representing the latent and image
spaces. For ease of notation, we also denote the density
function of X as pθ(x). Using the formula of random vari-
able change [15], we get:

pθ(x) = pθ(f
−1
θ (x)) ·

∣∣∣det(Jf−1
θ

(x)
)∣∣∣, (1)

where Jf−1
θ

(x) =
[
∂f−1

θ (y)

∂y

]
y=x

is the Jacobian matrix of

f−1
θ at x. Modern flows are built such that the determi-

nant of the Jacobian is easily computed, usually by using a
flow with a triangular Jacobian matrix. In these cases, using
Eq. (1) we can construct a more tractable expression for the
log-likelihood of the density pθ(x), using just the elements
of the Jacobian’s diagonal:

log pθ(x) = log pθ(f
−1
θ (x)) +

M∑
i=1

log
∣∣∣Jf−1

θ
(x)i,i

∣∣∣. (2)

We focus on modeling the latent space as a multivariate nor-
mal distribution with diagonal covariance, i.e.

pθ(z) = N
(
µθ, σ

2
θ · I

)
. (3)
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Since the covariance is diagonal, the prior is factorial,
meaning we can easily decompose the density to univari-
ate components:

log pθ(z) = log

M∏
i=1

pθ(zi) =

M∑
i=1

log pθ(zi), (4)

where ∀i ∈ {1, . . . ,M} : pθ(zi) ∼ N (µθi, σθ
2
i ).

Given an i.i.d. set of samples from the image distribution
D = {xi}ni=1 ∼ X , we can use optimization methods [2]
to estimate the parameters θ based on minimization of the
average negative log-likelihood:

Aθ(D) := −
1

n

n∑
i=1

log pθ(xi). (5)

Given fθ that was trained to minimize the term in Eq. (5),
we assume that the Negative Log-Likelihood (NLL) of the
model w.r.t. the image distribution is normal, i.e.:

Nθ(X) := − log pθ(X) ∼ N (µθ, σ
2
θ). (6)

We elaborate on this assumption in the next section and fur-
ther in the Supplementary. This means that the NLL of
images in D is drawn from a normal distribution, which
will help us to use probabilistic measures that fit normal
distributions.

3.3. Task

We wish to tame a pretrained base normalizing flow
model fθB , with parameters θB ∈ Θ learned using a dataset
D. For taming we need a dataset DR of images to be re-
membered, and a datasetDF of images to be forgotten. The
dataset DR can be the one used to train the base model, or
a different set of images representing a similar distribution,
with a much smaller size. The result is a tamed model, with
network weights θT , that adheres to the remembering and
forgetting goals we introduced in Sec. 3.1.

Forgetting. We use the fact that normalizing flow mod-
els enable precise density evaluation, to set a forgetting
threshold using the samples’ likelihood. Since we have ac-
cess to images we wish to remember, DR, we can estimate
the likelihood of samples in it. To forget a set of images, we
reduce their likelihood and compare it to the likelihood of
images in DR.

To evaluate the success of forgetting, we need to define
a proper threshold — how low should the likelihood be, for
us to consider the sample forgotten? Naı̈vely choosing a
hand-picked threshold for the likelihood is problematic —
too small, and the forgetting process is unnecessarily hard,
too large, and we may not forget enough. The problem is
further complicated because working with likelihoods in the
relatively high-dimensional latent space Z is not intuitive.

So instead of defining the threshold in absolute terms, we
define it in relative terms. That is, an image is considered
forgotten if its likelihood of being sampled is low compared
to the distribution of the images to be remembered (Eq. (6)).

Switching to NLL for convenience, we assume that the
NLL of images in DR is normally distributed, and support
this assumption with a Kolmogorov-Smirnov test [42]. The
Supplementary contains additional information about the
assumption and evaluation in case it does not hold. With
this assumption, we can specify the forgetting threshold in
units of standard deviation σ.

We denote the mean and standard deviation of the Nor-
mal distribution over the NLL values of images in DR as:

µR = E
x∼DR

[
− log pθT (x)

]
,

σR =

√
E

x∼DR

[ (
− log pθT (x)− µR

)2 ]
.

