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Abstract

Vision Transformers (ViTs) have become one of the dom-
inant architectures in computer vision, and pre-trained ViT
models are commonly adapted to new tasks via finetuning.
Recent works proposed several parameter-efficient transfer
learning methods, such as adapters, to avoid the prohibitive
training and storage cost of finetuning.

In this work, we observe that adapters perform poorly
when the dimension of adapters is small, and we propose
MiMi, a training framework that addresses this issue. We
start with large adapters which can reach high perfor-
mance, and iteratively reduce their size. To enable auto-
matic estimation of the hidden dimension of every adapter,
we also introduce a new scoring function, specifically de-
signed for adapters, that compares the neuron importance
across layers. Our method outperforms existing methods in
finding the best trade-off between accuracy and trained pa-
rameters across the three dataset benchmarks DomainNet,
VTAB, and Multi-task, for a total of 29 datasets.1

1. Introduction

Transformers have gained increasing attention owing to
their outstanding performance [6, 24, 40, 41]: Vision Trans-
formers (ViTs) trained on large-scale datasets have demon-
strated a remarkable ability to learn new tasks [6]. The most
commonly adopted strategy to learn new tasks consists of
fully or partially fine-tuning a pre-trained network; how-
ever, when dealing with multiple tasks, this approach ne-
cessitates training multiple separate models, which results
in large storage costs.

Recently, Parameter-Efficient Training (PET) ap-
proaches have been developed to help large pre-trained
models adapt to new tasks, with minimal added param-
eters [11, 15, 17]. Among these, adapters [14] and its
variants [11, 19, 26] are frequently employed for Natural
Language Processing (NLP) tasks. Adapters are small
modules inserted into transformer blocks, which enable

1Code is available: https://github.com/IemProg/MiMi
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Figure 1. Layer-wise small blocks are injected into ViTs to effi-
ciently adapt to new domains. MiMi estimates the best rank for
each adapter weight, it reduces the number of parameters and re-
moves completely injected adapters for some layers if necessary.

efficient adjustment of the data representation to the
downstream task: they offer similar performance to full
fine-tuning (i.e. updating all parameters) while requiring a
very low number of trainable parameters [14, 34].

When it comes to vision tasks, PET approaches are
mostly explored for convolutional neural networks [2,
27, 35, 36]. In contrast, several PET approaches have
been proposed in NLP tasks: here, adapters are Multi-
Layer-Perceptrons (MLPs) equipped with residual connec-
tions [14]. These multi-layer adapters can fit new tasks with
enough representation power and the size of their hidden
layers provides a simple trade-off between performance and
parameter efficiency [14]. Nevertheless, they suffer from
two weaknesses. First, the performance drops when the
size of multi-layer adapters is too small [4] (as confirmed by
our experiments -see Se. 4.1, and supplementary material-
). Second, the optimal hyper-parametrization of adapters is
complex: the hidden layer dimensions must be specified for
every adapter in every layer, and its optimal size depends
on the downstream task. Thus, these adapters cannot be
employed where the available storage is limited.

In this work, we propose a training scheme named
MiMi (Fig. 1) which addresses these two limitations. Our
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approach facilitates efficient parameter allocation by pre-
dominantly assigning additional parameters to layers that
genuinely necessitate adaptation to the new task (Fig. 5).
More specifically, we start by training adapters with high-
dimensional hidden spaces and gradually decrease their di-
mensionality by identifying neurons that can be omitted in
each adapter. Additionally, we introduce a novel scoring
criterion to determine the layers where more adaptation is
needed, which enables the comparison of a “neuron impor-
tance” among adapters in various layers.
Our work makes the following key contributions:

• We propose a novel iterative training scheme for learn-
ing small adapters for ViTs.

• We present a new scoring function that can effectively
compare the significance of neurons across adapters.
This approach enables us to estimate the optimal hid-
den dimension of adapters for ViTs automatically,
which leads to a more efficient parameter allocation.

• Finally, we compare the proposed approach with mul-
tiple PET methods designed for both NLP and vision
tasks using a total of 29 datasets. From these exper-
iments, we draw several conclusions: (i) we demon-
strate that our approach obtains the best performance
in terms of accuracy among methods with similar num-
bers of parameters; (ii) our ablation study validates the
positive impact of our adaptive strategy to automati-
cally estimate the hidden dimension of adapters.

