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Abstract

Root-relative loss has formed the basis of 3D human
pose estimation for many years. However, this point-to-
point loss treats every keypoint separately and ignores inter-
nal connection information of the human body. This leads
to illegal pose prediction, which humans cannot form in the
real world. It also suffers from differences in estimation dif-
ficulty between keypoints. The farther the keypoint is from
the torso, the less accurate it is. To address the above prob-
lems, this paper proposes geometry loss combination to uti-
lize the geometric relationship between each keypoint fully.
This loss combination consists of three loss functions: root-
relative pose, bone length, and body part orientation. The
previous two have already been used in prior works. Be-
yond them, we further develop a loss function called body
part orientation loss for local body parts. Intuitively, the hu-
man body can be divided into three parts: the head, torso,
and limbs. Based on this, we select the corresponding key-
points and create virtual planes for each body part. Exper-
iments with different datasets and models demonstrate that
our proposed method improves the prediction accuracy. We
also achieve MPJPE of 65.0 on the 3DPW test set, which
outperforms state-of-the-art methods.

1. Introduction
3D Human Pose Estimation (3DHPE) is a classic task in

computer vision that aims to estimate 3D body joint coor-
dinates from a given image or video. It has highly practi-
cal value with multiple applications in the fields of action
recognition [6], action analysis [9], and human-robot inter-
action [40], etc.

Most of the 3DHPE methods treat every keypoints in-
dependently by using root-relative loss function, including
heatmap-based [8, 37, 43] and regression-based methods.
However, this commonly used point-to-point root-relative
loss excludes any inner relationship between joints. Even if
the distance between the ground truth (GT) and the predic-
tion is extremely close, the predicted pose can even be ille-
gal, which is impossible to be posed by a human in the real

(a) GT

(b) Pred. (base) (c) Pred. (base+ours)

Figure 1. Comparison between poses estimated with and without
our proposed method. Red arrows indicate the orientation of the
virtual plane formed by the three keypoints, and the size of the
blue keypoints indicates the distance from GT.

world. We also find that, for keypoints far from the torso,
the further they are, the less accurate they are (see Fig. 1).
This phenomenon is due to the complexity of the movement
and the frequency of self-occlusion, which varies in diffi-
culty of estimation depending on the keypoint. Therefore,
using the geometric relationship between each keypoint is
essential to limit the prediction results and reduce geomet-
ric ambiguity.

Nevertheless, how to fully use the geometric relation-
ship of keypoints draws little attention. Several works have
tried different approaches to utilize the structural informa-
tion of the human body. The straightforward idea is to use
the bone length information. Sun [44] et al. analyze both 3D
dataset and 2D dataset, then find that bone representation of
poses is more stable and easier for learning. Compared to
the root-relative loss, although bone length loss considers
the relationship of the two adjacent keypoints, it neglects
the geometry information of limbs that consist of bones.
Dabral [7] et al. consider the illegal poses and defines an
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illegal-angle loss. However, this constraint only rejects the
illegal pose prediction and does not focus on improving the
prediction of ends of limbs.

To solve the above issues, we propose to combine
three geometry loss functions: root-relative pose loss, bone
length loss, and body part orientation loss. This combina-
tion allows the models to become aware of the movement
and size of the body parts during the training process, which
cannot be measured by mere distances between estimated
points and GT points. Firstly, the root-relative pose loss
calculates the distance to the GT of each joint based on the
relative position of each joint to the pelvis joint. The bone
length between two keypoints on the limbs is calculated as
the second loss. Thirdly, the body part orientation is rep-
resented as the normal vector of the virtual planes, created
from three significant keypoints belonging to the same body
part. This body part orientation loss is first introduced to the
3DHPE field and can represent the geometry information of
limbs.

Our proposed geometry loss combination can signifi-
cantly improve the accuracy of keypoints at the end of
limbs through the geometry information of the human body.
We implement our proposed method on different mod-
els and evaluate on the standard benchmark datasets: Hu-
man3.6M [13], MPI-INF-3DHP [32], and 3DPW [49]. The
results demonstrate that our proposed methods can estimate
3D human pose more accurately. Furthermore, we apply
our methods to a large model and achieve State-Of-The-Art
(SOTA) results on 3DPW multi-person benchmarks [49].