(7)

We define the threshold δ (δ = 4 in our experiments), spec-
ified in standard deviation units, i.e. we wish that for an
image x ∈ DF , its NLL will be far from µR by exactly
δ · σR. We define a signed distance normalized in standard
deviations (SD):

dµR,σR
(x, δ; θT ) :=

− log pθT (x)− (µR + δ · σR)

σR
. (8)

Observe that by specifying δ in terms of the NLL distri-
bution’s SD, we avoid the need to work directly with the
actual NLL values in latent space Z . We found that di-
rectly forgetting these examples by minimizing their likeli-
hood (the opposite of Eq. (5)) was not stable, as the loss
decreased by pushing some images with low likelihoods
to even lower likelihoods while neglecting other images,
which was harder to converge. Thus, we define our forget-
ting loss, that normalizes the distance between the images
and the threshold:

LF (θT ,DF ,DR)=
1

|DF |
∑

x∈DF

S
(
σ2
R d2µR,σR

(x, δ; θT )
)
, (9)

where S(·) is the Sigmoid function [25]. Intuitively, this
loss encourages every image in DF to have a NLL that is as
close to the threshold as possible.

Given an error parameter ϵ > 0, the threshold is met
when the likelihood of all examples in DF is in a distance
bounded by ϵ around the threshold:

∀x ∈ DF : |dµR,σR
(x, δ; θT )| < ϵ, (10)

i.e., this is the stopping criteria for our method. ϵ controls
the size of the error margin allowed around the threshold.
When this criterion holds, the images in DF have a very

4647



low likelihood, compared to the images in DR (see more in
the Supplementary).

Remembering. We aim to remember the images in
DR, i.e., preserve the NLL distribution of the model w.r.t.
these images. When we consider the entire distribution,
we are not concerned with the NLL of each image seper-
atly, but rather the distribution as a whole. Assuming DR

is an i.i.d. set drawn from X , we compare the NLL dis-
tribution of the original and tamed models, i.e. we com-
pare NθB (X) and NθT (X), respectively (see Eq. (6)). The
closer these distributions are, the less impact our procedure
had on the images that we did not intend to forget. We
use the KL divergence [39] between these distributions to
measure their proximity. We use both the forward and re-
verse KL divergence, denoted as LKLF

(θT , θB ;DR) and
LKLR

(θT , θB ;DR) respectively, as explained in Sec. 5.
Moreover, we also use the average NLL loss AθT (DR)
(Eq. (5)), to maintain the original model’s NLL onDR. Our
combined remembering loss is thus:

LR(θT , θB ,DR) = (1− γ)AθT (DR)

+ γ (LKLF
(θT , θB ;DR) + LKLR

(θT , θB ;DR)) ,
(11)

where γ controls the ratio between the original task and the
explicit distribution proximity loss. As DR can represent a
distribution that is different than the original task (in case
DR is not the training set used to train θB), the loss acts in
line with this distribution. The “closer”DR is to the training
set, the higher we preserve the image space of θB . Our

Algorithm 1 Normalizing Flow taming
Input: Normalizing Flow fθB , Forget images DF ,
Remember images DR, Forget threshold δ > 0,
error bound ϵ > 0
Hyperparameters: η > 0, α ∈ (0, 1)

1: θT ← θB
2: for iteration i = 1, 2, . . . do
3: Sample batches XF ∼ DF , XR ∼ DR

4: Estimate distribution (µR, σR)← − log pθT (XR)

5: d⃗ = dµR,σR
(XF , δ; θT )

6: if ∀i : |di | < ϵ then
7: break
8: L ← αLF (θT , XF , XR)+(1−α)LR(θT , θB , XR)
9: θT ← θT − η∇L

10: Return fθT

total objective is a weighted combination of the forget and
remember losses:

θT = argmin
θ

{
α · LF (θ,DF ,DR)+

(1− α) · LR (θ, θB ,DR)

}
.

(12)

We use SGD [2] to optimize the objective, stopping the
process when Eq. (10) is satisfied. A summary of our
method is presented in Algorithm 1.

4. Experiments
We conduct experiments that evaluate the generation

probability reduction for images of a specific person, a set
of people and people with specific attributes.

We use Glow [34] as our base model fθB , trained on
128 × 128 images from the FFHQ [33] dataset and the
CelebA [41] training set. The running time for our exper-
iments is 3–40 minutes with no more than 800 iterations.
Full technical details, can be found in the Supplementary.
To improve our method’s run-time, we compute the remem-
ber batch NLL distribution parameters (see Line 4 in Algo-
rithm 1) every 10 iterations. In our analysis below, we focus
on the effect on the forget set DF , as our method preserves
the distribution on the remember set DR, as can be seen in
the Supplementary.