2. Related Work
Vision Transformers. Originally designed for NLP tasks,
Transformers [42] have recently been adapted for vision
tasks, such as image classification. Vision Transformers
(ViTs) divide the image into patches, process them as to-
ken embeddings, and employ transformer encoders with
self-attention to learn image representations [6]. ViTs have
shown impressive performance, outperforming ConvNets in
some cases [8]. However, their large parameter count leads
to significant storage costs, limiting complete finetuning for
each new task. This motivates our study. While Swin [24]
is a widely adopted ViT due to its excellent performance
across vision tasks, our approach of using tiny adapters can
be applied to any ViT architecture (see Sec. 3).
Network Pruning. When referred to deep neural networks,
pruning consists of reducing the number of parameters of a
pre-trained model [5, 9]. It can be roughly categorized into
two groups: (i) unstructured pruning, which removes the
least significant weights (according to certain criteria like
weight magnitude [10] or gradient magnitude [29]) with-
out a specific structure to be followed; (ii) structured prun-
ing, which focuses in removing model sub-structures, like
channels [13, 39] or attention heads [28]. Pruning tech-
niques usually reduce the number of parameters in a net-
work trained for a specific task, while MiMi decreases the

number of parameters added through adapters that fit the
model to a new task without altering the original model’s
parameters. SparseAdapters (SA) [12], show that applying
unstructured pruning to adapters [14] achieves comparable
performance. In comparison to SA, our method incorpo-
rates a look-ahead strategy that considers the effects of up-
sampling layers, while SA does not. Furthermore, MiMi
employs structured pruning, whereas SA utilizes unstruc-
tured pruning techniques to reduce the size of adapters and
remove them if necessary. GraSP [43] utilizes Hessian-
gradient products for each layer, discarding weights with
elevated scores in a single move, emphasizing those that
improve gradient flow. Conversely, SNIP [21] determines
layer gradients using sampled mini-batch data, assigning
scores and eliminating weights with the highest scores in
one step. However, both these approaches are not apt for
pruning Adapters. Our experiments show that they do not
perform well when applied to adapters.
Efficient Transformers Finetuning. ViTs’ lack of typical
CNN inductive biases makes their finetuning on new tasks
susceptible to overfitting [8, 23]. Additionally, the need to
update all the parameters and store a separate model copy
per task hinders scalability and real-world applicability. To
tackle this, three types of approaches have emerged: (i) up-
dating only newly added parameters [4, 14, 15, 17, 34]; (ii)
sparse parameter updates [1, 15]; and (iii) low-rank factor-
ization for weight updates [19]. While prompt techniques
like VPT [17] achieve excellent performance, they lack flex-
ibility for downstream tasks that differ significantly from
pre-training [4].

Our work falls into the first category, building on
adapters [14] for NLP tasks. However, we introduce a spe-
cific training algorithm enabling high performance, with
small-size adapters for downstream tasks. Unlike previous
adapter approaches [4, 14] with fixed-size adapters across
layers [4], MiMi dynamically assesses adapter sizes and
even removes them if necessary. By minimizing train-
able parameters, MiMi enhances performance and reduces
storage footprint in multi-task scenarios. Our preliminary
results demonstrate that different layers require different
adapter sizes, as highlighted in the supplementary material.
In contrast, [16, 48] utilize Neural Architecture Search
(NAS) to identify optimal PET configurations, facilitating
an expansive configuration search space populated by vari-
ous representative PET methods. However, this approach is
notably computation-intensive and uses different PET mod-
ules. Our work is primarily concentrated on determining
the appropriate adapter size for each layer and eliminating
certain adapters when deemed essential.

3. Proposed Method
In this section, we start with the description of

adapters [14] and discuss their practical benefits. Then, we
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introduce MiMi, our method to estimate the hidden dimen-
sion for each adapter that can effectively maintain high per-
formance with fewer parameters for memory efficiency.

3.1. Preliminaries

Our objective is to adapt a pre-trained ViT network for a
new task by incorporating small modules called “adapters”
into the existing layers. This adaptation process involves
training the linear classifier (referred to as the “head”) and
the adapter parameters while keeping the weights of the
original model frozen. In our training procedure, we focus
on describing the adapter parameters, and he linear classi-
fier parameters are also learned simultaneously.

ViT architectures, such as the original ViT [6] or
Swin [24], consist of layers with two main sub-layers:
a multi-head self-attention (MSA) layer and a fully-
connected layer (MLP). Layer normalization is applied be-
fore each of these sub-layers, and residual connections are
employed to skip MSA and MLP. In our approach, we in-
troduce two adapters after each sub-layer. The adapter is di-
rectly applied to the output of the corresponding sub-layer,
as depicted in Fig. 2a. The internal structure of the adapters
is illustrated in Fig. 2b.

