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Abstract

Interactive Image Segmentation is a process of separat-
ing a user selected object from the background. This task
requires building an effective class-agnostic segmentation
model that performs well even on unseen categories. To
achieve good accuracy with limited training dataset, it is
important that the model has robust prior understanding of
features of similar class objects. The model should also
have good distinguishing capabilities of foreground objects
with the background. In this paper, we propose Object
Aware Click Embeddings (OACE) that represents user click
aware foreground object features. OACE is obtained based
on a prior network trained using the Contrastive Learning
paradigm. The single-click object selection accuracy of our
base interactive segmentation network is vastly improved
with the OACE input. Additionally, we propose a Multi-
Stage fusion approach to better utilize user click informa-
tion. With the proposed method, we outperform existing
state-of-the-art approaches by 21% on publicly available
test-sets for click-based Interactive Image Segmentation.

1. Introduction

Interactive image segmentation methods allow users to
segment any object in an image based on user inputs. User
inputs can be provided as clicks, drawing contour around
objects or through lines and scribbles. Click based interac-
tions are more intuitive and provide a simple way to mark
the object. In this paper, we focus on click-based interactive
segmentation.

Conventional interactive segmentation methods rely on
the concept of iteratively providing positive or negative
clicks to select the unselected region from the first click or
deselect the over-selected region. This problem of under-
segmentation and over-segmentation is natural in complex
class-agnostic segmentation paradigms like interactive seg-
mentation. It is primarily because the segmentation model
focuses on determining decision boundaries to segment ob-
ject without explicit understanding of intra-object feature

similarities and object-background feature dissimilarities.

The need for more than one click to segment an object
completely and correctly, degrades user-experience. More-
over, in conventional interactive segmentation approaches,
the segmentation mask output changes vastly based on user
click locations. The reason for varied output is the method
used to represent user clicks in the interactive segmenta-
tion network. Conventional methods [20, 21] use Eu-
clidean distance transforms or disk of fixed radius to repre-
sent user click location. However, distance transform based
or disk based representations vary drastically with user click
thereby resulting in different segmentation outputs.

Inspired by the advances in contrastive learning, to
improve single-click accuracy of interactive segmenta-
tion models, we propose Object Aware Click Embeddings
(OACE) as an additional input to the interactive segmenta-
tion model. A contrastive prior network is proposed, that
uses the image and the user click to generate OACE (Figure
1 (a)). The prior network is trained in contrastive fashion
to maximize the similarity between user clicked intra-object
features and minimize the similarity between features of ob-
ject and background regions. OACE provides two-fold ad-
vantage: 1.) It represents a novel way to learn object-aware
user click information with increased robustness for differ-
ent touch-points on an object; and 2.) It comprises of rich
foreground features that are distinguished from the back-
ground features thus facilitating learning of class-agnostic
segmentation masks. In addition, we propose MSFNet,
a novel interactive segmentation network that incorporates
OACE as an input to the network and uses the Multi-Stage
Fusion module to inject the user click information at multi-
ple stages to improve segmentation accuracy (Figure 1 (b)).
The major contributions of the paper are as follows:

1.) We propose OACE, obtained using a contrastive
learning framework to represent user click aware fore-
ground object features that are robust towards different user
click locations on an object.

2.) We propose MSFNet that utilizes OACE and Multi-
Stage Fusion module to outperform existing state-of-the-art
methods by 21% on seen and unseen object categories on
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Figure 1. (a) Object Aware Click Embeddings (OACE), (b) Proposed MSFNet Architecture for Interactive Segmentation.

publicly available test datasets.

3.) The proposed framework is efficient and lightweight
and is suitable for deployment on resource constrained em-
bedded devices.