4.1. Taming an identity

First, we examine the ability to reduce the generation
probability of a person’s images. This corresponds to many
applications, e.g., a model that violates a person’s privacy
can be censored this way.

In this experiment, we have access to D, the training set
used to train the given model. We wish to tame the model
in such a way that images containing a specific identity will
not be generated by the model, or at least to reduce this
probability as we see fit. These images, denoted as DF ,
are a part of the training set, i.e. DF ⊂ D. Therefore, the
remember set in this case is defined as DR := D \ DF . We
run experiments with different sizes of DF , using the same
training setting as the pre-trained model. Experiments are
halted only when the stopping criteria is met (see Eq. (10)).

Forgetting evaluation. Let F(µ,σ)(x) := Φ(x−µ
σ ) be the

CDF of normal R.V with parameters (µ, σ), where Φ(·) is
the CDF of the standard normal distribution. Then, an im-
age with NLL x is forgotten if:

1− F(µ,σ)(x) ≥ 1− F(µ,σ)(µ+ δσ) = 1− Φ(δ), (13)

which, for the case of δ = 4, is approximately 3.2e−5. This
means that if an image is forgotten, its NLL resides in the
highest (worst) 0.0032% percentile of the NLL distribution
that DR is drawn from.

Measuring the success in forgetting an image with tamed
model θT boils down to:

q
(µR,σR)
θT

(x) := 1− F(µR,σR)
(
− log pθT (x)

)
, (14)

which we denote as Likelihood Quantile, and generalized
to a set of images using the mean. For brevity, we omit the
distribution parameres and denote it as qθ(·).
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Figure 3. Visual generation evaluation. These samples were
generated using the base and tamed models. Can you tell which
model was used for each image? If you cannot, it implies that
our process preserves image quality. Answer (upside down):

evencolumns—base,oddcolumns—tamed.

We are also interested in evaluating the “damage” in-
flicted to other image sets, e.g. showing that while forgetting
DF we did not harm the likelihood of images in DR. To do
this, we examine how the likelihood quantile decreases be-
tween the base model and the tamed one, on some given set
S. We denote this as the Quantile Drop QDθB,θT

(·):

QDθB ,θT (S) := qθB (S)− qθT (S). (15)

We use this score to evaluate our method’s effect on dif-
ferent sets of images:
• Holdout images of the forget identity — denoted D′

F .
• Random images from DR.
• Holdout identities from the remember set — denoted Did

R.
• Closest identities (nearest neighbors in the face embed-
ding space) in DR — denoted as DNN

R .
Results are shown in Tab. 1, e.g., the first row shows that

we reach the threshold of Eq. (10) (meaning all images in
the forget set are within the error bound range) while reduc-
ing the likelihood quantile of DF by 0.47, and maintaining
small likelihood changes for the rest of the examined sets.
Additional results on a baseline and on a different modality
can be found in the Supplementary.

While we do not force resemblance to the images we for-
get, our method is able to apply the local changes w.r.t. to
the forgotten identity, while reducing the likelihood of un-
seen images of that identity (D′

F ) significantly. Moreover,
comparing these likelihoods to the low likelihood quantiles
of the nearest identities (DNN

R ) suggests that our method
can implicitly focus on the identity we forget, generalizing
to unseen images, with minimal damage to identities that
are “close” (DNN

R ), and to other random identities (Did
R ).

As seen in Fig. 3, our method does not have a significant
impact on the quality of the generated images. Sec. 5 con-
tains further analysis of the experiment. The Supplementary
contains a more detailed analysis of this experiment, includ-
ing evaluating the preservation of theDR distribution, along
with additional experiments using different thresholds and
unseen forget identities as the forget set, i.e. DF ̸⊂ D.
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Figure 4. Taming attributes. The proportion of random samples
that possess the attribute we aim to forget along our method. Each
line represents an experiment to forget a specific attribute.

4.2. Taming an attribute

Next, we zoom out from the local effect on a small num-
ber of images, to a broader aspect of change. We show that
our method can be applied even when the desired change
is more general, e.g. reducing the probability of generated
images that contain inappropriate content. Moreover, this
experiment shows that we can apply our method on a big
set of images, i.e. |DF | ∝ |D|.

