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Abstract

Semi-supervised object detection (SSOD) aims to im-
prove the performance and generalization of existing ob-
ject detectors by utilizing limited labeled data and exten-
sive unlabeled data. Despite many advances, recent SSOD
methods are still challenged by inadequate model refine-
ment using the classical exponential moving average (EMA)
strategy, the consensus of Teacher-Student models in the
latter stages of training (i.e., losing their distinctiveness),
and noisy/misleading pseudo-labels. This paper proposes a
novel training-based model refinement (TMR) stage and a
simple yet effective representation disagreement (RD) strat-
egy to address the limitations of classical EMA and the
consensus problem. The TMR stage of Teacher-Student
models optimizes the lightweight scaling operation to re-
fine the model’s weights and prevent overfitting or forget-
ting learned patterns from unlabeled data. Meanwhile, the
RD strategy helps keep these models diverged to encour-
age the student model to explore additional patterns in un-
labeled data. Our approach can be integrated into estab-
lished SSOD methods and is empirically validated using
two baseline methods, with and without cascade regression,
to generate more reliable pseudo-labels. Extensive exper-
iments demonstrate the superior performance of our ap-
proach over state-of-the-art SSOD methods. Specifically,
the proposed approach outperforms the baseline Unbiased-
Teacher-v2 (& Unbiased-Teacher-v1) method by an aver-
age mAP margin of 2.23, 2.1, and 3.36 (& 2.07, 1.9 and
3.27) on COCO-standard, COCO-additional, and
Pascal VOC datasets, respectively.

1. Introduction

Object detection has experienced significant progress
owing to the availability of large-scale benchmark datasets
containing pairs of class labels and bounding boxes for var-
ious objects within images. However, collecting and ac-
curately annotating object detection datasets is extremely

Figure 1. An illustration of the difference between existing
SSOD methods and the proposed approach. Existing methods use
Teacher-Student models (initialized in the Burn-In stage) where
the student model is trained with pseudo-labels generated by the
teacher model, and teacher model weights are updated using the
classical EMA strategy. In the proposed approach, during the SSL
stage, the teacher model weights and scaling operation parameters
(denoted as SPs) remain frozen during the training of the student
model. After completing N iterations, the weights of the models
are frozen, and the TMR stage optimizes lightweight SPs for N ′ it-
erations, followed by adaptive refinement of model weights using
updating rules. The SSL and TMR stages are iteratively applied
until the completion of the training process. Best viewed in color.

expensive, time-consuming, and labor-intensive due to the
lack of domain experts, limited resources, and the compli-
cated nature of the problem. Meanwhile, acquiring a large
amount of unlabeled data is relatively easy and provides
valuable insights into the data distribution from which ro-
bust representations (under various transformations) can be
learned [19]. Hence, leveraging unlabeled data for train-
ing object detectors has become increasingly popular due to
its potential to significantly reduce annotation costs & ef-
forts while improving model performance and generaliza-
tion. Semi-supervised object detection (SSOD) aims to har-
ness unsupervised information in scenarios where labeled
data is limited. Most recent SSOD methods rely on self-
training techniques, in which the pseudo-labels generated
from the teacher model(s) are utilized to train the student
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Table 1. Comparative review of SSOD methods. Best viewed with zoom-in.
Method Motivation(s) Backbone(s) Detector(s) Teacher Update Weak Augmentation(s) Strong Augmentation(s)
CSD [7] Efficient training process (than self-training) ResNet-101 SSD, RFCN × Horizontal flip ×

STAC [22] Combining self-training & consistency regularization ResNet-50-FPN Faster-RCNN × × Color/geometric transformations, cutout
ISMT [30] Detecting training iteration discrepancies ResNet-50-FPN Faster-RCNN Classical EMA × Color jitter

Soft-Teacher [29] More reliable pseudo-labels ResNet-50-FPN Faster-RCNN Classical EMA Horizontal flip Scale/solarize/brightness/contrast/sharpness jitters, translation, rotate, shift, cutout
Humble-Teacher [24] More reliable pseudo-labels, Teacher ensemble ResNet-50-FPN, ResNet-152-FPN Faster-RCNN, Cascade-RCNN Classical EMA Resize, flip color/sharpness/contrast jitters, Gaussian noise, cutout
Instant-Teaching [35] More reliable pseudo-labels, Confirmation bias ResNet-50-FPN Faster-RCNN Co-rectify scheme × Color/geometric transformations, cutout, mixup, mosaic

Unbiased-Teacher-v1 [15] Class imbalance, Pseudo-label bias ResNet-50-FPN Faster-RCNN Classical EMA Horizontal flip Color jitter, grayscale, Gaussian blur, cutout
Active-Teacher [18] More reliable pseudo-labels, Data initialization ResNet-50-FPN Faster-RCNN Classical EMA Horizontal flip Horizontal flip, color jitter, grayscale, Gaussian blur, cutout

ACRST [32] Class imbalance, Biased/noisy pseudo-labels ResNet-50-FPN Faster-RCNN Classical EMA Resize, flip, crop Color jitter, Gaussian blur, cutout
CAPL [11] Class imbalance, Localization precision ResNet-50-FPN Faster-RCNN × Horizontal flipping Color jitter, Gaussian blur, cutout