In summary, our main contributions are:

• We propose a body part orientation loss for 3DHPE.
To the best of our knowledge, this is the first attempt
to use surface normals of limb-formed local planes as
a loss for 3D human pose estimation.

• We propose a geometry loss combination of root-
relative pose, bone length, and body part orientation.
These three components constrain the estimation from
three aspects. This can improve the estimation of body
parts that have considerable mobility.

• We implement our ideas based on different types of
3DHPE methods. Our proposed loss combination is
general and applicable to other algorithms. We also
outperform SOTA methods on the 3DPW benchmark.

2. Related Work

3D human pose estimation. 3D human pose estimation
has been widely studied for many years. With the availabil-
ity of large datasets [3,13,16,32,48] and models [10,24,41],
the overall accuracy of pose estimation has improved re-
cently. However, complex poses, such as heavily occluded,

are still difficult to estimate, and the estimation is likely un-
natural. We refer the readers to [5,28] for a detailed survey.

Loss functions for 3D human pose estimation. In re-
cent years, researchers have been discussing how to prop-
erly supervise the human body’s kinematic structure. The
design of an appropriate loss function has attracted atten-
tion as a solution to this challenge.

Supervising the error distance of joints is an intuitive and
fundamental approach in human pose estimation [26, 43,
46]. However, the point-to-point distance comparisons ig-
nore the structural relationships between keypoints, essen-
tial to body composition. Sun [44] et al. statistically demon-
strated that bone-based representations are more stable and
suitable for training. The authors also proposed a composi-
tional loss function that combines the L1 bone length loss
and long-range joint loss, demonstrating the effectiveness
of adding structure-aware supervision. Zhou [54] et al. pro-
posed the geometric loss, which calculates the sum of the
variance between the predicted bone length and the aver-
age bone length of the training dataset for each bone group.
Pavllo et al. [38] introduced a soft constraint on the bone
length by applying L2 loss, which incentivizes the plausible
3D pose estimation. Habibie [11] et al. also employed L2
bone length loss in addition to calculating joint loss.

While bone length is one of the essential factors in accu-
rately representing the human pose, information about the
orientation of each body part is also essential. Dabral [7] et
al. introduced a combination of three structure-aware loss
functions: illegal-angle loss, symmetry loss, and geometric
loss [54]. Inspired by the anatomical fact that the human
body has angular limitations in the range of motion of the
limbs, the illegal-angle loss restricts the bending of the pre-
dicted limbs beyond 180 degrees.

Normal-based loss functions for depth estimation.
Monocular depth estimation is one of the research direc-
tions for estimating the depth of an input image and has
much in common with predicting the z direction in 3D pose
estimation. Predicting the z direction is more complicated
than predicting the xy direction because less information is
available from the image. In order to achieve a geomet-
rically consistent estimation, normal-based loss functions
have been introduced. The surface normal [39] loss com-
putes the L1 loss of the normal of the tangent plane of adja-
cent 3D points locally. The virtual normal loss [50] extends
the surface normal globally, which computes the L1 loss of
the virtual plane normal formed by randomly sampled 3D
points.

3. Proposed Method

3.1. Geometry Loss Combination

The human body can be roughly divided into the head,
torso, and limbs. As illustrated in Fig. 1, the joints far from
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the torso usually have worse results than those on the torso.
This can be easily explained that the limbs have the largest
range of motion and are the most difficult to predict, as dis-
cussed in [44]. To address this phenomenon, a restriction
on the body parts is proposed to improve the prediction ac-
curacy of these joints far from the torso. We then propose
a geometric loss combination to improve the accuracy of
those joints.

Our proposed geometric loss combination comprises
three parts: root-relative pose loss (see Sec. 3.2), bone
length loss (see Sec. 3.3), and body part orientation loss (see
Sec. 3.4). The geometry loss combination L is formulated
as:

L = wroot · Lroot + wbone · Lbone + wbpo · Lbpo, (1)

where the Lroot is the root-relative pose loss, Lbone is the
bone length loss, and Lbpo is our proposed body part ori-
antation loss. To balance the weighted loss into the same
magnitude, the weights (wroot, wbone, and wbpo) are deter-
mined experimentally. In our experiments, we uniformly
set wroot to 1.0.