In this experiment we have access to D, the model’s
training set. We wish to forget an attribute common to
many images in the training set, e.g. wearing glasses or
smiling. Thus, we use a classifier for that property, denoted
as C : X → {0, 1}, to define the remember and forget sets:
DF = {x ∈ D | C(x) = 1}, DR = D \ DF .

As we wish to reduce the generation probability of im-
ages with some property, evaluation is straightforward, by
passing random samples from the prior distribution through
the normalizing flow, and classifying the output images.
Our method alters the model, in order to reduce the num-
ber of outputs classified as possessing the relevant attribute.
This approach can be used to debias a model, e.g. a model
that generates images of a certain group of the population
with high probability (to the point of over representation),
one can use our method to reduce that probability. The re-
sults are shown in Fig. 4, showing we are able to tame a
model to reduce the sampling rate of an attribute. This is
applied on a large forget set DF , e.g., forgetting the “No
Beard” property holds: |DF | = 135, 779 = 0.83 · |D|.
The proportion of attribute changes can be controlled by
the number of steps we run our process, as we can stop the
process when the desired ratio of some property suffices.

Taming can also be used in the opposite direction, to in-
crease the number of generated samples possessing the cho-
sen attribute. This means that in this case, instead of forget-
ting a group of images, we do the opposite and increase the
representation of these images in the output space.

Fig. 5 visualizes how we tame a model to generate less
(or more) images with a chosen attribute (or attributes).
While our goal is to control the generation probability of
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Quantile drop QDθB ,θT (·) (see Eq. (15))

# Images
Forget

threshold DF (↑) D′
F (↑) DR(↓) Did

R(↓) DNN
R (↓)

1 ✓ 0.47± 0.04 < 10−2 ± 0.03 < 10−2 ± 0.01 < 10−3 ± 0.01 0.01± 0.01
4 ✓ 0.42± 0.17 0.05± 0.03 < 10−2 ± 0.00 0.01± 0.01 0.03± 0.02
8 ✓ 0.34± 0.13 0.06± 0.04 < 10−3 ± 0.00 < 10−2 ± 0.00 0.01± 0.01
15 ✓ 0.38± 0.14 0.12± 0.04 < 10−3 ± 0.00 < 10−2 ± 0.00 0.01± 0.00

Table 1. Forget identity effect. When we forget images of the same identity, we are able to generalize and reduce the likelihood of unseen
images of that identity (D′

F ), while maintaining the likelihood on the rest of the space (see Sec. 4.1 for more details). (↑) and (↓) are used
to indicate whether higher or lower is better, respectively.

the distribution as a whole, we are able to preserve the iden-
tity in the generated images. This suggests that we preserve
the structure of the given model’s underlying latent space,
and apply changes very specifically. Since there are many
methods that utilize different properties of latent spaces in
generative models [51, 52], this is useful for tasks that use
an image as input, e.g. image editing and image translation.
In the Supplementary we show more examples, model debi-
asing and discuss the effect of coupled attributes (e.g., what
happens if most eyeglass wearing people are male).

4.3. Taming without the training set

Next, we consider situations where we lack access to the
model’s training data. Instead, we assume access to differ-
ent data from a similar distribution. An example of such a
scenario can be a company that releases a generative model
to the public, without the data on which it was trained. En-
tities using this model might want to alter the model w.r.t.
different data, while maintaining the model’s performance.

In this experiment the setup is similar to Sec. 4.1, ex-
cept that D is the not the model’s training data, but a set of
images disjointed from the training data. We sourced im-
ages from Fairface [31], opting for faces of children in the
age range of 3–9 years, according to their labels. We chose
these images for a distribution of natural faces that is differ-
ent from CelebA’s, as it consists of fewer young faces. We
experiment with 1000 images as DR and 10 images as DF .

Fig. 6 demonstrates that forgetting is effective, even with
different distributions (noticeable difference between Gaus-
sian distributions). Since we use data from a distribution
that is different than the training, it is important to consider
the similarity between these distributions. In the Supple-
mentary we analyze this effect.

5. Ablation study

We evalute our loss (Eq. (12)) by discarding different
parts of it. The base model is fine-tuned to forget 15 images
of an identity from CelebA (see Sec. 4.1).

↓ Open mouth ↓ Blond
↑ Blond
↑ Smile

B
ef

or
e

A
ft

er

Figure 5. Change attributes of constant latent vectors. We sam-
ple the same latent vectors and pass them through the base model
θB (before) and the tamed model θT (after) when changing an
attribute(s). We see the desired attribute(s) change. Additional ex-
amples (including videos) in the Supplementary.