SED [6] Class imbalance, Large object size variance ResNet-50-FPN Faster-RCNN Classical EMA Resize, horizontal flip Color jitter, grayscale, Gaussian blur, cutout
Label-Match [3] Label mismatch, Confirmation bias ResNet-50-FPN Faster-RCNN Classical EMA Horizontal flip, multi-scale Color jitter, grayscale, Gaussian blur, cutout

MA-GCP [9] Relation between labeled & unlabeled data ResNet-50-FPN Faster-RCNN Classical EMA Horizontal flip Scale/solarize/brightness/contrast/sharpness jitters, translation, rotate, shift, cutout
MUM [8] More complex data augmentation ResNet-50-FPN, SwinTransformer Faster-RCNN Classical EMA Horizontal flip Mixing image tiles, color jitter, grayscale, Gaussian blur, cutout

Unbiased-Teacher-v2 [16] Anchor-free detectors, Misleading pseudo-labels ResNet-50-FPN Faster-RCNN, FCOS Classical EMA Horizontal flip Color/scale jitters, grayscale, Gaussian blur, cutout
Diverse-Learner [12] Maintain networks distinctiveness ResNet-50-FPN Faster-RCNN Classical EMA Horizontal flip, random size Random erasing, rotation, color jitters, etc.

PseCo [10] Noisy pseudo-labels, Scale-invariant learning ResNet-50-FPN Faster-RCNN Classical EMA Horizontal flip Scale/solarize/brightness/contrast/sharpness jitters, translation, rotate, shift, cutout
VC-Learner [4] Confirmation bias, Confusing samples ResNet-50-FPN Faster-RCNN × Horizontal flip Color/scale jitters, grayscale, Gaussian blur, cutout

De-biased Teacher [26] IoU matching bias ResNet-50-FPN Faster-RCNN Classical EMA Horizontal flip Color jitter, grayscale, Gaussian blur, cutout
Pseudo-Polish [33] Limited teacher model generalization ResNet-50-FPN Faster-RCNN Classical EMA Horizontal flip Scale/solarize/brightness/contrast/sharpness jitters, translation, rotate, shift, cutout

model(s) when weak & strong augmentations of images are
used as inputs (see Fig. 1 & Table 1). While these methods
enforce the consistency (or agreement) of Teacher-Student
predictions to train the student model, the classical exponen-
tial moving average (EMA) strategy is adopted to evolve the
teacher model progressively. This strategy gradually refines
the weights of the teacher model to improve the accuracy
of pseudo-labels & resiliency to noisy weights of the stu-
dent model [24] as well as alleviate the adverse effects of
pseudo-labeling bias [15].

Despite the progress made in the SSOD, training
Teacher-Student models still faces three major challenges.
The first challenge pertains to applying the classical EMA
strategy using manually defined smoothing coefficients. It
can lead to two potential issues when refining the weights
of the teacher model: i) insensitivity to important changes
in weights of the student model due to excessive reliance
on the initialized detector, and ii) sub-optimal performance
because constant coefficients may not be effective for all
refinement steps, resulting in weaker pseudo-labels. To ad-
dress these limitations, we propose a novel training-based
model refinement (TMR) stage that adaptively refines the
weights of Teacher-Student models (see Fig. 1). This stage
is added to the commonly used training stages of i) pre-
training on limited labeled data (or Burn-In stage), and
ii) semi-supervised learning (SSL) stage in SSOD meth-
ods. Inspired by meta-transfer learning (MTL) [23], we
optimize the lightweight scaling operation corresponding
to learnable parameters of Teacher-Student models to ef-
fectively aggregate information from labeled and unlabeled
data. The models’ weights can then be dynamically re-
fined using the introduced update rules to ensure the teacher
model is up-to-date and reduce the effect of noisy pseudo-
labels on the student model without the risk of overfitting or
forgetting the patterns learned from unlabeled data.

The second challenge is the consensus problem (i.e., los-
ing the distinctiveness of Teacher-Student models) at the
latter stages of the training procedure when two models be-
come almost identical. This is also derived from the clas-
sical EMA strategy, leading to teacher weights being close
to student ones as training progresses. Accordingly, both
models generate similar predictions and make it difficult for

the teacher model to extract helpful information from unla-
beled data for supervising the student model. To alleviate
this issue, we propose a simple yet effective representation
disagreement (RD) strategy that incorporates the asymmet-
ric Kullback-Leiber (KL) divergence between the semantic
representation of Teacher-Student models to prevent early
convergence. This strategy aims to increase model diver-
gence by encouraging the student model to explore more ro-
bust representations, learn complementary information, and
reduce the memorization effect of easy samples.

The last challenge is to address noisy/misleading
pseudo-labels, which can impede accurate model optimiza-
tion leading to ineffective learning from unlabeled data and
slow convergence. As shown in Table 1, extensive efforts
have been made to provide more reliable pseudo-labels. Al-
though most of these methods rely on the well-established
Faster-RCNN detector [20], it can be optimal solely for de-
tecting objects at a single-quality level due to the adversarial
nature of producing noisy boxes or assembling inadequate
positive proposals. Following the Humble-Teacher [24], we
integrate cascade regression into our baselines (i.e., [15,16])
to generate more reliable pseudo-labels while reducing the
overfitting problem. Note that we consider this integration
not as our contribution but rather as a means to highlight the
versatility of our proposed TMR-RD approach with various
base detectors. To conduct a fair comparison, our empiri-
cal experiments (Sec. 4) involve using two SSOD baselines
with or without cascade regression.