2. Related Works

Early works [10, 18] in interactive segmentation used
optimization based techniques to solve the problem. With
the advent of deep learning, data-driven methods like DIOS
[25] that leverages large-scale datasets were proposed that
improved the accuracy significantly. Jang er al. intro-
duced Backpropagation Refinement Scheme (BRS) [&] that
adopts an iterative optimization approach to refine the out-
puts based on the user-interaction maps. Sofiiuk et al. [20]
improved the computational cost of this approach by adopt-
ing the technique in the intermediate layers of the network
in the feature space. Recently, many coarse-to-fine ap-
proaches like RITM [21] have been proposed, that pro-
gressively improve the results based on the previous output
and new user clicks. Chen et al. [3] improved the accuracy
and efficiency of such coarse-to-fine methods by refining
local patches and using morphology analysis to change the
predicted mask only in the vicinity of the subsequent user
clicks. Most of these works have two major limitations: 1.)
Low single-click object selection accuracy thereby relying
on iterative method of providing positive or negative clicks
to correct the segmentation; and 2.) High variations in seg-
mentation output based on user click location. Positive click
refers to the user click made inside object region to select
the object or select any undersegmented part of the object.
Negative click refers to the user click made outside object
region to deselect the oversegmented region.

In this work, we design object aware click embeddings
(OACE) to represent user click. OACE eliminates the con-
cept of negative clicks and utilize only single-positive click
to generate object aware click representation. Moreover,
OACE representation is robust towards different user click
locations thus providing similar segmentation outputs irre-
spective of different user click locations.

Recently, a foundation model SAM [11] was proposed
for a variety of image segmentation related tasks including
interactive segmentation that has achieved state-of-the-art
performance. While the capabilities of foundation models
like SAM are remarkable, they are not ideal for all applica-
tions due to their high computation cost and size (> 600M
parameters). In this work, we aim to design an efficient and
practical network for interactive segmentation that can be
deployed in resource constrained environments like embed-
ded devices.

Contrastive learning is a self-supervised machine learn-
ing paradigm where data samples are contrasted against
each other so that samples from the same distribution are
near to each other in the latent space and samples from dif-
ferent distribution are separated in the latent space. Some
prior works [24,26] have proposed the use of contrastive
learning for dense prediction tasks like image segmentation.
In [23] the authors demonstrate that adopting contrastive
learning, where a contrastive loss is formulated to increase
intra-class feature similarity and decrease inter-class feature
similarity, improve the performance of object segmentation
on novel categories. Contrastive Learning has also gained
popularity in generative Al task like text-to-image genera-
tion models based on CLIP (Contrastive Language Image
Pre-training) [16] embeddings wherein the text-encoder
and image-encoder are trained in a contrastive fashion.

3. Proposed Method

The proposed framework has two main components: (a)
Contrastive Prior network to generate object aware click
embeddings (OACE) and (b) Multi-Stage Fusion Interac-
tive Segmentation Network (MSFNet).

3.1. Contrastive Prior Network for OACE

The network comprises of a fully convolutional encoder
network based on HRNetV2-W18-Small-v2 [22] back-
bone. The network is trained on labeled (image-object
mask) dataset and simulated user clicks inside the object
mask region. User clicks are represented in the form of bi-
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nary disks with radius of 5 pixels. The image stacked with
click disk forms the input to the network.

To train the network in contrastive fashion, we perform
two forward passes and a single backward pass for weight
updation. As depicted in Figure 1 (a), the first forward
pass takes the image and the user click, represented in the
form of a click disk (D) as input and the second forward
pass takes the image and the non-click region represented in
the form of a non-click disk (1-D). The latent space outputs
from two forward passes are then elementwise multiplied
with object mask (M) and background mask (1-M) respec-
tively to extract the object and background features. This
ensures that the first forward pass representing user click
region, focuses on foreground object features and the sec-
ond forward pass focuses on background features.

During training, random patches are selected from object
features and background features obtained from two for-
ward passes respectively. Let P, = {pl,,p2,,...pn,} de-
note the set of object features and P, = {ply, p2s, ... pms}
denote the set of background features. The loss function
L tries to maximize the cosine similarity ¢ between intra-
object and intra-background features and minimize the sim-
ilarity between object-background features.

