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Abstract

Self-supervised monocular depth estimation methods
aim to be used in critical applications such as autonomous
vehicles for environment analysis. To circumvent the po-
tential imperfections of these approaches, a quantification
of the prediction confidence is crucial to guide decision-
making systems that rely on depth estimation. In this pa-
per, we propose MonoProb, a new unsupervised monocular
depth estimation method that returns an interpretable un-
certainty, which means that the uncertainty reflects the ex-
pected error of the network in its depth predictions. We
rethink the stereo or the structure-from-motion paradigms
used to train unsupervised monocular depth models as a
probabilistic problem. Within a single forward pass infer-
ence, this model provides a depth prediction and a mea-
sure of its confidence, without increasing the inference time.
We then improve the performance on depth and uncertainty
with a novel self-distillation loss for which a student is su-
pervised by a pseudo ground truth that is a probability dis-
tribution on depth output by a teacher. To quantify the per-
formance of our models we design new metrics that, un-
like traditional ones, measure the absolute performance
of uncertainty predictions. Our experiments highlight en-
hancements achieved by our method on standard depth
and uncertainty metrics as well as on our tailored metrics.
https://github.com/CEA-LIST/MonoProb

1. Introduction

Advances in deep learning in the field of computer vi-
sion have led to breakthroughs in depth estimation [7, 24].
This task is crucial for applications like autonomous driv-
ing, as it provides an analysis of the environment that can
inform about the presence of obstacles, for instance. There-
fore, it must be sufficiently reliable to be used for decision-

making. In particular, the expected common criteria are
high performance, fast inference, and the ability to quan-
tify the confidence in the model predictions. However,
these requirements often conflict with the inherent limita-
tions of traditional deep learning methods. Indeed, these ap-
proaches require extensive labeled datasets, incurring sub-
stantial additional costs. Furthermore, they are black-box
systems, yielding predictions without reliability clue. Con-
sidering supervised learning for monocular depth estima-
tion, labeled data can be provided by recording videos of
multiple scenes while performing a synchronized lidar ac-
quisition at the same time [2,26]. An alternative consists in
training a model on synthetic data [13] which nevertheless
introduces a domain gap between the training set and real
use-case data.

The challenge of acquiring labeled data can be mitigated
through unsupervised training strategies, where the objec-
tive is to minimize the reconstruction error between source
and target images captured from a different perspective [9,

] or at a different instant [39] within the same scene. The
lack of confidence can be addressed by ensembling meth-
ods [19,29] that combine the results of multiple inferences
from one or more models to obtain a variance for each
prediction. However, the aforementioned approaches incur
computational overhead during both training and inference,
particularly in the context of bootstrap ensembles. Alter-
natively, predictive methods [19,22,29] return complemen-
tary outputs in addition to the depth map to quantify the un-
certainty. Since they require only one inference per frame,
they are more attractive for real-time applications.

In the case of supervised learning, a simple and direct un-
certainty estimation approach is to model depth with a prob-
ability distribution [19]. The estimator returns the parame-
ters of this distribution instead of scalars and the traditional
distance to the ground truth as loss function is replaced by
the likelihood maximization of the predicted depth distri-
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bution. Notably, this method offers the advantage of pro-
viding interpretable uncertainty values within a single in-
ference that is the depth variance. In this paper, we con-
sider that an uncertainty is interpretable if it gives an esti-
mate of the expected error between the predicted depth and
the ground truth. However, this technique depends on the
availability of ground truth data. In the context of unsuper-
vised learning, several works [22,29] adapt this approach
by modeling the image reconstruction by a probability dis-
tribution and maximizing the likelihood of the reconstruc-
tion. By leveraging the weight of pixels where the supervi-
sory signal from the reconstruction loss is unreliable, they
achieve performance enhancements. Still, this uncertainty
is difficult to use in practical applications due to its complex
link with depth that limits its interpretability.