The main contributions are summarized as follows: (1)
A novel TMR stage is proposed to dynamically refine the
weights of Teacher/Student models in SSOD frameworks.
It can learn the lightweight scaling operation correspond-
ing to the learnable parameters of the Teacher-Student mod-
els, enabling fast convergence without the risk of overfitting
or forgetting patterns learned from unlabeled data. To the
best of our knowledge, this is the first work on the dynamic
refinement of Teacher-Student learning, with the potential
to inspire further research in its applications (e.g., knowl-
edge exchange, domain adaptation, etc.). (2) A simple yet
effective RD strategy is proposed to alleviate the consen-
sus problem of Teacher-Student models with progress in
training. This strategy prevents the models from converg-
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ing too early, allowing better generalization through more
exploring underlying patterns in unlabeled data. (3) Ex-
tensive empirical evaluations and ablation analyses demon-
strate superior performance and generalizability of the pro-
posed approach, which can be incorporated into existing
SSOD methods to boost their performance.

2. Related Work
2.1. Classical Exponential Moving Average (EMA)

While existing SSOD methods tackle various challenges
(e.g., efficient training [7, 22], detection discrepancies [30],
localization certainty [11], prediction consistency [9], ob-
ject size [6], data augmentation [8], confusing samples
[4], and reliability of pseudo-labels [18, 24, 29, 35]), they
mostly employ the classical EMA strategy [25] to refine the
teacher’s model weights (see Table 1). This strategy updates
this model by averaging its weights to ensure more accurate
predictions from the teacher model than the student one. It
can minimize the adverse effects of imbalanced and noisy
labels through mutually reinforcing pseudo-labeling and the
detection training steps by

θnt ← αθn−1t + (1− α)θn−1s

⇒ θnt ← αnθ0t + (1− α)

n−1∑
k=0

αn−1−kθks
(1)

in which θ0t , θnt , and θn−1s represent the initialized detec-
tor (trained on limited labeled data) at time step n = 0,
the parameters of the teacher model at n-th time step, and
the parameters of the student model at (n − 1)-th time
step, respectively. In addition, α is a manually-defined
smoothing coefficient (i.e., EMA decay) often set to 0.999
in SSOD methods so that the teacher model can benefit
from a long memory while it assumes the student model
improves slowly. The limitations of this strategy (also
presented in Sec. 1) have recently been discussed in the
Diverse-Learner [12], which uses two Teacher-Student pairs
and multi-threshold classification loss to alleviate the asso-
ciated drawbacks, maintain distinctiveness between models,
and improve pseudo-labels. However, it still uses the classi-
cal EMA strategy to refine its teacher models. In this paper,
we propose a novel approach for refining Teacher-Student
models by optimizing the lightweight scaling operation cor-
responding to the learnable model parameters, addressing
the limitations of the classical EMA strategy.

2.2. Model Robustness with Reliable Pseudo-labels

Recent advancements have been primarily directed at
enhancing the reliability of pseudo-labels (see Table 1).
These improvements encompass several approaches, such
as: i) selecting pseudo-boxes with higher scores [29], ii)
employing instant pseudo-labeling and simultaneous train-
ing of two models [35], iii) utilizing soft pseudo-labels and

teacher ensembles [24], iv) selecting the most optimal la-
beled examples [18], v) employing a memory module and
a two-stage pseudo-label filtering [32], vi) using a redis-
tributed mean teacher and proposal self-assignment [3], vii)
applying prediction-guided label assignment and positive-
proposal consistency voting [10], viii) utilizing Teacher-
Student mutual learning [15], ix) assessing relative model
uncertainties [16], x) developing two differently structured
pseudo-label polishing networks [33], and xi) directly gen-
erating proposals for consistency regularization between
perturbed image pairs [26]. These methods aim to train ro-
bust models by imposing an agreement strategy (or consis-
tency) between the predictions of Teacher-Student models
using labeled and unlabeled data. However, relying on sim-
ilar predictions and classical EMA can lead to losing model
distinctiveness and early convergence of models. To address
this, we introduce a simple yet effective RD strategy, which
helps maintain divergence between the models, enabling the
exploration of additional patterns in unlabeled data and pro-
moting model generalization.

Aside from that, existing methods typically use a con-
fidence threshold to determine the number of bounding
boxes. Decreasing this threshold increases the information
mined but can introduce noisy pseudo-labels, reducing de-
tection performance. Conversely, using a higher threshold
produces a limited number of high-quality boxes, ignoring
some objects during the SSL stage. In addition to the Faster-
RCNN detector, we assess our TMR-RD approach with the
Faster-RCNN equipped with cascade regression, which re-
lies on a multi-stage architecture featuring specialized re-
gressors for precise localization. This evaluation serves to
highlight the versatility of our approach, indicating its po-
tential to improve the overall performance and generaliza-
tion of existing methods.