Considering the i-th adapter added to our pre-trained
ViT, let hi ∈ RMi denote its input, of size Mi. Follow-
ing [14], adapters employ a first fully-connected layer that
down-projects hi into zi ∈ RNi with some non-linear ac-
tivation ϕ(·). This layer is parametrized by a linear projec-
tion matrix W down

i ∈ RMi×Ni . Then, a second fully con-
nected layer with parameters W up

i ∈ RNi×Mi up-samples
zi, producing as output ri ∈ RMi . Finally, a residual skip-
connection is employed inside the adapter module such that,
if ri is close to zero, the whole adapter module degenerates
to an identity function. To summarize, given the input vec-
tor hi, the output vector h′

i is calculated as:

h′
i = W up

i · ϕ
(
W down

i · hi

)
+ hi. (1)

The total number of parameters in the adapter is equal to
2 ·Ni ·Mi: since Mi is fixed, we generally choose Ni such
that Ni ≪ Mi to obtain a low number of parameters. We
define the compression rate σi of an adapter as σi=

Mi

Ni
.

Previous works [14,34,38] have employed adapters with
a uniform hidden dimension Ni for all the adapters. How-
ever, this approach may not be optimal as early and late lay-
ers to the input of the model may focus on different types
of patterns [4, 47] (see supplementary material). If we en-
able dynamic adjustment of the adapter’s hidden dimension
Ni (or equivalently, σi) and determine their injection points,
we enhance adaptation to downstream tasks effectively.

3.2. Overview of MiMi

Let W ViT be the initial parameters of the ViT model
which are frozen through the whole adaptation process.
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Figure 2. The adapter structure injected into ViT model (a), and
our approach to adjust the adapter’s size (b). MSA and MLP are
multi-head self-attention and feed-forward blocks, respectively.

Algorithm 1 MiMi

1: procedure MIMI(W V iT , W ada, ρ, σtarget)
2: Learn W ada ▷ W ViT is frozen
3: while σ < σtarget do
4: Sort W ada according to Iij (Sec. 3.3)
5: W ada ← top(1−ρ) in W ada ▷ Selection
6: Fine-tune W ada ▷ W ViT is frozen
7: end while
8: return W ada

9: end procedure

With MiMi our goal is to learn W ada, the set containing the
adapter parameters W ada

i = W up
i ∪W down

i of every i-th ViT
sub-layer. In previous works [14, 36] W ada

i is straightfor-
wardly learned with stochastic gradient descent-based op-
timization; however, in our experiments (see Sec. 4) we
show that this approach does not perform well in the case
of tiny adapters (small Ni values). We start from the ob-
servation that, with the existing optimizers, sequentially
training and pruning a large network is a successful strat-
egy to find small networks with good performance, while
directly training small networks usually suffers from opti-
mization issues [7]. Therefore, we propose to start from
large adapters and adopt an iterative pruning strategy that
iteratively reduces their dimensions as detailed in Alg. 1.
We initialize every adapter with a hidden dimension pro-
portional to its input dimension. We start from compression
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rates σi = σ0 for every layer, where σ0 is the initial com-
pression rate. In our first training stage (line 2), we learn
the adapter parameters W ada via cross-entropy loss mini-
mization using stochastic gradient descent. Then, we esti-
mate a score that measures the importance of each adapter’s
neurons (more details will be provided in Sec. 3.3). This
score is used to select the neurons that have the smallest
impact on the adapter outputs; more precisely, we remove
the bottom fraction ρ of neurons from W ada (line 5). The re-
maining ones will constitute the new adapter configuration,
and the hidden space sizes Ni are updated accordingly. If
the achieved average compression rate σ is still lower than
the target σtarget, another compression iteration follows; oth-
erwise, the achieved configuration will be returned and the
method stops. Note that the total number of training cycles
C is given by:

C =

⌈
log
(
σ0
)
− log (σtarget)

log (ρ)
− 1

⌉
, (2)

where ⌈·⌉ denotes the ceiling function. Therefore, our train-
ing scheme stops after a deterministic number of iterations
that can be computed in advance. While we employ a stop-
ping criterion based on a specific target compression rate, a
target performance on a validation set could also be used.

3.3. Importance Score in MiMi

In this section, we present the importance score function
that we use in our training algorithm. Our design of the
scoring function is motivated by the observation that, if an
entire row in W down

i and an entire column in W up
i are equal

to zero, then our adapter is strictly equivalent to one with
a smaller dimension Mi. Therefore, we propose a novel
scoring function to employ the sum of the L1 norm of the
corresponding row in W down

i and the corresponding column
in W up

i . More precisely, our importance score is formulated
as follows:

Iij = 1

Ni +Mi

(
Mi∑
k=1

∣∣∣W down
i [j, k]

∣∣∣+ Ni∑
k=1

∣∣∣W up
i [k, j]

∣∣∣) ,

(3)
where [·, ·] denotes the matrix indexing operator. This im-
portance score can be interpreted as a “look-ahead” strategy,
where we observe, besides the output of a specific j-th neu-
ron in the hidden space, also the impact of such an output
in the next layer. Note that this formulation is based only
on the magnitude of parameters belonging to the same neu-
ron of down-sampling, and its corresponding up-sampling
one, and not on the magnitude of activations. This makes
the importance score more computationally efficient since
activation-based scoring depends on the input images, and
consequently, statistics should be gathered at the batch or
the dataset level, inducing non-negligible computation over-
head. Furthermore, this choice is empirically supported by

many works in the literature, like [3,10,30,37]. A notewor-
thy element is that Iij is normalized by the total number
of parameters associated with a specific dimension of the
adapter: this enables fair comparison across adapters, de-
spite different input and hidden layer sizes. More details
behind the motivation of our choice for equation 3 are pro-
vided in the supplementary material.