3.2. Root-relative Pose loss

It is hard to accurately estimate the absolute joint posi-
tion due to the dataset’s wide variation of joint position. We
choose the pelvis as the root joint and calculate the root-
relative position of the other joints, yielding the loss func-
tion of root-relative pose Lrel as:

Lrel =

N∑
i=1

∥∥∥(Jpred
i − Jpred

root )− (Jgt
i − Jgt

root)
∥∥∥
1

(2)

where N is the total joint number, Ji denotes the ith joint,
and Jroot denotes the root joint. Here, we employ Manhat-
tan Distance to calulate the distance.

3.3. Bone Length Loss

Intuitively, the human skeleton contains hierarchical in-
formation limited by human biological structure. The dis-
tance between adjacent joints, called bone length, is rela-
tively easier and more stable to learn than to regress joints
directly [44].

We define the bone length for limbs (see Fig. 2a). For the
arm, three joints are selected: shoulder, elbow, and wrist.
Then, the distance between the adjacent joints is calculated.
The bone length of the arm is defined as:

Bup,1 = ∥Jlsho − Jlelb∥1 + ∥Jrsho − Jrelb∥1, (3)
Bup,2 = ∥Jlelb − Jlwri∥1 + ∥Jrelb − Jrwri∥1, (4)

where Bup,1 stands for the Manhattan Distance between
shoulder and elbow. Similarly, the Bup,2 represents the dis-
tance between the elbow and wrist.

(a) (b)

Figure 2. (a) An example of a human pose skeleton. Calculate the
bone length of each red arrow. (b) Local planes that we define for
each body part. The zoomed-in part shows the example point for
calculating surface normal.

For the leg, we calculate the Manhattan Distance be-
tween hip and knee, also knee and ankle. The bone length
of the leg is defined as:

Blow,1 = ∥Jrhip − Jrkne∥1 + ∥Jrhip − Jrkne∥1, (5)
Blow,2 = ∥Jlkne − Jlank∥1 + ∥Jrkne − Jrank∥1. (6)

Then, two arm parts are added up, same for the leg, de-
noted as Lup and Llow.

Lup = ∥Bgt
up,1 −Bpred

up,1 ∥1 + ∥Bgt
up,2 −Bpred

up,2 ∥1 (7)

Llow = ∥Bgt
low,1 −Bpred

low,1∥1 + ∥Bgt
low,2 −Bpred

low,2∥1 (8)

Finally, we define the bone length loss function as
Eq. (9). The bone length is added to the loss function, and
this structural information of the human body further re-
stricts the position of the joints on the limbs.

Lbone = mean(Lup + Llow) (9)

3.4. Body Part Orientation Loss

Depth estimation is the most challenging part of estimat-
ing a 3D pose from a 2D image caused by the variation
and self-occlusion of human limbs. The variations of hu-
man poses are typically represented by limbs rather than
the torso. Hence, it is more difficult to predict the correct
positions of arms and legs.

On the other hand, there is also plenty of effort into
monocular depth prediction for 3D scene understand-
ing [39]. Their research shows that geometric constraints
can play a crucial role. The surface normal is the most used
variable in point cloud data processing and depth estima-
tion. It becomes a liable 3D cue for depth prediction from
2D images. Therefore, we apply these kinds of constraints
to 3D human pose estimation.

The keypoints of the human body can also form many lo-
cal planes, and the normal vectors of these planes represent
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(a) Legal right-arm pose. (b) Illegal pose.

Figure 3. For the right arm, wrist, elbow, and shoulder can form a
triangle whose orientation is defined as

−→
AB ×

−→
AC. The direction

of the plane normal in (a) points out the x-y plane, and the direction
in (b) points in the x-y plane instead.

the orientations of this body part. We define six planes in
total, as shown in Fig. 2b. Although root-relative pose and
bone length make the prediction converge to GT, the limita-
tion of joint mobility is not considered. As shown in Fig. 3,
some directions of normal vectors are illegal in the typical
human pose. To tackle this pose ambiguity, we apply body
part orientation loss.