3. Proposed Approach: TMR-RD

In this section, we present the TMR-RD approach, which
can be integrated into most existing SSOD methods em-
ploying Teacher-Student models and the classical EMA
strategy. We utilize the well-designed Unbiased-Teacher-
v1 [15] and Unbiased-Teacher-v2 [16], both with and with-
out cascade regression, as the baseline SSOD methods to
demonstrate our approach’s effectiveness. For the sake of
generality, we will describe the integration of our approach
into the Unbiased-Teacher-v2 (named TMR-RD-v2) with
the base detector using cascade regression, as shown in
Fig. 2. Still, our approach can be readily adapted to the
Unbiased-Teacher-v1 without the additional branch of lo-
calization uncertainty (named TMR-RD-v1) and work with
the Faster-RCNN detector (single-stage regression). An
overview of our approach is shown in Algorithm 1. The ex-
perimental results for various models are provided in Sec. 4.
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Figure 2. Overview of integrating the TMR-RD approach and cascade regression into the baseline Unbiased-Teacher-v2 [16]. SPs, U, C,
B, and NPLL represent scaling operation parameters, localization uncertainty, ROI classification, boundary distance, and negative power
log-likelihood loss, respectively. For comprehensive and fair comparisons, we also evaluate our models w/o the uncertainty prediction head
(e.g., Unbiased-Teacher-v1 [15]) and w/o cascade regression (i.e., Faster-RCNN).

3.1. Training-based Model Refinement (TMR)
The proposed TMR stage is inspired by the MTL [23]

that adapts large-scale trained base classification models to
new tasks with limited data using two lightweight neuron
operations of scaling and shifting. However, the proposed
TMR is designed following the EMA equation (see Eq. 1)
that merely requires scaling coefficients to refine the model
weights. The proposed approach comprises three stages of
Burn-In, SSL, and TMR (see Fig. 1), of which the first is the
same as that in the baseline methods [15, 16]. The Burn-In
stage provides a good initialization by training the base ob-
ject detector on the available labeled data. Then, the initial-
ized detector is duplicated into the Teacher-Student mod-
els so that pseudo-labels are generated by the Teacher and
used to train the Student during the SSL stage. However,
the weights of the Teacher are not updated using the classi-
cal EMA. Instead, we freeze neuron weights from the SSL
stage after completing N iterations and initiate the TMR
stage to learn a set of lightweight scaling operations asso-
ciated with the trained parameters of the Teacher-Student
models. By completing N ′ iterations, the proposed TMR
can promote the progressive transfer of knowledge from
the continually learning student model to the teacher one,
thereby aggregating information more effectively and im-
proving the generation of pseudo-labels.

In the TMR stage, the scaling operation is denoted as
Ωi, where i ∈ (t, s) refers to the teacher or student model.
The MTL [23] defines the scaling and shifting operations
exclusively for the feature extractor (i.e., backbone layers)
and updates them after optimizing a temporal classifier (i.e.,
as per a new task). However, we apply scaling operations to
all frozen neuron weights (see Fig. 2) of Teacher/Student by

S(x̂; θi; Ωi) = (θi ⊙ Ωi)x̂k, where D̂ = {x̂k, ŷk}
Nsup

k=1 and
⊙ are the strongly-augmented labeled data and the element-
wise multiplication, respectively. Then, the TMR loss is
defined as

LTMR = λtLsc ([θt; Ωt]) + λsLsc ([θs; Ωs]) , (2)

Lsc ([θi; Ωi]) =
∑

j∈D̂
Lrpn
cls

(
C0[θi;Ωi]

(x̂0
j ), ŷ

0
j

)
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reg
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(3)
where Lsc, Ck, Bk, and Uk represent the scaling operation
loss, a classifier at stage k, a boundary regressor at stage k,
and localization uncertainty at stage k, respectively. Each
regression stage is optimized for an IoU threshold τk, re-
spectively. In addition, rpn and roi refer to the RPN and
RoI-Head branches, respectively. As shown in Fig. 2, we
utilize the Cross-Entropy, Smooth-L1, Focal loss, and neg-
ative power log-likelihood loss (NPLL) as in the baseline
methods [15, 16] for our models to provide fair compar-
isons. Next, the scaling operation weights associated with
learnable parameters of the Teacher/Student are updated by

Ωi =: Ωi − γ∇Ωi
LTMR, (4)

in which γ denotes the learning rate. Optimizing the
lightweight scaling operation while keeping the large-scale
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trained weights of Teacher-Student models unchanged al-
lows for fast convergence while reducing the overfitting
risk. After N ′ iterations, the models are refined using our
updating rules as

θnt =
Ωt

Ωt +Ωs
θn−1t +

Ωs

Ωt +Ωs
θn−1s , (5)

θns = (1− Ωt

Ωt +Ωs
)θn−1t + (1− Ωs

Ωt +Ωs
)θn−1s . (6)

These rules imply that the scaling operation weights stay
within the permissible range of zero to one and selectively
refine models by the ability to adjust or forget inaccu-
rate model weights more effectively. Besides updating the
teacher weights, the student weights are also slightly refined
to reduce the impact of noisy pseudo-labels from training
this model with potentially misleading pseudo-labels in the
SSL stage. The SSL and TMR stages are alternatively con-
tinued until the end of the training procedure. This approach
makes it possible to efficiently learn EMA coefficients on-
the-fly, improving the performance of SSOD methods.