4. Experiments

We provide here the details about the datasets and our
experimental setup.
Datasets. We evaluate our methods using the protocol
adopted by [23], which consists of ten datasets for image
classification tasks divided into two benchmarks. The first
benchmark is known as DomainNet [33]. It contains six dif-
ferent visual domains, which makes the finetuning experi-
ments non-trivial. Since DomainNet does not have a labeled
testing set, we use the validation dataset for testing, as in
[33]. The second benchmark contains CIFAR-10/CIFAR-
100 [20], Oxford Flowers102 [32], and SVHN [31], which
are widely used as low-regime training datasets. Contrarily
to DomainNet, these datasets are not single-task oriented
but contain a larger variety of domains/tasks. We refer to
them as belonging to the Multi-task benchmark. Addition-
ally, we provide an evaluation of the VTAB benchmark [45],
consisting of 19 diverse visual tasks (see supplementary).
Implementation Details. We follow the training proto-
col adopted by [23]. We conduct our experiments with
the official pre-trained Swin-T [24] (∼27M parameters)
trained on ImageNet-1K. In all our experiments, we use the
AdamW [25] optimizer with a cosine decay learning-rate
scheduler for 80 epochs, preceded by 20 epochs of linear
warm-up. In all the experiments, the images are resized to
the same fixed resolution (224 × 224). With MiMi, ρ is
set to 50%, namely we half the number of neurons in the
adapters, at every 100 epochs.

4.1. Main results

We compare our proposed method MiMi with multiple
PETs methods. We remark that all the baselines are ob-
tained with a C=5 cycles training, while MiMi will always
have a lower or equal number of training cycles in Tab. 1.
We include the following methods:

• Full finetuning: finetune all parameters of the model.
• Att/MLP finetune: we only tune the Attention/MLP

layers and the classification head.
• Linear-probe: all parameters are frozen except for the

task-specific classification layer.
• Adapters [14]: we add adapters with σ = 32 to have

adapters with hidden dimensionality proportional to
the input dimension Mi. We also include variants
where the size of every adapter is fixed over all the
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Figure 3. Evaluation of PET baselines mean top-1 accuracy on
Multi-task benchmark. We observe MiMi (◆) maintains good
performance when reducing the number of parameters, compared
to other PET baselines.

layers: Ni=47, and Ni=23. These baselines are con-
sidered to emphasize the effect of parameter allocation
throughout the layers on the final performance.

• BitFit [1]: only the biases are finetuned.
• PHM-Adapter [46]: the weights of the adapters are

learned using parameterized hyper-complex multipli-
cation layers (PHM) layers.

• Compacter [19]: adapter weights are learned using
shared PHM layers.

• AdaptFormer [4]: introduces Adapters, but only after
MLP block with a scaling parameter s applied to the
output of the injected modules.

• VPT [17]: finetuning learnable parameters (i.e.
prompts) injected into the embedding space for each
layer in ViT.

• SSF [22]: aims to adjust the feature activation scaling
and shifting its output.

• Fact-TK [18]: a tensorization-decomposition method
to store the weight updates into a single 3D tensor.

Discussion. Fig. 3 visualizes the average accuracy versus
the number of trainable parameters achieved for the Multi-
task benchmark, while Table 1 reports the number of trained
parameters and the average accuracy across datasets in the
MultiTask benchmark. The detailed Tables for DomainNet
and VTAB benchmarks are in the supplementary material.
For all the benchmarks, the number of trained parameters is
reported in millions, and the average top-1 accuracy on the
datasets is reported in the rightest column.

We observe that full finetuning achieves commendable
performance, albeit demanding an extensive parameter-
tuning for each dataset. In comparison, finetuning solely
the attention/MLP layer proves remarkably effective among
the vanilla finetuning baselines. However, this approach
still necessitates a substantial number of task-specific pa-

Method Params Trained C100 C10 F. S. Mean
(M) ↓ (%) ↓

Full finetuning 27.8 100 88.13 98.50 97.35 96.59 95.14
Att-blocks 8.93 32.14 88.03 98.41 97.79 95.99 95.05
MLP-blocks 17.54 63.12 88.44 98.47 96.50 96.14 94.89
MiMi (0 cycle)† 4.35 15.81 88.27 98.53 97.59 97.28 95.41