In this paper, (1) we first present MonoProb, an unsu-
pervised depth estimation method that provides an inter-
pretable confidence measure of its predictions. This ap-
proach extends the likelihood maximization strategy to un-
supervised learning. Unlike [22,29] that only model the re-
construction by a probability distribution, we express this
probabilistic reconstruction with respect to a probability
distribution over depth. As a result, this technique provides
an interpretable and reliable uncertainty relative to depth in
a single inference, enabling informed subsequent decision-
making in real-time. This uncertainty is the standard devi-
ation (STD) of a predicted depth distribution. Furthermore,
we demonstrate the ability of MonoProb to improve per-
formance on depth estimation. (2) Second, [29] estimates
uncertainty using a self-distillation method where pseudo
ground truth scalar depth maps from a teacher model super-
vise a student model. We enhance the quality of our uncer-
tainty predictions by adapting this approach to handle prob-
ability distributions as pseudo ground truth provided by the
teacher. (3) Finally, we propose two new metrics tailored
for evaluating the quality of interpretable uncertainty. To
compare different types of uncertainties, specifically non-
interpretable ones, [17,29] introduced metrics that are in-
variant to an increasing bijection on uncertainty. They mea-
sure a relative uncertainty within an image by indicating the
effectiveness of uncertainty in sorting image pixels by order
of performance on a given depth metric. Conversely, our
metrics are designed by considering the ability of the net-
work to predict its absolute performance.

2. Related works
2.1. Unsupervised monocular depth estimation

When no ground truth is available, image reconstruction
stands as a widely popular pretext task. It enables the model
to learn depth by linking it to the apparent motion of pix-
els characterizing the same object between two images of
a scene in a unique way. This technique also requires the

camera’s intrinsic calibration and the relative position of the
camera between two views of a scene. Pioneering works
use either stereo images [9, 10] or image sequences [39] for
this purpose, then [11, 30, 38] combine them both at train-
ing. Subsequent works improve performance by guiding the
model training with traditional non-learning based methods

[22,35], using learned features [32], enhancing network ar-
chitecture design, incorporating semantic guidance [3, 14,
] or regularizing training with self-distillation [1,27,28].

2.2. Uncertainty for supervised learning

The study of uncertainty estimation for depth estima-
tion task in deep learning has gained significant attention
in recent years. These methods can be categorized into
two families: ensembling and predictive methods. Ensem-
bling methods assume that neural network weights follow
a probability distribution. Uncertainty is then given by the
variance of multiple predictions obtained by sampling sev-
eral model weights. Bayesian neural networks [4, 25, 36]
explicitly assign a probability distribution to each individ-
ual weight. Monte Carlo dropout [8] consists in randomly
switching off network weights. Bootstrapped ensembles
[23] involve training several models on different subsets of
the training dataset, while in Snapshot Ensembles [16] store
multiple models from a single training. On the other hand,
predictive methods [19] aim at returning direct quantifica-
tion of the uncertainty in their outputs. These methods are
less computationally intensive, requiring only a single in-
ference step, although they require an adjustment of the loss
function. The outputs belong to a family of distributions
whose parameters are estimated by a neural network. The
loss function to be minimized is the negative log-likelihood
(NLL) of the actual ground truth, making it incompatible for
direct use in unsupervised learning scenarios. In our work,
we adapt this approach for the unsupervised learning of a
probabilistic depth distribution.

2.3. Uncertainty for unsupervised depth estimation

Early unsupervised monocular depth estimation methods
include uncertainty reconstruction. The explainability mask
of Zhou et al.’s method [39] encodes the network’s confi-
dence in its ability to reconstruct each pixel. Since it is used
to weight each pixel of the reconstruction loss differently,
it needs a regularization term to prevent a trivial solution.
[22,37], inspired by [ 1 9], remove the regulation term and in-
corporate the uncertainty map in a likelihood maximization-
like problem of reconstruction where the reconstruction er-
ror is modeled by a Laplacian distribution. Thus, the pre-
dicted variance quantifies how likely the reconstruction loss
is to be minimized. However, this is not exactly equivalent
to uncertainty on depth because on photorealistic datasets
[2,26,31], even a perfectly estimated depth map can pro-
duce reconstruction failures due to phenomena like bright-
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Figure 1. Our depth estimator takes the target image I; as input and returns a map of the parameters 7 = (u, o) of a multi-variate depth
distribution D. A sampling yields n depth maps used to reconstruct n times I;". These reconstructions also involve a source image I, the
intrinsic camera calibration K, and the camera motion T between I} and I;. They are then weighted according to the parameters 7 of the
distribution D and averaged. This gives the final reconstruction I, which is compared to the original I} in the Lrecons l0ss.