3.2. Representation Disagreement (RD)

The disagreement strategy idea lies in the principles of
Co-training [2], where the effectiveness of an ensemble can
be improved by keeping divergent classifiers. It has then
been extended to train deep networks in the presence of
noisy labels (e.g., [17, 31]). These scenarios involve simul-
taneous training of two deep networks based on the cross-
update principle implied by the culture-evolving hypothe-
sis [1], where a network can improve its learning capability
when it is aided by signals generated by another network.
Although two networks with distinct learning capabilities
can distinguish different error categories at the beginning of
the training phase, they will progressively converge toward

Algorithm 1 : Proposed TMR-RD Approach
INPUT: Labeled images Dsup, Unlabeled images Dunsup, Detection networks
(w/o cascade reg.): Teacher Net(·; θt) & Student Net(·; θs)
OUTPUT: Trained Net(·; θt) & Net(·; θs)

Freeze Ωt ▷ Burn-In Stage

for samples inDsup do
Evaluate Lsup following [15, 16]
Optimize θt

end
Initialize Net(·; θs) by setting θs← θt
while not done do

Freeze Ωt, Ωs, and θt ▷ SSL Stage

for N iterations do
Samples from D̄unsup and D̂unsup ▷ Weak & Strong Aug.

Evaluate Lunsup as in [16] for TMR-RD-v2 (or [15] for TMR-RD-v1)
Evaluate LRD using Eq. 7
Optimize θs using Eq. 8

end
Freeze θt and θs ▷ TMR Stage

for N ′ iterations do
Samples from D̂sup ▷ Strong Aug.

Evaluate LTMR using Eq. 2 (single-stage regression of Eq. 3)
Optimize Ωt and Ωs using Eq. 4

end
Refine θt and θs using Eq. 5 and Eq. 6

end

being close to each other, known as the consensus problem.
Hence, the disagreement strategy seeks to alleviate this is-
sue and boost the performance by keeping two networks
diverged within the training epochs or slowing the consen-
sus rate between two networks as the number of epochs in-
creases.

Similarly, the lack of distinctiveness is a common prob-
lem in self-training SSOD methods employing the EMA
strategy, as the weights of the Teacher-Student models be-
come almost identical towards the latter stages of training
[12]. To alleviate this problem, we introduce the simple yet
effective RD strategy during the SSL stage that encourages
the student model to explore further underlying patterns in
unlabeled data. It is also motivated by JoCoR [27] and
DML [34] methods used for the weakly-supervised learn-
ing and knowledge distillation. However, our strategy re-
lies on the representation space to keep the models diverged
in contrast with the DML and JoCoR aimed at reducing
the diversity between ensemble networks and minimizing
the KL divergence between the probabilistic outputs of net-
works. For the proposed RD strategy, we first compute
the probability distributions of semantic representations
fi ∈ RC×H×W from Teacher/Student models using pt =
softmax (ft(x̄

u)) and ps = softmax (fs(x̂
u)), where x̄u

and x̂u are the weakly-augmented and strongly-augmented
samples from unlabeled data, respectively. Then, the asym-
metric KL divergence is computed between the probability
distributions based on the supervision of the teacher model
as

LRD = KL(ps(x̂
u)||pt(x̄u)). (7)

Following that, the learnable parameters for the student
model are updated during the SSL stage by

θs ← θs + ξ
∂(λuLunsup − λdLRD)

∂θs
(8)

where the learning rate is denoted by ξ, while λu, and λd

control the contribution of the unsupervised and representa-
tion disagreement losses, respectively. Here, Lunsup rep-
resents the unsupervised loss of the student model using
{x̂u

k , ỹk}
Nunsup

k=1 , in which ỹ denotes pseudo-labels from the
teacher model. To ensure valid comparisons, we adopted
Lunsup similar to that of our baseline methods [15, 16], both
with and without incorporation of cascade regression.

4. Empirical Experiments
This section includes implementation details of the pro-

posed approach, presents state-of-the-art (SOTA) com-
parisons using the MS-COCO [14] and Pascal VOC
[5] datasets, and provides systematic ablation analyses.
The COCO dataset consists of the COCO-standard
(comprising the train2017 and val2017 splits with
∼118k and ∼5k labeled images, respectively) and
COCO-additional (∼123k unlabeled images) sets. For
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the MS-COCO dataset, we evaluated our TMR-RD us-
ing two experimental settings, including partially-labeled
and fully-labeled data. The partially-labeled data setting
involves randomly selecting 1%, 5%, and 10% of the
train2017 split as labeled training data, while the re-
maining data was treated as unlabeled training data. For the
fully-labeled data setting, the entire train2017 split and
the COCO-additional set are utilized as labeled data
and unlabeled data, respectively. The evaluations are per-
formed on the val2017 set using the mean average pre-
cision (mAP) metric. For the Pascal VOC dataset, the
training was conducted using VOC07-trainval (∼5k
images) and VOC12-trainval (∼11.5k images) as the
labeled set and unlabeled set, respectively. The models were
then evaluated on the VOC07-test set (∼5k images) us-
ing AP50 and AP50:95 (denoted as mAP) metrics.