AdaptFormer-64 0.66 2.38 83.79 96.93 90.50 92.45 90.91
AdaptFormer-256 2.98 8.55 84.74 97.23 92.13 94.97 92.27
Adapters Ni=47 1.37 4.90 85.04 97.52 92.72 96.35 92.91
Adapters Ni=23 0.68 2.47 85.18 97.57 92.16 95.81 92.68
Adapters σ=32 1.37 4.90 85.59 97.49 94.80 96.27 93.53

Linear prob 0.27 0.95 75.58 91.84 76.80 55.26 74.87
PHM-Adapter 0.47 1.72 84.17 96.48 89.18 93.32 90.78
Compacter 0.41 1.44 83.95 96.26 88.43 92.67 90.32
BitFit 0.34 1.22 83.56 96.14 87.85 90.29 89.46
VPT-deep (10 tokens) 0.33 1.20 67.69 90.99 22.77 85.11 66.64
VPT-deep (100 tokens) 0.52 1.88 72.53 93.03 34.88 86.70 71.78
Adapters Ni=1 0.30 1.07 82.60 96.03 89.77 88.80 89.30
SSF 0.28 0.96 83.02 96.46 95.59 95.11 92.54
Fact-TK32 0.33 1.18 82.91 96.59 87.46 90.84 89.45
MiMi (1 cycle) 0.80 2.89 87.12 97.98 96.59 96.98 94.67
MiMi (2 cycles) 0.53 1.92 86.33 97.49 96.73 96.48 94.26
MiMi (3 cycles) 0.40 1.43 85.22 97.11 96.81 95.60 93.69
MiMi (4 cycles) 0.30 1.07 84.07 97.11 96.81 93.94 92.98

Table 1. Results on the Multi-task benchmark. C100, C10, F
and S stand for CIFAR100, CIFAR10, Flowers, and SVHN. † is
equivalent to Adapters with σ = 8. Methods are grouped ac-
cording to the relative number of trainable parameters ( ≤ 2% ,

∈]2, 10[% , ≥ 10% )

rameters, unlike other PET approaches. Notably, the un-
derwhelming performance of linear probing emphasizes the
significance of altering the feature representations within
the model when adapting to new tasks.

Notably, both PHM and Compacter demonstrate their ef-
fectiveness by achieving impressive performance while ad-
justing less than 2% of the parameters. Unlike NLP tasks
where PETs have shown success with a small number of
trainable parameters [14], visual tasks do not attain full
finetuning performance with such limited parameter adjust-
ments. Additionally, the subpar performance of VPT indi-
cates that injecting tokens into the embedding space offers
minimal benefit when the pre-training dataset differs from
the downstream task. Remarkably, all PET methods con-
sistently maintain similar performance rankings across all
tasks, suggesting that the optimal adaptation strategy is in-
dependent on the specific downstream task.

Adapters achieve impressive results with a slightly
higher number of trainable parameters (1.37M, 4.90% of the
total) for σ=32. Remarkably, Adapters outperform Adapt-
Former [4] while utilizing fewer parameters (92.91% with
1.37M parameters compared to 92.27% with 2.98M param-
eters). This outcome highlights the superiority of adapting
representations after both MSA and MLP blocks, as demon-
strated in the architecture of Adapters (Fig. 2), over solely
acting on the MLP block, as in done AdaptFormer.

We observe that MiMi significantly reduces the number
of parameters by 4 times the initial size (0.40M, 1.43%)

1736



97.35

97.35 97.64
97.8

97.45 97.58

96.59
96.92

96.73 96.81

5 1 2 5 10 2 5 100 2 5

90

92

94

96

98

100

Adapters Full-finetuning MiMi

Top-1 Accuracy versus compression rate σ on VGG-Flowers

Compression rate σ (Log-scale)

A
c
c
u
r
a
c
y

Figure 4. Comparison of top-1 accuracy versus compression rate σ
on VGG-Flowers. All MiMi results originate from the same MiMi
run. Adapters are trained for the exact same number of epochs as
their MiMi counterparts. The size of blob markers represents the
number of trainable parameters.

while outperforming all PET methods in the Multi-task
benchmark. In particular, MiMi outperforms adapters-
ni = 47 despite having fewer parameters, demonstrating
that our iterative training procedure improves the parame-
ter efficiency. To further emphasize the performance gap
between the two approaches, we introduce Fig. 4 illustrat-
ing the performance as a function of the number of train-
able parameters for VGG-Flowers (for CIFAR-100 dataset
in supplementary). We observe the significant performance
gap between vanilla adapters compared to adapters trained
with the MiMi approach.

Furthermore, MiMi outperforms methods with similar
trained parameters, in all the compression ranges. In par-
ticular, in the most challenging one (with 0.30M parame-
ters), MiMi outperforms the closest approach, BitFit, which
trains 0.34M parameters, showing a gain in average accu-
racy larger than 3% and 2%, for Multi-Task and DomainNet
benchmarks, respectively.