With three key points, our method can be applied to any
part of the body. For each plane formed by the selected
joints shown in Fig. 2b, the normal vector is calculated as:

n =

−−→
AB ×

−→
AC

∥
−−→
AB ×

−→
AC∥

, (10)

where
−−→
AB and

−→
AC refer to Fig. 2b, n stands for the normal

vector of the local plane.
Each body part is represented by the keypoints that we

selected. The loss function of body part orientation can be
defined as:

Lbpo =
1

M

(
M∑
i=1

∥∥∥ngt
i − npred

i

∥∥∥
1

)
, (11)

where M denotes the number of triangles. By adding the L1
norm of the normal vector to the loss function, the model is
more constrained in estimating the pose for the body parts
far from the torso, further coping with the problem of hav-
ing multiple solutions from 2D to 3D.

4. Experiments
To validate the effectiveness of the proposed geometry

loss combination, we conduct four experiments: ablation
studies (see Sec. 4.5), validation on different datasets (see
Sec. 4.6), validation on different models (see Sec. 4.7), and
comparison to the other SOTA methods (see Sec. 4.9).

4.1. Model Architecture

The following experiments mainly employ three models:
MSH, MeTRAbs [43], and MeTRAbs+.

Figure 4. The network architecture of MSH.

Figure 5. The network architecture of MeTRAbs. Red shows our
additional loss functions. Blue shows our modification for Me-
TRAbs+. lossXYd: X denotes the type of GT annotation (2D/3D),
and Y denotes the type of processed metric heatmap (2D/3D).

MSH for ablation studies (Sec. 4.5). First, we design a
simple model called MSH (Metric Space Heatmap) to vali-
date the effectiveness of the loss combination. The network
architecture consists of only a backbone and a 3D metric
heatmap, as shown in Fig. 4. Here, as our main focus is not
proposing a new network architecture, we design a simple
model for quick experiments.

MeTRAbs for generalization validation (Sec. 4.6,
Sec. 4.7 and Sec. 4.8). Second, we re-implement Me-
TRAbs [43] for further experiments. The network archi-
tecture is shown in Fig. 5. MeTRAbs [43], an enhanced
MeTRo [42] that combines 3D and 2D metric heatmaps,
achieves first place in “3D Human Pose Estimation on 3D
Poses in the Wild (3DPW) Challenge” [49].

MeTRAbs estimates root-relative pose (loss33d and
loss32d) in metrics space through its 3D heatmap head and
then recovers absolute pose (loss abs) with the output of the
2D heatmap head and intrinsic camera matrix. In the imple-
mentation, we calculate the bone length loss (bone loss) and
the body part orientation loss (bpo loss) of the root-relative
pose in metric space.

MeTRAbs+ for SOTA comparisons (Sec. 4.9). Third,
based on our experiments and [41], we make a few modifi-
cations to the original MeTRAbs. As described in Fig. 5,
besides absolute pose error, we also calculate the root-
relative error of absolute pose during training. Hereafter,
this model is referred to as MeTRAbs+.

4.2. Datasets

Datasets for ablation studies. We conduct ab-
lation studies on the largest standard benchmark Hu-
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Dataset #Examples #Keypoints Skeleton

3D-labeled data
Human3.6M [13]1 85K 24 SMPL

MPI-INF-3DHP [32] 76K 28 3DHP
Muco-3DHP [33]2 220K 17 3DHP

CMU-Panoptic [16] 220K 19 COCO
AIST++ [23, 47] 211K 24 SMPL
3DOH50K [52] 50K 14 LSP

MADS [53] 33K 15(19) MADS
HUMBI [51] 200K 19 COCO
AGORA [36] 59K 30 SMPL

SURREAL [48] 229K 24 SMPL
2D-labeled data

COCO [27] 26K 17
MPII [2] 23K 10
LSP [15] 10K 14

CrowdPose [20] 14K 14
Totals

Dozens-M [41]3 10.8M (14 datasets)

3D ours 1.38M (10 datasets)
Dozens-M [41] 173K (4 datasets)

2D ours 73K (4 datasets)
1 Annotations published by third parties [35] are used.
2 Annotations published by third parties [46] are used.
3 Medium dataset.