L=—= Y ¢Wiopjo) = Y ¢piv,pjs)
i=0,5=0 i=0,5=0
n,m
+ Y Wiopi) (1)

i=0,5j=0

The first term in the loss function ensures that foreground
objects belonging to similar classes have similar represen-
tation in the latent space. This method of learning latent
representations helps the network to better understand ob-
jects and its features resulting in highly accurate segmen-
tation even on unseen object categories. The second term
in the loss function ensures to maximize the similarity be-
tween background regions. The third term helps the net-
work to distinguish foreground and background regions in
latent representation.

The contrastive prior network is trained as explained
above and the object aware click embeddings (OACE) ob-
tained from prior network is used to train MSFNet. Visual-
izations of OACE are depicted in Figure 2.

3.2. Multi-Stage Fusion Interactive Segmentation
Network (MSFNet)

As shown in Figure 1 (b), for MSFNet we use the stan-
dard HRNet18 backbone with a CNN based Segmentation
Head. The input to this network is the image and OACE.
Note that we used click disk based representation of user
input only to train OACE prior network and our segmen-
tation network MSFNet uses image and OACE as inputs.

Figure 2. (a) Input Image, (b) User click disk, (c) Object aware
click embedding (OACE), (d) Overlaid OACE on image.

There are two methods to fuse the two inputs (i.e. image
and OACE) before passing to network backbone. The first
method is known as Early Fusion where both inputs are
first concatenated and processed by a convolution block, the
output of which is fed to the backbone. Second method is
known as Late Fusion where both inputs are processed sep-
arately by two convolution blocks and then concatenated
and passed to backbone. Authors in [21] have shown that
late fusion techniques works better in interactive segmenta-
tion tasks. In designing MSFNet architecture, we used late
fusion method to fuse Image and OACE.

To prevent dilution of the user click information repre-
sented through OACE during CNN processing, we propose
multi-stage fusion (MSF) module. The core idea is to fuse
the OACE information at multiple locations in the network.
MSF module comprises of a convolution block followed
by three Squeeze-and-Excitation (SE) inception blocks. An
SE-Inception block re-calibrates each channel feature adap-
tively by computing interdependencies explicitly between
channels. Output of MSF module is fused with HRNet18
features before the segmentation head. The segmentation
head comprises of upsampling and convolutional blocks re-
sulting in output segmentation mask.

3.3. Training Datasets

The majority of Interactive Segmentation algorithms are
trained on PASCAL and SBD. Together these two datasets
contain thousands of images with annotated masks. How-
ever, as discussed in [4] these datasets are imprecise and
may result in poor prediction quality. Also, [21] points out
the limitation on the variety of predictable classes of these
datasets. Extensive segmentation datasets like Openlmages
[12], LVIS [5] and COCO [13] are available. These datasets
have a wide range of labeled examples as well as a large
variety of labeled classes. LVIS dataset contains approxi-
mately 100k images with 1.2M instance-level masks, Open-
Images contains around 944k images with 2.6M instance-
level masks and the COCO dataset contains 118k images
with 1.2M instance-level masks. For our experiments, we
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Figure 3. Qualitative comparison of single-click segmentation accuracy of different interactive segmentation methods. The green dot on
each image denotes the user click location. Red arrows point to the erroneous regions.

use a combination of COCO+LVIS as proposed in [21].
3.4. Training Paradigm

For training prior network for OACE, we simulate user
clicks on-the-fly during training. User clicks are simu-
lated based on random sampling strategy that samples a
point inside the object based on ground-truth mask region.
As described in subsection 3.1, we used HRNetV2-W18-
Small-v2 backbone followed by decoder block comprising
of three upsampling and convolutional blocks. Input im-
ages are resized to the size of 512 x 512 and concate-

nated with user click disk. The dimensions of output em-
bedding is same as the input image. The network is light-
weight and comprises of 5.2M parameters. OACE prior
network is trained first using COCO+LVIS dataset with a
batch size of 64 for 210 epochs. Once the training is com-
plete, the network’s weights are frozen and the embeddings
obtained using OACE prior network is used as an input to
train MSFNet.