ness changes, non-Lambertian surfaces or highly detailed
areas. Nevertheless, it can serve as a useful tool for approx-
imating depth uncertainty as shown by Poggi et al. [29].
They provide a broad synthesis of techniques that can be
used to estimate uncertainty, ranging from empirical ap-
proaches such as dropout or ensembling methods to predic-
tive approaches such as likelihood maximization of the re-
construction loss or of a pseudo ground truth, or the pre-
diction of the reconstruction loss. They also combine em-
pirical and predictive approaches. Several works [12, 18].
reformulate depth estimation into a classification problem
of discrete disparities that can be used to estimate a vari-
ance. Dikov et al. [6] propose the first predictive approach
of an interpretable uncertainty that is depth STD. The re-
construction loss is reformulated as a reconstruction likeli-
hood expressed with respect to the depth distribution thanks
to Bayes’ theorem. Instead, we chose the law of total prob-
ability to make the depth distribution appear in the recon-
struction likelihood. This enables to avoid learning pseudo-
inputs as in [6] to get a prior distribution on depth. We
demonstrate that this improves both depth and uncertainty
performance.

3. Unsupervised depth estimation

Consider a collection of image pairs denoted as Z =
{(I¥, I});}; where each image I*, j € {s,t} in a pair
abides by I* € R>*W> and H, W, C respectively stand
for the height, the width and the number of channels. We
assume each image of a pair represents a different point of
view of a same scene which verifies the brightness consis-
tency assumption and has no uniformly textured surface.
The change of point of view can result from a small move-
ment of the camera relative to the scene (e.g. stereo im-

ages) or from a different timestamp (as in structure-from-
motion methods [34]). The brightness consistency assump-
tion means that objects in a scene keep a constant brightness
between two different close views. Hence, pixel motion is
sufficient to explain the transformation to be applied to an
image named the source image I} of an image pair in Z to
obtain the other one called the target image I;*. In a static
scene, the new location p, in I} of a pixel p; from I} can
be expressed as a function of the depth D; of the target im-
age, the camera motion 7;_, ; from the target to the source
image and the camera calibration K with the formula:

ps = KT;,sDi(pi) K~ 'pr. (D

For each pixel p;, sampling in the source image at loca-
tion p, results in a new image that is a reconstruction of the
target image ;. Thus, minimizing the reconstruction error
provides a relevant pretext task for the unsupervised learn-
ing of depth, given camera motion and calibration.

4. Method
4.1. Reconstruction loss with probabilistic depth

We consider a depth uncertainty to be interpretable if its
value directly informs about the expected depth error. To
provide depth with an interpretable uncertainty, we choose
to model depth by a distribution D whose mean pp is used
as depth prediction and STD op as uncertainty prediction.
The unsupervised learning framework described in Sec. 3
is re-designed into a probabilistic paradigm. For this pur-
pose, the image reconstruction is modeled by a distribu-
tion that is expressed as a function of the depth distribu-
tion D by applying the law of total probability. Since this
formulation requires the costly computation of an integral
over depth, we propose several approximations to make it
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Abs Rel

RMSE 0 < 1.25

Sup Resolution #Trn Abs Rel | RMSE | 6 <1251 AUSE |, AURG} | AUSEJ | AURGH AUSE |, AURG? ARU| | RMSUJ}
M [11] 1 0.090 3.942 0.914 - - - - - -
M [29]-Repr 1 0.092 3.936 0.912 0.051 0.008 2972 0.381 0.069 0.013
M [29]-Log 1 0.091 4.052 0.910 0.039 0.020 2.562 0.916 0.044 0.038 - -
M Ours 1 0.089 3.852 0.914 0.031 0.026 0.719 2.560 0.030 0.050 0.064 2912
M [29]-Self 2 0.087 3.826 0.920 0.030 0.026 2.009 1.266 0.030 0.045 0.074 3.730
M Ours-self 2 0.087 3.762 0.919 0.022 0.034 0.326 2.880 0.014 0.061 0.066 2.969
S [11] 1 0.085 3.942 0.912 - - - - - - - -
S [29]-Repr 1 0.085 3.873 0.913 0.040 0.017 2.275 1.074 0.050 0.030
S [29]-Log 1 0.085 3.860 0.915 0.022 0.036 0.938 2.402 0.018 0.061 - -
S Ours 1 0.084 3.834 0.916 0.023 0.033 0.661 2.655 0.023 0.055 0.075 3.540
S [29]-Self 2 0.084 3.835 0.915 0.022 0.035 1.679 1.642 0.022 0.056 0.083 3.686
S Ours-self 2 0.084 3.792 0.914 0.018 0.038 0.349 2.924 0.019 0.060 0.072 3.068
MS [11] 1 0.084 3.739 0.918 - - - - - - - -
MS [29]-Repr 1 0.084 3.828 0.913 0.046 0.010 2.662 0.635 0.062 0.018
MS [29]-Log 1 0.083 3.790 0.916 0.028 0.029 1.714 1.562 0.028 0.050 - -
MS Ours 1 0.084 3.806 0.915 0.027 0.029 0.840 2.436 0.029 0.049 0.077 3.573
MS [29]-Self 2 0.083 3.682 0.919 0.022 0.033 1.654 1.515 0.023 0.052 0.083 3.686
MS Ours-self 2 0.082 3.667 0.919 0.016 0.039 0.293 2.859 0.014 0.061 0.078 3.528