4.1. Implementation Details

We employ the Faster-RCNN [20] with and without cas-
cade regression implemented in Detectron2 [28] as our base
detection framework. The backbones consist of ResNet-
50-FPN architecture [13] initialized with the pre-trained
Image-Net [21] weights. The Burn-In and SSL (without
classical EMA) stages followed the baselines of Unbiased-
Teacher-v1 [15] and Unbiased-Teacher-v2 [16] with pre-
training for 2k iterations for the COCO-standard, 90k for
the COCO-additional, and 30k for the Pascal VOC.
Then, the trained detectors were duplicated as Teacher-
Student models for further training.

We experimentally adopted cyclic SSL and TMR stages
with N = 4k iterations dedicated to the SSL and N ′ = 2k
iterations devoted to the TMR (see Sec. 4.3). For partially-
labeled data setting, the models were trained for 269k itera-
tions (i.e., 178k for SSL (as in [15,16]) & 89k for TMR) and
536k iterations (i.e., 356k for SSL & 178k for TMR) using
the base detectors of Faster-RCNN without and with cas-
cade regression, respectively. In the fully-labeled data set-
ting, we trained the models with Faster-RCNN without and
with cascade regression detectors for 495k and 900k itera-
tions, respectively. Specifically, we used 270k iterations for
SSL (as in [15, 16]) and 135k iterations for TMR using the
Faster-RCNN detector, while with cascade regression, we
used 540k iterations for SSL and 270k iterations for TMR.
The batch size of 64 was used in training, where 32 labeled
& 32 unlabeled images were randomly selected for each
batch. Following the SSL iterations in baselines [15,16], the
models were trained on the Pascal VOC dataset for
255k iterations (i.e., 150k for SSL & 75k for TMR) using
the base detector of Faster-RCNN. For Faster-RCNN with
cascade regression, the models were trained for 480k iter-
ations (i.e., 300k for SSL & 150k for TMR) using a batch
size of 32 (16 labeled images and 16 unlabelled images).

The implementations were performed on 16 synchro-

nized Nvidia Tesla V100 GPUs with 16GB RAM. The
cascade regression utilizes three detection stages with IoU
thresholds τ = {0.5, 0.6, 0.7} for generating high-quality
pseudo-labels. The loss coefficients were set to λt = 1,
λs = 4, λu = 4, while the RD loss coefficient was set to
λd = 0.5 or λd = 1 using the base detector of Faster-RCNN
without or with cascade regression, respectively. Moreover,
the semantic representations were extracted from the last
two levels of the backbones, i.e., fi = [conv4 x, conv5 x]
(typically responsible for capturing complex patterns and
representations that are relevant to final predictions). The
optimizer, learning rates, data augmentations, and other hy-
perparameters were applied similarly to those in the base-
lines [15, 16].

4.2. State-of-the-art Comparison

In this section, we compare the proposed TMR-RD ap-
proach integrated into Unbiased-Teacher-v1 [15] (referred
to as TMR-RD-v1) and Unbiased-Teacher-v2 [16] (referred
to as TMR-RD-v2) with 13 recent SSOD methods, namely
ISMT [30], Instant-Teaching [35], CAPL [11], SED [6],
Humble-Teacher [24], Soft-Teacher [29], MA-GCP [9],
Unbiased-Teacher-v1 [15] (baseline 1), Unbiased-Teacher-
v2 [16] (baseline 2), Active-Teacher [18], Diverse-Learner
[12], Pseudo-Polish [33], and De-biased Teacher [26]. Ta-
ble 2 and Table 3 provide the results on the MS-COCO and
Pascal VOC datasets, respectively. To ensure fair com-
parisons, we compare the two versions of the proposed
TMR-RD using the Faster-RCNN against SOTA methods.
Additionally, we examine improvements resulting from cas-
cade regression compared to their baselines, aimed at gener-
ating more reliable pseudo-labels. We highlight the gener-
alization capability of our approach through extensive em-
pirical experiments, with and without cascade regression.
COCO-standard: First, we compare the proposed ap-

proach with existing SOTA methods partially trained on the
COCO-standard set. As shown in Table 2, our TMR-
RD-v2 considerably outperforms the Diverse-Learner [12],
Pseudo-Polish [33], and De-biased Teacher [26] by average
margins of 2.92, 2.69, and 2.97 mAP across all labeling ra-
tios, respectively. In particular, our TMR-RD demonstrates
superior performance over the Unbiased-Teacher-v1 [15]
and Unbiased-Teacher-v2 [16] baselines by an average of
2.07 and 2.23 mAP, respectively. Furthermore, integrating
the proposed approach with cascade regression surpasses
the performance of both TMR-RD-v1 and TMR-RD-v2 by
average margins of 2.64 and 2.88 mAP, respectively.
COCO-additional: We then evaluate the perfor-

mance of the proposed approach fully trained on supervised
data to determine the extent of further improvement by in-
corporating additional unlabeled data. According to Ta-
ble 2, our TMR-RD-v2 provides an mAP improvement of
2.1, 2.1, and 2.2 compared to the Unbiased-Teacher-v2 [16],
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Table 2. State-of-the-art comparison on the MS-COCO dataset under the partially-labeled data (COCO-standard) and fully-labeled data
(COCO-additional) settings. The proposed approach, referred to as TMR-RD-v1 and TMR-RD-v2, is integrated into [15] and [16],
respectively, with base detectors shown as Faster-RCNN with or without cascade regression.