We train the MSFNet to minimize Normalized Focal
loss [19]. NFL handles class imbalance problems by as-
signing more weight to erroneous regions, concurrently the
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total gradient of NFL doesn’t fade over time. It can be for-
malized as:

N 1
NFL(k I, M)=— —(1 — 71 2
(k,l,M) P(M)( )" logpry  (2)
P(M) = (1 —pia)? 3)

kol

Here M denote the output of the network and pj,; denotes
the confidence of prediction at the point (&, [).

Network is trained using Adam optimizer and a batch size
of 64. The model is trained with a learning rate of 5 x 10~*
for 210 epochs . For the HRNet18 backbone in MSFNet, the
network weights are initialized from a model pre-trained on
ImageNet. MSFNet comprises of 10 million parameters.
Horizontal flipping, brightness and contrast shifts are used
as augmentations.

4. Results
4.1. Evaluation Dataset

We evaluate our methods on four publicly available
datasets that are commonly used for benchmarking Inter-
active Image segmentation algorithms.

1. The GrabCut [17] dataset contains 50 images with a
single object mask for each image.

2. The Berkeley [14] is a 96 image dataset with 100
ground truth masks.

3. The SBD [6] dataset is divided into training set of 8498
images and a validation set of 2820 images. We use
the validation set which contains 6671 instance-level
masks from 2820 images.

4. The DAVIS [15] dataset is used for benchmarking
video object segmentation algorithms. For our eval-
uation we use 345 randomly sampled frames from the
videos sequences that was proposed in [9].

4.2. Evaluation Metrics

We evaluate our method on two metrics. First, the stan-
dard mean Number of Clicks (NoC@X) that is required to
achieve X% Intersection over Union (IoU) between pre-
dicted segmentation mask and ground truth segmentation
mask. For example, NoC@90 represent the number of
clicks required to achieve the IoU of 90% . Lower value
of NoC@X is better. Secondly, the average Intersection
over Union for a single user click (denoted as mloU@1)
is used for evaluation. mloU@1 represents single click ac-
curacy of interactive segmentation model and higher value
of mloU@1 signifies superior performance.
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Figure 4. Quantitative comparison with existing interactive seg-
mentation methods. NoC @90 refers to number of clicks required
to achieve 90% of mean Intersection over Union (mloU).

4.3. Qualitative and Quantitative Results

Qualitative comparison of our method (MSFNet+OACE)
with existing interactive segmentation methods is presented
in Figure 3. Figure 4 presents the quantitative comparison
of NoC@90 with other methods. The NoC@90 numbers
shows that proposed method reduce the number of clicks
required to achieve 90% accuracy by 21% as compared to
the present state-of-the-art method RITM-H32, thereby en-
hancing the performance.

To evaluate single click mloU, fixed set of user click
points are used for all methods. As shown in Table 1,
the mloU@1 numbers highlights the effectiveness of our
proposed light-weight model against the existing heavier
networks. We evaluated Segment Anything Model (SAM)
[11] trained on SA-1 dataset comprising of 11 million im-
ages and 1 billion instance-level masks. Our proposed
method is comparable with SAM in terms of mloU num-
bers on test sets despite having 40x lesser parameters than
SAM and trained on a smaller dataset. Our method also
outperforms RITM-H32 model that is based on the heavier
HRNet32 backbone. Evaluation on unseen categories in the
test sets showcase the generalization ability of the proposed
method.