Upon comparing adapter with uniform and proportional
parameter distribution (Ni vs σ), results are in favor of al-
locating parameters proportionally to the layer dimension.
Notably, adapters with σ = 32 outperform adapters with
Ni=47 ∀i in both the Multi-task (93.53% vs 92.91%) and
DomainNet (70.65% vs 69.39%) benchmarks. This obser-
vation suggests that the task-specific nature of the last lay-
ers, with higher dimensionality, necessitates greater adap-
tation. Furthermore, we demonstrate that reducing the size
of adapters (Ni =23) negatively affects performance, with
a marginal drop in Multi-task (0.23%) but a more consis-
tent decrease in DomainNet (1.01%). These findings under-
score the unsatisfactory performance obtained from train-
ing adapters in a vanilla fashion and serve as motivation
for our specific training procedure.
MiMi versus Vanilla training. Looking at the Multi-task
benchmark (Fig. 3, Table 1), we observe that MiMi signif-

icantly reduces the number of parameters by 4× (0.40M,
1.43%) while outperforming all PET methods in the Multi-
task benchmark. In particular, MiMi outperforms adapters-
Ni = 47 despite having fewer parameters, demonstrating
that our iterative training procedure improves the parameter
efficiency. To further emphasize the performance gap be-
tween the two approaches, we introduce Fig. 4, we observe
the significant performance gap between vanilla adapters
compared to adapters trained with MiMi approach.

4.2. Ablation study

Importance score for MiMi. Next, we move on to our
design choice of dimensionality reduction inside adapters
throughout the adaptation cycles. We report the contribu-
tion of various components of MiMi with different setups.

• Vanilla Adapters: corresponds to injecting adapters
with a compression rate σ.

• Random: we select randomly a percentage of neurons
for each adapter to be removed.

• Gradient-Based L1(∇): We determine the neurons to
be removed based on the L1 norm of the gradients.

• Local neuron selection: We uniformly choose a per-
centage of neurons to be removed, independently ap-
plied to both down-sampling and up-sampling layers.

• Global neuron selection: The number of neurons to
be removed per adapter is determined using equation 3
given ρ, considering the scaling factor if applicable.
Additionally, we assess our scoring function without
the inclusion of the scaling factor ni +mi. This mod-
ified version of our score is referred to as I0.

• MiMi: our method as in Alg. 1.
To compare the different methods we proceed as follows.
When using an iterative method, we always start from the
baseline model where σ = 32. When using a non-iterative
method: we start with adapters of σ0 = σtarget/(1 − ρ)
and prune once only after the first cycle. Training continues
for C−1 cycles to guarantee fair comparison with iterative
methods. Results are reported in Table 2.
Discussion. Table 2 summarizes the performance of lo-
cal and global neuron selection for adapters. Firstly, we
observe that reducing the number of parameters in vanilla
adapters (higher values of σ in Fig. 4) leads to a drop in
performance. Additionally, we find that using the magni-
tude of parameters instead of activations is advantageous.
Activation-based scoring methods rely on input images, re-
quiring batch or dataset-level statistics, which are computa-
tionally less efficient.

Secondly, global neuron selection proves to be superior
to local neuron selection. The former method focuses on
finetuning adapters in specific layers while completely re-
moving other adapters, while the latter removes the same
amount of neurons from each adapter’s layer. Moreover,
MiMi surpasses SA by employing structured pruning (neu-
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Method Selection Score Iter. Scale
σ

32 64 128 256 512

Vanilla - - - - 94.80 90.12 89.42 88.85 86.03

Baseline

Random − ✓ - 95.43 95.80 95.11 95.12

Local (DW) L1(w) - 95.46 95.06 94.28 93.79

Local L1(∇) ✓ - 95.46 96.17 96.11 96.42

Local SA [12] - 96.10 95.57 96.15 96.23

Local SA [12] ✓ - 96.41 96.65 96.72 96.72

Local GraSP [43] 90.62 89.71 87.22 86.66

Local SNIP [21] 93.53 92.39 91.36 90.62

Global L1(a) ✓ - 96.10 94.28 93.80 93.25

Global L1(a) ✓ ✓ - 96.13 95.15 95.77 95.72

Global I0 - 94.88 95.28 95.66 95.45

Global I ✓ - 96.10 95.82 96.34 96.50

MiMi Global I ✓ ✓ - 96.59 96.92 96.73 96.81

Table 2. Performance analysis for neuron selection on VGG-
Flowers. L1(w) and L1(a) denote the magnitude pruning of the
parameters and the activations respectively. Local (DW) repre-
sents local pruning applied to down-sampling layers only.

ron removal) instead of unstructured pruning (weight re-
moval), to reduce the size of adapters. Additionally, MiMi
incorporates a look-ahead strategy that accounts for the im-
pact of up-sampling layers, ensuring consistently high per-
formance. Notably, with MiMi, adapter size can be reduced
for efficient computation, unlike SA.