Table 1. Results of monocular only (M), stereo only (S) and monocular and stereo (MS) trainings of our MonoProb with and without self-

distillation compared to other methods.

tractable. This leads to a reformulation of the reconstruc-
tion loss. Our method is illustrated in Fig. 1.

Probabilistic model. The reconstruction of the target im-
age is modeled by a distribution I;. Using the law of total
probability, the likelihood of the reconstruction condition-
ally on I3, I + py, (I|I7) can be expressed with respect to
depth distribution D defined on D so that:

pu(I|T7) = /D p (I d.T) pp(d)dd. ()

Given py, (I|d, I7), maximizing the likelihood p;, (|17)
with respect to p, for I = I} provides an estimator of D.

Neural network estimator. The depth distribution D is
assumed to belong to a family of distributions £, with un-
known parameters 7. We introduce 1)y a function with
learnable parameters 6 that returns the 7 parameters of D
given an image pair (I}, I) € Z. The likelihood of the re-
construction becomes:

py (I|17,0) = /D by (I|d, I)pp(d | )dd, ()

with 7 = g(I;). Thus, 1y is an estimator of D by
minimizing the negative log-likelihood of the reconstruc-
tion with respect to the parameters § when I = I}. Let
recons(.,.) be a reconstruction function that takes as in-
put a punctual estimate of depth and an image, and re-
turns an image so that recons(D*,I}) = I and err(.,.) a
distance between two images, we define p;, (I | d, ) =
%exp(—err(recons(d, I¥),I)). The parameter A aims at
enforcing the upper bound of the cumulative distribution
function relative to p; (I|d,I7) to be equal to 1, thus
A = [, exp(—err(recons(d, I}),I))dd. The choice for

pr, (I | d,I7) enables to recover [11]’s reconstruction error
when computing the negative log-likelihood of p; (I | I7)
with a punctual distribution as D distribution.

Approximations of the reconstruction likelihood. In
this paper, 1y is a neural network that returns a map n of
the parameters of the distribution D € D = RI*xWxI
of depth. To make the prediction of 7 tractable with usual
state-of-the-art neural networks, 1)y outputs are restricted to
the parameters of the I X W x 1 marginal distributions of
D. This means that p, (d|n) in Eq. (3) is partially unknown.
A solution to this problem is to minimize an approximation
to the upper bound of the negative log-likelihood of the re-
construction rather than the negative log-likelihood itself.
Thus, using the convex property of the z — — log(x) func-
tion, the Jensen inequality can be applied as follows:

“logpy (I 17.0) = —log /D pr, (| d, I)pp(d | n)dd

= —logEp[p,, (1| D, ;)| n]
<Ep[-logp, ({|D,I7) [ n].
“4)

Then this upper bound is approximated:

Ep[—logp;, (I|D,I7)|n] = Eplerr(recons(D, I7), I)|n] + ¢
~ err(Ep[recons(D, I})|n], I) + c.
)

where ¢ = — log(\) is a constant. The case of equality oc-
curs when the depth estimator vy returns a punctual distri-
bution, i.e. with a null scale parameter. This means that
the model is absolutely certain about its prediction. This
is a behavior that 1y would tend towards if it had an infi-
nite capacity and was trained with an infinite dataset verify-
ing the brightness consistency assumption and without any
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Figure 2. Qualitative results of trainings on KITTI monocular videos. (1) Input image, (2) Uncertainty map from [

map from [

]-Self, (3) Depth error
]-Self, (4) Uncertainty map from our MonoProb without self-distillation, (5) Depth error map from our MonoProb without

self-distillation, (6) Uncertainty map from our MonoProb with self-distillation, (7) Depth error map from our self-distilled MonoProb.