Methods 1% labeled samples 5% labeled samples 10% labeled samples Fully-labeled samples
Supervised 9.05 18.47 23.86 40.2

Supervised (with Cascade regression) 10.86 19.44 25.18 42.1
ISMT [30] 18.88 26.37 30.53 39.6

Instant-Teaching [35] 18.05 26.75 30.40 40.2
CAPL [11] 19.02 28.40 32.23 43.3

SED [6] - 29.01 34.02 41.5
Humble-Teacher [24] 16.96 27.70 31.61 42.4

Soft-Teacher [29] 20.46 30.74 34.04 44.5
MA-GCP [9] 21.30 31.67 35.02 45.9

Unbiased-Teacher-v1 [15] 20.75 28.27 31.50 41.3
Unbiased-Teacher-v2 [16] 25.40 31.85 35.08 44.8

Active-Teacher [18] 22.20 30.07 32.58 -
Diverse-Learner [12] 23.72 31.92 34.61 44.8
Pseudo-Polish [33] 23.55 32.10 35.30 -

De-biased Teacher [26] 22.50 32.10 35.50 44.7
TMR-RD-v1 (baseline [15]: Faster-RCNN) 22.23 30.60 33.92 43.2
TMR-RD-v2 (baseline [16]: Faster-RCNN) 26.91 34.37 37.74 46.9

TMR-RD-v1 (baseline [15] + cascade regression) 24.39 33.41 36.87 46.6
TMR-RD-v2 (baseline [16] + cascade regression) 29.16 37.58 40.93 50.4

Table 3. State-of-the-art comparison on the Pascal VOC.

Method AP50 AP50:95

ISMT [30] 77.23 46.23
Unbiased-Teacher-v1 [15] 77.37 48.69

Instant-Teaching [35] 78.30 48.70
Humble-Teacher [24] 80.94 53.04

Soft-Teacher [29] 80.32 -
CAPL [11] 79.0 54.60

SED [6] 80.60 -
MA-GCP [9] [9] 81.72 -

Unbiased-Teacher-v2 [16] 81.29 56.87
Pseudo-Polish [33] 82.50 52.40

De-biased Teacher [26] 81.50 -
TMR-RD-v1 (baseline [15]: Faster-RCNN) 79.83 51.96
TMR-RD-v2 (baseline [16]: Faster-RCNN) 83.66 60.23

TMR-RD-v1 (baseline [15] + cascade regression) 82.68 55.08
TMR-RD-v2 (baseline [16] + cascade regression) 85.92 63.48

Diverse-Learner [12], and De-biased Teacher [26], respec-
tively. Moreover, the proposed TMR-RD-v1 and TMR-
RD-v2 outperform their corresponding supervised models
by 3 and 6.7 mAP, respectively. Further, the utilization of
cascade regression demonstrates superior performance, sur-
passing the mAP of TMR-RD-v1 and TMR-RD-v2 by 3.4
and 3.5, respectively. These comparisons highlight the ef-
fectiveness of the proposed approach with accessible large
amounts of labeled and unlabeled data, in addition to par-
tially labeled datasets where labeled data is limited.

Pascal VOC: At last, the proposed TMR-RD demon-
strates its superiority over existing SSOD methods, as
shown in Table 3. For example, TMR-RD-v2 outperforms
De-biased Teacher [26], MA-GCP [9], and Pseudo-Polish
[33] by margins of up to 2.16, 1.94, and 1.16 in the AP50

metric, respectively. Also, it surpasses Unbiased-Teacher-
v1 [15] and Unbiased-Teacher-v2 [16] by 3.36 and 3.27

mAP, respectively. Additionally, the integration of cascade
regression yields superior results, surpassing TMR-RD-v2
and TMR-RD-v1, leading to improvements of 3.25 and 3.12
mAP, respectively.

4.3. Ablation Analysis

A systematic ablation analysis of the proposed approach,
integrated into the Unbiased-Teacher-v1 [15] and Unbiased-
Teacher-v2 [16], has been conducted using a 5% labeled
COCO-standard and Pascal VOC datasets. The anal-
ysis includes 12 configurations (see Table 4 & Table 5), in-
cluding: i) baseline [15] with the Faster-RCNN and clas-
sical EMA (A1), ii) A1 equipped with TMR stage (A11),
iii) A11 equipped with RD strategy (A12), iv) baseline [16]
with the Faster-RCNN and classical EMA (A2), v) A2
equipped with TMR stage (A21), vi) A21 equipped with
RD strategy (A22), vii) baseline [15] equipped with cas-
cade regression and classical EMA (A3), viii) A3 equipped
with TMR stage (A31), ix) A31 equipped with RD strat-
egy (A32), x) baseline [16] equipped with cascade regres-
sion and classical EMA (A4), xi) A4 equipped with TMR
stage (A41), and xii) A41 equipped with RD strategy (A42).
These analyses validate the effectiveness of our TMR stage
and RD strategy.