In the final cycles, MiMi identifies crucial adapters for
adaptation, prioritizing their finetuning. This approach im-
proves model performance by adjusting specific latent rep-
resentations tailored to the downstream task while using
fewer parameters. MiMi consistently outperforms both
GraSP and SNIP across all σ values due to its iterative
pruning approach. Pruning at initialization as done in
SNIP/GraSP, before the adapters have been trained are less
effective. Since the initialization is random, they are miss-
ing out on retaining potentially important weights.

Table 2 reveals that MiMi achieves superior performance
compared to vanilla adapter training on the VGG-Flowers
dataset, with a performance gap of 6.14%, when using σ =
64 (regardless of local/global neuron selection). Notably,
this performance gap increases as we reduce the adapter
size to σ = 256, 512. Furthermore, when comparing to a
vanilla L1 importance scoring, we observe the benefits of
considering both down-sampling and up-sampling parame-
ters for the adapters. This approach consistently improves
performance across compression rates ranging from 0.5%
to over 3%. Notably, the performance gap becomes more
prominent at higher compression rates.

Finally, scaling the importance score according to equa-
tion 3 enhances the performance of the Global method by
approximately 1% across all σ values.
Parameter allocation analysis with MiMi. In Fig. 5, we
visualize the distribution of removed and remaining neu-
rons achieved through the application of MiMi on VGG-
Flowers and CIFAR-10. Notably, this illustration highlights

the contrasting outcomes between local neuron selection,
which uniformly removes neurons from adapters, and the
utilization of global neuron selection. Remarkably, we ob-
serve that the latter approach completely removes certain
adapters from the model (evident in layers 4, 5, 7, and 8 of
VGG-Flowers), while redistributing a significant number of
parameters to other adapters.

Moreover, global neuron selection exhibits distinct adap-
tations for each dataset, as evidenced in Fig. 5. Notably, the
distribution of removed neurons varies between CIFAR-10
and VGG-Flowers. In the case of CIFAR-10, fewer adapters
are completely removed compared to VGG-Flowers. Con-
versely, for VGG-Flowers, only adapters at later stages
are retained, suggesting that early layer representations are
well-suited for this particular dataset. However, for CIFAR-
10, the remaining adapters are dispersed throughout all lay-
ers of the ViT model, indicating that almost all the layers’
representations need to be finetuned. These observations
highlight the adaptability and dataset-specific optimizations
achieved through global neuron selection. To provide a
more comprehensive analysis, we also present normalized
plots in supplementary material.
ViT variants with MiMi. We evaluate the performance
of MiMi on different ViT backbones, including Swin-S/L
(∼50M/∼197M parameters), ViT [6] (∼86M parameters),
and CVT [44] (∼20M parameters).

For three training cycles, we compare the three base-
lines: finetuning, adapters, and MiMi. Table 3 presents the
best scores achieved in the final cycle. Remarkably, MiMi
achieves comparable performance to full model finetuning,
with a margin of 1.2%, 1.2%, and 1.4% for ViT-B/16, Swin-
S, and CvT, respectively. This is accomplished by finetun-
ing less than 1.5% of the parameters, including the head
classifier. MiMi surpasses vanilla adapters’ performance
with four times fewer parameters across all ViT backbones
(ViT, Swin-T, and CvT). These experiments demonstrate
the generalizability of MiMi to various ViT backbones.
Evaluating Inference Cost/Storage Footprint. In this sec-
tion, we conduct a comprehensive analysis of the GFLOPS
at inference time and storage footprint for PETs methods
in the context of multi-task learning. Table 4 presents the
findings, including the number of trainable parameters and
the storage requirement in MegaBytes (MB) for saving the
Swin-T model after finetuning per task T .

Storing a complete ViT for each task can impose signifi-
cant burdens on storage space and computational resources.
With ViTs containing millions of parameters, these stor-
age requirements quickly accumulate in multi-task settings.
However, by storing only a subset of the model’s param-
eters, both storage costs and computational resources for
training can be significantly reduced.

Larger model components, like attention and MLP
blocks, demand significant storage due to their extensive
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Figure 5. Layer-wise analysis of adapter’s neurons distribution at 4th cycle. Bar plots represent the number of neurons ni at each adapter
i for VGG-Flowers and CIFAR-10, respectively. Global neuron selection leads to different neuron distributions depending on the dataset.
Compared to VGG-Flowers, fewer adapters are completely removed on CIFAR-10.