, Abs Rel RMSE s <125

Methods | AbsRel{ | RMSE] | 6 <1.25T | ,ygp' | | AURGY | AUSEJ | AURGt | AUSE| | AURGt

VDN | 0.117 4315 0873 0.058 0018 1942 2.140 0.085 0.030
Ours 0.114 4772 0.875 0.044 0.030 1.625 2437 0.060 0.054

Table 2. Comparison with VDN [6] on KITTI with the raw ground truth.

uniformly textured surface. In this situation, the model is
always capable of finding the unique depth prediction that
minimizes the reconstruction error. In our experiments, we
assume that the datasets are sufficiently large, that their im-
ages respect the aforementioned ideal properties and that
the neural network architecture is wide enough to apply the
approximation in Eq. (5).

Finally, it is sufficient to have only the marginal values of
the multivariate distribution D to compute the expectation
in Eq. (5) since the recons(., .) function only applies pixel-
wise operations (see proof in the supplementary material).

Sampling strategy. The expectation in Eq. (5) is approxi-
mated with a sampling strategy. The samples cannot be ran-
dom because this would not allow computing the gradients
of the distribution parameters that are later used in the back-
propagation algorithm to update the parameters 6 of ¥y. In-
stead, for each marginal distribution of D, a set of n sam-
ples S, is defined so as to accurately represent the predicted
distribution (more details in the supplementary material).
At the end of the sampling stage, n depth maps of size HW

are obtained, from which n reconstructions are computed.
These reconstructions are weighted according to the sam-
ple used and summed. Thus, the final reconstruction loss
‘Crecons is:

_aes, Ppld|n)recons(d, I7)

I
> ses, Po(dln) )
(6)

Erecons(o) = eIr (

4.2. Self-distillation training

[29] is the first unsupervised monocular depth estima-
tion method that requires only one inference to provide an
interpretable uncertainty. It consists in training an unsu-
pervised monocular depth estimation teacher model with-
out uncertainty, then using its predictions as pseudo ground
truth in the supervised training of a student model. This
student model returns the parameters of a probability dis-
tribution of the depth D,. The loss function is the neg-
ative log-likelihood. We redesign this loss in case the
teacher already returns a distribution D,. We train the stu-
dent so that its predicted distribution matches the frozen
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Sup | Resolution Sdii AbsRel] | RMSE| | & < 1.251 AUSEibb R"AIURG e fMSiURG - AUS]S f 1'fj’JRG 4 | ARUL | RMSUL
M | 640 X 192 0.084 3.621 0.920 0.025 0030 | 0744 2.365 0.025 0.048 | 0074 | 3405
M | 640x192 | v 0.082 3.570 0.926 0.022 0.031 0.315 2728 | 0015 0054 | 0.063 | 2.870
M | 1024 x 320 0.087 3.653 0.922 0.028 0.030 | 0.543 2574 | 0022 0052 | 0064 | 2720
M | 1024x320 | v 0.083 3.481 0.928 0.020 0.034 | 0324 2640 | 0.011 0.056 | 0.061 | 2751
S | 640 x 192 0.080 3.653 0.920 0.023 0030 | 0.687 2467 0.022 0051 | 0072 | 3404
s | ed0x102 | v 0.079 3.606 0.922 0.015 0.037 0.303 2.811 0.013 0.058 | 0075 | 3451
s | 1024 x 320 0.074 3.361 0.931 0.022 0.028 0.597 2304 | 0021 0043 | 0065 | 3.061
s | 1024x320 | v 0.073 3315 0.933 0.015 0.034 0277 2584 | 0.012 0051 | 0060 | 3172
MS | 640 x 102 0.080 3.486 0024 0.015 0.038 0.283 2701 0.03 0.058 | 0076 | 333
MS | 640x 192 | v 0.079 3.456 0.925 0.025 0.028 0.602 2.358 0.024 0045 | 0071 | 3175
MS | 1024 x 320 0.076 3.338 0.927 0.023 0.027 0.571 2206 | 0022 0.046 | 0.067 | 3.057
MS | 1024 x 320 | v 0.075 3.241 0.929 0.016 0.033 0.275 2.499 0.013 0052 | 0071 | 3.109

Table 3. Results of the M, S and MS MonoProb methods with the Resnet50 architecture and two different resolutions with and without
self-distillation. These demonstrate the ability of our MonoProb method to work with other architectures and high-resolution images.