5. Ablation Study
5.1. Network Architecture Ablation

In subsection 3.1 and subsection 3.2, we presented
our proposed architecture for OACE prior network and
MSFNet. Conventional approaches like [21] based on HR-
Net backbone directly takes as input an image and a user
click represented as binary disk. Proposed framework has
two major novelties. Firstly, addition of Multi-stage fu-
sion blocks and secondly, utilizing OACE as input to rep-
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Method #Params | Training Dataset mloU@1
Berkeley | GrabCut | DAVIS
f-BRS-B (HRNet-32) 30.9M COCO + LVIS 80.1 84.2 74.1
RITM (HRNet-18) 10.03M COCO + LVIS 83.2 88.3 71.2
RITM (HRNet-32) 30.2M COCO + LVIS 854 89.9 73.6
FocalClick (HRNet-18s) | 4.22M COCO + LVIS 81.1 854 76.32
SAM 632M SA-1B 89.6 93.1 84.6
MSFNet+OACE (Ours) | 15.2M COCO + LVIS 91.8 93.9 80.2

Table 1. Comparison of click based interactive segmentation methods in terms of number of parameters and mloU on different test sets.

Berkeley | GrabCut | DAVIS
Baseline 82.7 87.9 70.2
MSFNet 85.6 89.7 73.6
MSFNet+OACE | 91.8 93.9 80.2

Table 2. Comparison of mloU@1 for different network architec-
tures.

resent object aware user click locations. We ablated on
these two changes in our network. We created a baseline
architecture from proposed MSFNet by removing Multi-
stage fusion block. We define this as Baseline. We com-
pared the Baseline with MSFNet designed to take binary
click disk based user input. Next we draw comparisons with
MSFENet+OACE. Table 2 presents the details of mloU with
single click across Baseline, MSFNet and MSFNet+OACE.

Multi-stage fusion module designed using squeeze and
excitation blocks [7] provides channel level attention that
helps in improving the segmentation accuracy by 3% over
baseline. Utilizing OACE embeddings as input in MSFNet
improves the accuracy by 10% over baseline. In addi-
tion to object attention, OACE also provides good distin-
guishing capabilities between foreground and background
regions. Additionally, OACE embeddings helps the net-
work to identify similar class objects thus helping network
to perform better on object categories with limited represen-
tation in training dataset.

5.2. Effectiveness of OACE towards touch point lo-
cations

One major limitation in existing interactive segmentation
methods is they produce different segmentation outputs for
different user click locations. The error is highest when
the user click locations are near the boundary of the ob-
jects. The primary reason for this error is due to disk based
representation or distance transform based representation of
user clicks. Disk based representation or distance transform
based representation changes vastly when user click loca-
tion changes for an object. This vast change in input rep-
resentation leads to vast change in segmentation network’s
output.

Figure 5. Visualization of OACE with different user click points.

Our proposed method solves this problem by utiliz-
ing OACE as inputs to interactive segmentation network.
OACE represents object aware features that are distin-
guished from background features. The prior network
trained to generate OACE is robust towards variations in
user click locations and generate similar OACE representa-
tions for different click locations as depicted in Figure 5.
This leads to similar OACE embeddings for different click
locations on an object. Using OACE as input for interactive
segmentation network leads to generation of consistent seg-
mentation output despite variations in user click locations
as shown in Figure 6.

5.3. Effectiveness of OACE for limited object classes

LVIS [5], COCO [13] authors have categorized the dis-
tribution of object categories into three classes namely rare,
common and frequent based on the frequency of occurrence
of object categories. LVIS dataset has over 40% of the cate-
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Figure 6. Qualitative comparison of different interactive segmentation methods in terms of segmentation output for different user click

locations. The green dot on each image denotes the user click location.

gories marked as rare occurring out of a total of about 1000
object categories in training set. Categories like pottery,
scissors, goldfish, drones, appliances like toaster, hair dry-
ers are rare occurring object categories in LVIS dataset. Per-
son, pet like cats and dogs, food items like pizza, vehicles
like bicycle and cars come under frequent occurring object
categories.