Method # Params Trained C100 C10 V S Mean
(M) ↓ (%) ↓ ↑

V
iT

-B
-1

6 Finetune 85.90 100 91.22 99.01 99.32 97.68 96.81

Adapters 0.96 0.89 89.39 98.02 97.69 94.17 94.82
MiMi 0.62 0.54 89.86 98.09 98.75 94.94 95.41
MiMi 0.37 0.32 89.84 98.17 98.85 95.32 95.55

Sw
in

-S

Finetune 48.80 100 90.12 98.88 98.37 98.16 96.38

Adapters 0.41 4.88 89.05 98.48 94.60 97.25 94.84
MiMi 0.23 2.75 88.86 98.53 96.16 97.22 95.19
MiMi 0.11 1.32 88.62 98.50 96.68 96.94 95.18

Sw
in

-L

Finetune 197M 100% 95.12 99.34 99.67 98.22 98.08

Adapters 20.1M 10.2% 94.31 99.46 99.76 97.98 97.88
MiMi 10.9M 5.53% 94.78 99.44 99.51 99.77 98.38
MiMi 6M 3.04% 92.92 99.30 99.74 97.96 97.48

C
vT

Finetune 19.65 100 90.01 98.68 97.98 98.09 96.19

Adapters 0.78 4.00 86.68 97.91 88.93 96.96 92.62
MiMi 0.47 2.40 86.47 97.98 93.28 97.17 93.73
MiMi 0.28 1.44 85.87 97.77 94.31 96.67 93.66

Table 3. Performance of our method using different ViT back-
bones on the Multi-task benchmark. The highest score is in bold
and the second best score is underlined. C100, C10, F, and S stand
for CIFAR100, CIFAR10, Flowers, and SVHN datasets.

Method # Params (M)↓ Storage (MB)↓ GFLOPS ↓ Accuracy(%) ↑

Full-finetuning 27.8 111 8.72 97.35
Att-block 8.93 34.7 8.72 97.79
MLP-blocks 17.54 73.4 8.72 96.50
Full-model W/ Adapter(σ = 32) 1.37 115.3 9.06 96.27

BitFit 0.34 0.34 8.72 87.85
VPT-Deep (100 tokens) 0.32 160.1 18.40 34.88
AdaptFormer-64 0.84 1.63 9.08 90.50
SSF 0.28 0.96 8.72 95.59
Fact-TK32 0.33 1.18 10.6 87.46
Adapters(σ = 32) 1.37 4.30 9.06 96.27
Adapters(ni = 47) 1.37 4.40 9.26 92.72
Adapters(ni = 1) 0.30 0.47 8.74 89.77

Linear-prob 0.27 0.31 8.72 76.80
MiMi (3 cycles) 0.40 0.63 8.92 96.81
MiMi (4 cycles) 0.30 0.47 8.82 96.81

Table 4. Comparison with different PET methods on VGG-
Flowers with respect to inference cost (GFLOPs).

trainable parameters. On the other hand, finetuning only the
head (Linear-prob) is lightweight but comes at the cost of

performance. Notably, MiMi achieves a +6% performance
enhancement compared to Adapters ni=1 while maintain-
ing similar storage needs. However, MiMi offers both ro-
bust performance and reduced memory demands, position-
ing it as a superior alternative.

In terms of GFLOPS during inference, full fine-tuning,
and similar variants, such as Att-block and MLP-blocks,
achieve the lowest GFLOP values at 8.72. However, they
come at the expense of a high memory footprint. On the
other hand, VPT-Deep (100 tokens) stands out with the
highest GFLOPS at 18.40, thanks to an increase in the em-
bedding space for each layer to 100 tokens. This empha-
sizes that fewer parameters do not necessarily guarantee
computational efficiency. MiMi in its 3-cycle and 4-cycle
variants, achieves GFLOPS values of 8.92 and 8.82, respec-
tively. This efficiency is attributed to our method’s ability to
completely remove some adapters, effectively reducing the
computational cost during inference.

5. Conclusion
In this work, we propose MiMi, a training algorithm to

learn small adapters for the problem of ViT efficient finetun-
ing. Rather than directly training adapters with few param-
eters, we propose to start with large adapters, and then iter-
atively select the more important neurons in every adapter.
Our training procedure estimates the hidden dimension for
each adapter, reducing the number of trainable parameters
and even removing adapters if unnecessary. We empirically
demonstrate the greater performance of MiMi to adapters
and show that our method achieves excellent performance
with low numbers of trainable parameters. Our ablation
study validates the positive impact of our novel importance
score to estimate the hidden dimension of each adapter.
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Autopeft: Automatic configuration search for parameter-
efficient fine-tuning, 2023. 2

1741


	. Introduction
	. Related Work
	. Proposed Method
	. Preliminaries
	. Overview of MiMi
	. Importance Score in MiMi

	. Experiments
	. Main results
	. Ablation study

	. Conclusion