Dataset Method Abs Rel | RMSE | 6 <1251 AUSEibS RZIURG 1 AUSE fMSiURG 4 AUSF(;S ¢< Li%RG 4 ARUJ RMSU|
[11] 0.322 7.417 - - - - - - - - -
Make3D [29]-Self 0.334 6.840 0.514 0.173 0.029 4.954 0.065 0.251 0.036 0.286 6.500
Ours 0.333 6.729 0.514 0.124 0.079 1.966 2.977 0.231 0.060 0.271 5.705
Ours-self 0.327 6.687 0.521 0.112 0.087 1.583 3.335 0.219 0.070 0.267 5.781
[ 0.226 10.043 0.653 - - - - - - - -
Nuscenes [29]-Self 0.220 9.765 0.662 0.127 0.009 7.446 0.575 0.224 0.017 0.197 9.518
’ ; Ours 0.224 9.757 0.666 0.081 0.053 3.148 4.905 0.128 0.118 0.162 8.165
Ours-self 0.219 9.559 0.670 0.0720 0.060 1.644 6.218 0.099 0.141 0.175 8.498

Table 4. Evaluation on the Make3D and Nuscenes datasets of our M models trained on KITTI with monocular images only shows that our
method generalizes well to other datasets both for the depth and the uncertainty.

teacher distribution. For this purpose, our loss function is
the Kullback-Leibler divergence between the feacher and
the student distributions. Following the results in Tab. 7,
we choose the Gaussian distribution as the family of distri-
butions for the teacher: Dy = N (p,0;) and the student:
Dy = N(is,05). Thus, the self-distillation loss is L:

or 02+ (ps — )?
Leef(0) = Di(Ds|| D) = log —+ M
O 20}

(N

5. Experiments
5.1. Absolute uncertainty metrics

The depth metrics are those of [29], in particular the ab-
solute relative error (Abs Rel), the root mean square error
(RMSE), and the amount of inliners (§ < 1.25). We use
the STD of the predicted distributions as a pixel-wise uncer-
tainty estimate. Following [29], we compute the Area Un-
der the Sparsification Error (AUSE) and the Area Under the
Random Gain (AURG), which are relative metrics within an
image. They measure the ability of the uncertainty estima-
tion to sort pixels in order of descending error € for a given
depth error metric in an image. AUSE compares the spar-
sification curve obtained by this sorting to the perfect spar-
sification curve obtained by sorting pixels directly based on
their error. AURG quantifies the improvement of the sparsi-
fication curve of the predicted uncertainty relative to a ran-
dom sparsification curve where no uncertainty modeling is

performed. More details about these metrics can be found
in [29].

These metrics are designed to compare any kind of un-
certainty metrics even if they are not directly related to
depth but rather to the reconstruction quality for instance,
as in [22,29]. However, they suffer from some drawbacks:
they cannot provide an absolute measure of uncertainty and
they are not consistent from one image to another. Indeed,
since they are based on sorting uncertainties within an im-
age, these metrics are invariant within a growing bijection
on the predicted uncertainties. Likewise, a given pair of un-
certainty and corresponding error, will not have the same
contribution to the global uncertainty metric depending on
the performance of the other pixels of the same image.

Therefore, we introduce two new uncertainty metrics
that measure the ability to anticipate the true depth er-
ror. Thus, we propose the Absolute Relative Uncertainty
(ARU), which is relative to the ground truth depth, and the
Root Mean Square Uncertainty Error (RMSU), which is
not. Let D*, D and U be respectively the ground truth depth
map, the predicted depth map and the predicted uncertainty
map for a single image:

ARU = |(U — |D — D*|) @ D*||JHW

- ®)
RMSU = /[|(U — |D — D*)2]l1/HW,

where |.|, @ and |.|[; denote the element-wise absolute
value, the element-wise division and the ¢;-norm, respec-
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Uncertainty

Abs Rel

RMSE

6 < 1.25

prediction | APSRelL | RMSEJ | 6 <1.251 | yyep 1" | AURGT | AUSEJ | AURGF | AUSE] | AURGH | ARUY | RMSUL
- 0418 12.047 0321 0.226 0.003 0.087 0.045 0346 | 0006 | 0418 | 12.047
« 0.089 3.852 0.914 0.031 0.026 0719 | 2560 0030 | 0050 | 0064 | 2912

Table 5. The ablation on how to predict uncertainty in unsupervised training with probabilistic image reconstruction shows that directly

predicting o is unable to train the model contrary to predicting « and then deducing o = « X p.