Table 1. Details of our 1.38M dataset.

man3.6M [13]. Four high-speed cameras are used to cap-
ture this dataset in the indoor studio. We use the setting of
Protocol 2, in which subjects 1,5,6,7,8,9 are used as training
sets while 11 are used as test sets.

Datasets for generalization validation. To further val-
idate the generalization ability on different datasets of our
loss combination, we also evaluate our methods on MPI-
INF-3DHP [32]. 3DHP is captured by a commercial mark-
erless motion capture system. 3DHP covers more compli-
cated poses than Human3.6M. Besides, the test set of 3DHP
contains three scenes: studio with green screen, studio with-
out green screen, and outdoor.

3DPW [49] is the first in-the-wild dataset with accurate
3D annotation from inertial measurement units. 3DPW con-
tains complex backgrounds and occlusions that are close to
the real world. We use 3DPW as an unseen dataset to eval-
uate the generalization ability of real-world data.

Dataset combining. Sarandi [41, 43] et al. proved that
combining large datasets could achieve high estimation per-
formance. Unfortunately, they do not disclose the datasets
and processing methods they use. We collect as many
datasets as possible and create a large dataset including
1.38M examples (hereinafter called “1.38M dataset”). The
details of 1.38M dataset is shown in Tab. 1.

Data augmentation. Following [43], we also apply the
same data augmentations during training: geometric aug-
mentations (scaling, rotation, translation, horizontal flip),

Exp. Backbone Dataset Batch lr GPU

Sec. 4.5 RV2 H36M 64 1×10−4 TITAN X

Sec. 4.6, Sec. 4.8 RV1.5
H36M

3DHP
64 5×10−5 RTX3090

Sec. 4.9 SV2 1.38M 18×2* 2×10−5 RTX3090
* The batch is split and trained on two GPUs.

Table 2. Details of experimental settings (Batch=batch size,
lr=learning rate, R=ResNet101, S=Swin).

synthetic occlusion, color distortion (brightness, contrast,
hue, saturation), and background transformation.

As for background transformation, two datasets are con-
sidered. We use the same setting as [43] in Sec. 4.7,
which uses INRIA Holidays [14]. In Sec. 4.9, we enhance
the background augmentation by replacing INRIA Holi-
days [14] with the landscape-rich BG-20K [22] dataset and
randomly cropping it to a size of 512×512 for each input
image.

In addition, for learning the poses in different skele-
ton formats, the annotations are also copied and learned as
SMPL [30] format annotations to facilitate learning of the
SMPL format.

4.3. Implementation Details

Tensorflow 2.6.3 [1] is used for implementation. We
adopt publicly released ResNet101 [12] and SwinV2 [29]
for the backbone part. The weights are updated by
AdamW [31] optimizer. According to the model’s size, we
experimentally select different batch sizes and initial learn-
ing rates for training each model. The learning rate is de-
cayed exponentially in two parts as in [43]. For more spe-
cific settings, see Tab. 2.

4.4. Evaluation Metrics

To measure estimation performance in experiments, we
use four evaluation metrics. Mean-Per-Joint-Position-Error
(MPJPE) is a standard metric used in 3D pose estimation,
which measures how well 3D human pose estimation per-
forms based on the Euclidean Distance between predicted
and GT body joints [13].

Procrustes-Aligned-Mean-Per-Joint-Position-Error (PA-
MPJPE) is the MPJPE after rigid alignment by processing
between the prediction pose and the ground truth pose to
eliminate the effect of translation and rotation.

The Percentage of Correct Key points (PCK) is defined
as the proportion of correct estimated points. The ”cor-
rect” here refers to the distance between GT and prediction
falling into a certain threshold [32]. The thresholds of PCK
for 3DHP and 3DPW are 150mm and 50mm.