Effect of TMR stage: We first ablate the impact of the
proposed TMR stage integrated into both baselines with
or without cascade regression. According to the results
of A11, A21, A31, and A41 in Table 4 and Table 5, the
baselines of [16] and [15] with the Faster-RCNN are no-
tably outperformed by the proposed TMR stage, with av-
erage mAP improvements of 2.12 and 2.03, respectively.
Moreover, incorporating our TMR stage considerably en-
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Table 4. Ablation study of the proposed TMR-RD approach on the
COCO-standard set. Classical EMA and cascade regression are
denoted as cEMA and c-regress, respectively.

Abl. A1 A2 cEMA TMR RD c-regress. mAP
A1 [15] ✓ × ✓ × × × 28.27

A11 ✓ × × ✓ × × 29.93
A12 ✓ × × ✓ ✓ × 30.60

A2 [16] × ✓ ✓ × × × 31.85
A21 × ✓ × ✓ × × 33.63
A22 × ✓ × ✓ ✓ × 34.37
A3 ✓ × ✓ × × ✓ 30.19
A31 ✓ × × ✓ × ✓ 32.66
A32 ✓ × × ✓ ✓ ✓ 33.41
A4 × ✓ ✓ × × ✓ 34.05
A41 × ✓ × ✓ × ✓ 36.74
A42 × ✓ × ✓ ✓ ✓ 37.58

Table 5. Ablation study of the proposed TMR-RD approach on the
Pascal VOC dataset.

Abl. A1 A2 cEMA TMR RD AP50 AP50:95

A1 [15] ✓ × ✓ × × 77.37 48.69
A11 ✓ × × ✓ × 79.21 51.09
A12 ✓ × × ✓ ✓ 79.83 51.96

A2 [16] × ✓ ✓ × × 81.29 56.87
A21 × ✓ × ✓ × 82.94 59.32
A22 × ✓ × ✓ ✓ 83.66 60.23

hances the performance of these baselines by 2.69 and 2.47
mAP, respectively, when employing the base detector with
cascade regression. These results further demonstrate the
versatility of our method and its ability to improve over-
all performance and generalization of existing methods.
We also validated the efficacy of the TMR stage by visu-
ally analyzing the mAP improvement of baseline [16] in
Fig. 3(a). While our model (shown in green) was trained
with fewer SSL steps (For comparability purposes consider-
ing our cyclic SSL and TMR stages), our method effectively
refines the models to transfer reliable knowledge while pre-
venting them from misleading information and converging
too early (unlike the baseline [16] shown in red).

Effect of RD Strategy: The results of experiments A12,
A22, A32, and A42 provide compelling support for the use-
fulness of the proposed RD strategy. These results demon-
strate that the performance of [16] and [15] baselines utiliz-
ing the Faster-RCNN detector are surpassed by employing
the proposed RD strategy with average mAP improvements
of 0.82 and 0.77, respectively. Notably, the integration of
this strategy led to satisfactory effects in the performance of
the baseline [16] as shown in Fig. 3(a). It validates the com-
plementary effect of this strategy and demonstrates how it
promotes the mutual learning of Teacher-Student models by
reinforcing model distinctiveness.

Effect of SSL and TMR iterations: We conducted ad-
ditional ablations, as illustrated in Fig. 3(b), to analyze the
impacts of various SSL and TMR iterations on model per-
formance using baseline [15]. The best result (blue curve)
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Figure 3. Ablation study of mAP improvement in the case of
COCO-standard 5% labeled data. (a): Integration of the TMR
stage and RD strategy into Unbiased-Teacher-v2 [16] for effec-
tiveness evaluation. (b): Exploration of the impact of varying SSL
and TMR stages using Unbiased-Teacher-v1 [15]. Best viewed in
color and zoom-in.

was achieved when employing cyclic SSL and TMR stages
with N = 4k and N ′ = 2k iterations. The red curve high-
lights the necessity for models to undergo sufficient evo-
lution during the SSL stage before each subsequent TMR
refinement while increasing the SSL stage (green curve)
can result in a delay in model refinement and slight perfor-
mance degradation, as the teacher model is expected to gen-
erate more accurate predictions than the student model [24].
Also, increasing the number of TMR iterations with par-
tially labeled data can impede the subsequent joint evolu-
tion of models using unlabeled data (orange curve).

5. Conclusion
In this paper, we presented a novel training-based model

refinement stage and a representation disagreement strategy
for existing SSOD frameworks. To address the limitations
of the classical EMA strategy, our proposed model refine-
ment stage learns lightweight scaling operation parameters
to dynamically refine the weights of Teacher-Student mod-
els, ensuring that overfitting and forgetting learned patterns
from unlabeled data are avoided. Moreover, we introduce
a simple yet effective representation disagreement strategy
to alleviate the consensus of Teacher-Student models that
arise with the progression of model training. This strategy
promotes model distinctiveness and prevents the models
from converging too early, encouraging the student model
to explore more underlying patterns in unlabeled data. Our
approach can be integrated into existing SSOD methods to
improve performance and generalization, transfer reliable
knowledge from the student to the teacher, and prune
noisy student weights. Extensive experiments demonstrate
notable performance improvements with different baseline
detectors, as well as the potential to integrate the proposed
approach into existing SSOD methods.
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