Num Abs Rel RMSE d < 1.25
samples | APSRelL | RMSE | § <1.25T | \yqp'| | AURGt | AUSEJ | AURGH | AUSEJ | AURGH | ARUY | RMSUL
5 0.092 3.895 0911 0.033 0.025 0.729 2.581 0.033 0.049 0.066 2.968
9 0.089 3.852 0.914 0.031 0.026 0.719 2.560 0.030 0.050 0.064 2912
13 0.092 3.907 0912 0.032 0.027 0.753 2.573 0.030 0.051 0.066 2.952

Table 6. The ablation study on the number of samples provides an optimal value of 9 samples.

tively. These metrics are then averaged over all the ground
truth depth maps of the dataset. By construction, these met-
rics are only suitable for quantifying uncertainty that is di-
rectly related to the depth estimation error.

5.2. Implementation details

We implement our method on top of Monodepth2 [11],
an unsupervised monocular depth estimation approach that
is trained with either monocular videos only (M), pairs of
stereo image pairs only (S), or both monocular videos and
stereo images (MS). When monocular videos are used for
training (M or MS), an additional pose network is jointly
trained with the depth network to provide the camera mo-
tion 7. In contrast, when stereo images are used the camera
motion is given by the translation between the two stereo
cameras. Monodepth? is also designed to handle occlusions
and ignore dynamic objects that would disrupt the training.
Thus, following [1 1], we finetune a Resnet18 network [15]
pretrained on the ImageNet dataset [5] for 20 epochs with
the Adam optimizer [20]. We use batches of 12 images re-
sized to 192 x 640 and augmented as in [11]. We choose
a Gaussian distribution A (u1, o) as the family of distribu-
tions for depth, so our depth network must return a two-
channel map, one for each parameter. On one of them, we
apply a sigmoid activation function to predict a disparity
from which the mean p of the depth distribution is deduced
following [ 1 1]. When training with our probabilistic recon-
struction loss, a sigmoid is also applied to the second chan-
nel so that it outputs a scalar o € [0, 1] that weights the
mean depth 4 to obtain the STD 0 = a x . Instead, at the
self-distillation stage, the network directly returns the o by
applying an exponential activation function as in [29]. The
number of samples is set to 9. The learning rate is set to
10~* and dropped to 10~5 over the last 5 epochs. We carry
out experiments on the KITTI dataset [26], which is com-
posed of 42K images extracted from 61 driving videos. Fol-
lowing common practice, we employ the popular Eigen split
[7]. At evaluation, we cap depth to 80 meters and use the
improved ground truth provided by [33]. The uncertainty is
the STD of the predicted distributions.

5.3. Results on KITTI

We conducted experiments on the three depth estimation
paradigms of [11]: M, S and MS. In Tab. 1, we compare
the performance obtained with our baseline [ 1] that does
not provide uncertainty and with predictive methods imple-
mented in [29] (i.e. methods that directly predict an un-
certainty quantification within a single inference). In ac-
cordance with Sec. 5.1, we cannot compute our new met-
rics (ARU and RMSU) on [29]-Repr and [29]-Log. Indeed,
these methods respectively provide as uncertainty quantifi-
cation, an estimate of the reprojection error and an esti-
mate of the scale parameter of the distribution of the re-
construction error. For fair comparisons, we report the
number of trainings (#Trn). In the following, we refer
to our MonoProb method without self-distillation as raw-
MonoProb and to our MonoProb with self-distillation as
self-distilled-MonoProb. Qualitative results in Fig. 2 show
that [29]-Self tends to underestimate the uncertainty of dis-
tant objects and background, and to overestimate the uncer-
tainty of object edges compared to our methods (more qual-
itative results on KITTT including depth maps are available
in the supplementary material).

First, let’s describe the results of single training methods.
For the M training, raw-MonoProb performs slightly better
on depth and significantly improves performance on uncer-
tainty metrics. For the S training, the same behavior is ob-
served for depth metrics: raw-MonoProb is a bit more effi-
cient on depth than the other methods that require a single
training. In terms of uncertainty, our raw-MonoProb results
tend to be equivalent to [29]-Log. For the MS training, the
depth performance of our raw-MonoProb is slightly below
[11] and very close to other methods that require a single
training to predict an uncertainty. The results on uncertainty
metrics show that our method is either better than or very
close to other comparable methods. For self-distilled meth-
ods, we observe the same behavior regardless of the training
paradigm (M, S, or MS). Our self-distilled-MonoProb per-
forms similarly to [29]-Self (trained with self-distillation on
scalar pseudo ground truth) on depth metrics but the uncer-
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Family of

Abs Rel

RMSE 0 < 1.25

distributions | APSReld | RMSE | 9 <1.25T | \ysp| | AURGT | AUSE| | AURGT | AUSE| | AURGH | ARUY | RMSUL
Laplace 0.001 3913 0.914 0032 | 0027 | 0857 | 2481 | 0030 | 0050 | 009 | 3816
Normal 0.089 3852 0.914 0031 | 0026 | 0719 | 2560 | 0.030 | 0050 | 0064 | 20912

Table 7. The ablation of the family of distributions for D shows that the normal distribution performs better than the Laplace distribution.