Most of the segmentation networks trained on LVIS,
COCO datasets inherently gets biased towards frequent cat-
egories and tend to perform poorly on rare occurring cat-
egories in testing phase. One common method to tackle
this is by resampling rare occurring object categories by re-
peating them in training set. However, authors in [2] have
shown that such approaches do not fare well for object de-
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Rare Object | Frequent Object
Test-set Test-set
MSFNet 68.8 88.4
MSFNet+OACE 824 94.3

Table 3. Comparison of mloU@]1 on rare category object and fre-
quent category object custom test set.

tection or object segmentation tasks. Resampling of rare
object categories leads to severe over-fitting thereby deteri-
orating the performance of segmentation networks.

Conventional class agnostic segmentation networks
learns to separate foreground objects from background
without explicit understanding of features of similar class
objects. Also, there is no additional constraint that dis-
tinguishes the foreground object features from the back-
ground. These limitations of conventional approaches leads
to poor segmentation accuracy on objects that have limited
or no representation in the training dataset. On the contrary,
OACE comprises of rich object aware features that helps the
class agnostic interactive segmentation network to develop
an explicit understanding of similar class object features.
Additionally, OACE provides capabilities to explicitly dis-
tinguish foreground and background features, thus easing
the task of interactive segmentation network.

In order to prove the effectiveness of OACE on limited
and unseen object categories, we compared the performance
of MSFNet designed with conventional input method us-
ing binary click disk; and MSFNet with OACE based in-
put. Figure 7 showcases that MSFNet+OACE has better
object selection accuracy on rare category objects. MSFNet
trained with OACE input has better foreground object -
background separation capabilities even in cases where
foreground object and background have similar colors and
textures.

To further evaluate the efficacy of OACE on limited ob-
ject categories, we constructed two custom test sets with
rare occurring objects and frequently occurring objects re-
spectively. Each test set comprise of 100 images procured
and labeled with manual efforts. The rare category object
test images and frequent category object test images com-
prise of objects that are marked as rare and frequent in LVIS
train set, respectively. Table 3 presents the mIoU numbers
of MSFNet model trained without OACE and with OACE
input on rare category object test set and frequent category
object test set. OACE input results in about 20% improve-
ment in rare object segmentation accuracy whereas the fre-
quent object segmentation accuracy is improved by 7%.

6. Discussion

The proposed framework (MSFNet+OACE) is a light-
weight model with 15.2M parameters and a model size of

Figure 7. (a) Input Image with rare category object, (b) Segmen-
tation output of MSFNet without OACE, (c) Segmentation output
of MSFNet with OACE.

about 15 MB with TFLite [I] int8 quantized format. The
proposed framework takes about 25ms to load and 250ms
to infer (including preprocessing and model runtime) when
evaluated on a modern day flagship level smartphone - Sam-
sung’s Galaxy S23, thus proving the efficiency of the pro-
posed framework.

The proposed framework overcomes the shortcomings of
existing works by improving single click object selection
accuracy thereby eliminating the need of iteratively pro-
viding positive or negative clicks to correct the segmenta-
tion. Moreover, the proposed method provides robustness
towards different user click locations and generate similar
segmentation output for different user click location on an
object. However, one open challenge is to segment very thin
objects accurately. As the proposed network processes the
image on low resolution (512 x 512), thin parts of the ob-
jects like flying hair strands gets missed from segmentation.
High resolution post-processing or matting based solutions
can be explored in future to improve thin object selection.

7. Conclusion

This paper presents a novel method to generate object
aware click embeddings (OACE). Additionally, the pro-
posed MSFNet uses OACE inputs to significantly improve
the single-click accuracy of interactive image segmentation.
We demonstrate that with limited training data for limited
seen categories, our class-agnostic segmentation framework
achieves good performance even on unseen category ob-
jects. The proposed framework is lightweight and can be
deployed in resource constrained environments like embed-
ded devices.
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