0.5 1 1.5
0

1

2

3 remember
forget
base

BPD

D
en
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ty

More likely

Figure 6. Forget without training data access. When the re-
member images DR (solid) differ from the training data of the base
model θB (dashed), we still forget images w.r.t. the remember im-
ages NLL (orange dots). The x-axis is NLL in bits per dimension
units (BPD [45]), meaning lower is more likely.

Qualitative comparison

In Fig. 7, we compare the quality of images generated by
the different models. We randomly sampled two latent vec-
tors from the prior distribution and passed them through the
different models. Without any loss that preserves the knowl-
edge of the original objective (the LR loss), the quality of
the generated images is significantly worse. Furthermore,
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Base (θB) ��LR ���LKLR ���LKLF ��AθT (((((((LKLF
+ LKLR Tamed (θT )

Figure 7. Qualitative ablation comparison. For a fixed couple of latent vectors drawn from the tractable prior distribution, the shown
images were acquired by passing the latents through different normalizing flows. Each column represents the output of a different model.
Each middle column represents a model that was trained while eliminating a different part of the loss, e.g.��LR uses the entire loss term
apart from the remember loss LR. The different loss components are presented in Eqs. (11) and (12).

we see that the reverse KL divergence loss, LKLR
, is vital to

produce images with high quality. While some parts of the
loss seem to have less effect on generation quality (columns
4–6 in Fig. 7), only with the full objective do we get a model
that preserves the original images. This is evident from the
figure, showing that only the rightmost column preserves
the images generated using θB . This strengthens the as-
sumption that taming preserves the latent space structure,
as discussed in Sec. 4.2, and demonstrated in Fig. 5.

Quantitative comparison

Tab. 2 shows a comparison of the different ablated mod-
els. A full comparison can be found in the Supplementary.
We see that the reverse KL divergence is crucial to ensure a
high likelihood of the training data (see BPD), as it is suited
for generation tasks. When omitting LR, the FID [27] score
grows (worse), and the forgetting objective (the likelihood
quantile column) grows as well. The growth in FID score
means we drift from the original data, and the large likeli-
hood score means the model does not forget the data it was
supposed to forget. Omitting theLKLR

term maintains sim-
ilarity with the original data (low FID), but fails to forget.

Limitations

Our method is demonstrated only on normalizing flows
and our precise evaluation is based on the NLL distribu-
tion normality assumption. Although we do offer a quali-
tative measurement using a normality test as mentioned in
Sec. 3.3, models that do not align with this assumption will
find the threshold we use less powerful and accurate.

6. Ethical considerations
Generative models gained immense popularity in recent

years, leading to increased public interest. This raises im-
portant issues regarding the generation of hateful, fake, ex-

Model BPD mean (↓) FID(↓) Forget
threshold

Likelihood
quantile qθ(DF )

Base (θB) 1.021 140.89 - -

��LR 25.640 181.26 ✗ 0.34

���LKLR
2.254 110.34 ✗ 0.73

���LKLF
1.072 121.45 ✓ 2.45e−5

��AθT 1.025 141.99 ✓ 1.02e−5
(((((((LKLF

+ LKLR
1.028 143.16 ✓ 8.53e−6

Tamed (θT ) 1.020 141.63 ✓ 2.35e−5

Table 2. Quantitative ablation study. Removing parts of our
loss affects the NLL of DR (in BPD [45] units), the generation
quality (FID), and the forgetness of DF , in terms of achieving
the threshold (Eq. (10)) and the likelihood quantile qθ(DF ). For
models names notation see Fig. 7.

plicit and biased content. Entities that train these models are
concerned about the potential risks and opt out of their pub-
lic release. We propose a direction that can help moderate
these malicious applications, and help with their mitigation.
Although our method can be used in a positive manner, it
can also be used in the opposite direction, e.g. increasing a
model’s bias instead of debiasing it.

7. Conclusion
In this work, we proposed an approach towards taming

normalizing flow models, controlling their output by in-
creasing or decreasing the probability of generating spe-
cific data. We demonstrated different aspects of taming
on human faces, showing how to change generation prob-
ability both locally and globally. Taming provides an easy
modification tool, with minimal collateral damage to the
model. Although taming is demonstrated only on normaliz-
ing flows, our approach can be extended to other generative
models based on exact likelihood estimation.
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Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts,
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