Abs Rel

RMSE 6 < 1.25

Methods | AbsRell | RMSEL | 6 <1.251 | suce' | AURGT | AUSE| | AURGH | AUSE| | AURGP | ARUL | RMSUL
NLL 0.088 3785 0.917 0.022 0.034 0.330 2.897 0.016 0.061 0.066 2.992
KL-Div 0.087 3781 0.919 0.022 0.035 0.322 2.904 0.015 0.060 0.066 2.997

Table 8. Comparing the performance of self-distillation with negative log-likelihood (NLL) where the pseudo ground truth is a depth
map, and the Kullback-Leibler divergence (KL-Div) where the pseudo ground truth is a map of depth distributions, highlights a slight

improvement with the Kullback-Leibler divergence.

tainties of self-distilled-MonoProb are significantly better
than those of [29]-Self. Interestingly we show that our raw-
MonoProb outperforms [29]-Self on our new metrics ARU
and RMSU. We also show in the supplementary material
that our MonoProb has similar or better performance than
uncertainty methods that require more than one inference.
We evaluate our M model on KITTI with the raw ground
truth for comparison with the VDN approach [6] in Tab. 2.
This shows a higher effectiveness of our method for both
depth estimation and uncertainty quantification. Finally, we
provide results of our method with the Resnet50 architec-
ture [15] and high-resolution images in Tab. 3. This shows
that MonoProb also works on different architectures and im-
age resolutions as the results are better than those of Tab. 1.

5.4. Generalization to other datasets

We also evaluate the generalization ability of our method
on two other datasets of outdoor and urban scenes: Make3D
[31] and Nuscenes [2]. The results on both datasets (see
Tab. 4 and supplementary for qualitative results) show that
our method without self-distillation is equivalent to the self-
distilled approach of [29] in terms of depth performance and
better at estimating uncertainty. Our self-distilled models
are more accurate than other methods in both depth and un-
certainty estimation. This shows that our method has a good
generalization ability on images from different datasets.

5.5. Ablation

To justify the impact of our contributions and the inter-
est of our implementation choices, we conduct an ablation
study including the computation of the STD ¢, the family
distributions for depth, the number of samples and the self-
distillation loss. First, we show the benefit of predicting
before deducing 0 = a x p instead of directly predicting
o when training with our probabilistic reconstruction loss.
Experiments in Tab. 5 highlight that a direct prediction of
o prevents the network from learning anything, leading to
very low performance compared to our strategy of consid-
ering the o as a fraction of the mean depth . Studying the
number of samples yields an optimal value of 9 in Tab. 6.

The ablation in Tab. 7 highlights that normal distributions
perform better overall than Laplace distributions as the fam-
ily of distributions for depth. Finally, the experiments in
Tab. 8 show the influence of our self-distillation loss: fitting
two distributions with the Kullback-Leibler divergence out-
performs minimizing the negative log-likelihood. As a mat-
ter of reproducibility, we provide the expression of the neg-
ative log-likelihood loss Ly, we use in this ablation. For
a fair comparison, we assume the student follows a normal
distribution D = N (s, 05):

Lain(0) = (ns — )?/(20%) +log(os),  (9)

(¢ being the mean of the teacher’s depth distribution used
as pseudo ground truth.

6. Conclusion

In this paper, we propose MonoProb an unsupervised
method for training monocular depth estimation networks
that returns an interpretable uncertainty within a single in-
ference. This uncertainty, which anticipates the prediction
errors, is the STD of the depth distribution returned by the
depth estimation network. We also introduce a new self-
distilled loss to train another network using a depth dis-
tribution as pseudo ground truth. Finally, we design new
metrics that are better suited to measure the performance
of interpretable uncertainty, i.e., uncertainty that is a di-
rect anticipation of depth prediction errors. Through ex-
tensive experiments, we highlight that MonoProb improves
performance relative to other unsupervised depth estimation
methods that provide a quantification of uncertainty. We
also demonstrate the cross-domain generalization ability of
our method, that it works on different neural network archi-
tectures and on high-resolution images.
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