The Area Under Curve (AUC) calculates the average
PCK through a range of threshold. For 3DHP, the thresh-
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MSH +bone +C1 +C2 +C1b +C2b

root-relative ✓ ✓ ✓ ✓ ✓ ✓
bone length × ✓ × × ✓ ✓

bpo
sho-elb-wri × × ✓ ✓ ✓ ✓

neck-sho-elb × × × ✓ × ✓
hip-kne-ank × × ✓ ✓ ✓ ✓
pelv-hip-kne × × × ✓ × ✓

MPJPE↓ 61.3 57.8 59.6 58.8 57.3 58.0

Table 3. Ablation study of different loss combination on Hu-
man3.6M dataset (sho=sholder, elb=elbow, wri=wrist, kne=knee,
ank=ankle). Bold denotes the best result.

B left
up, 1 Bright

up, 1 B left
up, 2 Bright

up, 2 B left
low, 1 Bright

low, 1 B left
low, 2 Bright

low, 2

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Average of bone length error [m]
MSH
MSH+bone

Figure 6. Effect of bone length loss on Human3.6M [13] dataset.

old range of AUC is 0mm to 150mm, and for 3DPW, the
range is 0mm to 200mm.

4.5. Ablation Studies

We conduct ablation studies on two aspects: (1) the in-
fluence of the bone length loss; (2) the influence of the pro-
posed body part orientation loss with the different combi-
nations of planes. Here, we select the best results of each
model to compare. Tab. 3 shows the overview of our abla-
tion studies. This experiment set wbone to 0.1 and wbpo to
0.05.

Effect of the bone length loss. We compare the average
bone length of each part on Human3.6M [13] dataset. Ex-
perimental results with and without the bone length loss are
shown in Fig. 6. The result demonstrates that the estimated
bone lengths are closer to the GT than the case without bone
length loss. In particular, the impact on the lower body is
greater than on the upper body. Also, MPJPE improved by
3.5, as shown in Tab. 3.

Effect of the body part orientation loss. We conduct
experiments with two types of virtual plane combinations
to demonstrate the validity and effect of the proposed body
part orientation loss. (C1) one plane is considered on each
side of the arms and legs; (C2) two planes are considered
on both parts; see Tab. 3 for detailed plane combinations.

When the three loss functions (bone length loss, C1 loss,

and C2 loss) are added independently to the relative root
defect, they all positively affect the MSH model.

In the C1 vs. C1b and C2 vs. C2b comparisons, the
scores with the addition of bone length loss exceeded with-
out those. In particular, C1 improved MPJPE by 2.3. This
indicates that adding not only bone length loss, but also
body part posture loss provides a more accurate estimation
of human body posture. In a comparison of C1b and C2b
MPJPEs, the C1b score is 0.7 lower than the C2b score.
This result suggests that more virtual planes are not nec-
essarily better. This is because excessive constraints can
confuse training.

Moreover, to analyze the impact of our proposed loss
combination on each keypoint, we observe MPJPE for each
keypoint as shown in Tab. 4. At the keypoints of the arms
and legs (e.g., shoulders, wrists, ankles, knees, etc.) associ-
ated with the added virtual planes, MPJPE decreases signif-
icantly.

4.6. Validation on Different Datasets

We further implement our proposed method to Me-
TRAbs [43](see Fig. 5) and evaluated its accuracy on the
Human3.6M [13] and 3DHP [32] datasets. This experiment
set wbone to 0.1 and wbpo to 0.01.

The results are shown in Tab. 5a and Tab. 5b. On the
Human3.6M dataset, MPJPE improves for the majority of
activities. The average accuracy improvement is 0.7. On
the 3DHP data set, 90% of activities show improvement in
PCK, with improvements of 1.4 for PCK, 0.5 for AUC, and
2.0 for MPJPE total.

Visually, the estimated pose is more accurate with adding
our proposed geometry loss combination, as illustrated in
Fig. 7. In images where MeTRAbs is inaccurate in predict-
ing limb orientation, our proposed method predicts limb ori-
entation more accurately. The performance of both datasets
demonstrates the effectiveness of the proposed methods.
This also shows the generalization of our proposed geome-
try loss combination.

4.7. Validation on Different Models

Besides MeTRAbs [43], we also conduct experiments
on ROMP [46] and Mesh Graphormer [26] to validate the
generalization of our proposed geometry loss combination.
ROMP and Mesh Graphormer are SMPL-based [30] mod-
els. ROMP predicts the SMPL map, which contains the 3D
pose of the joints and the shape of the human mesh, and
then regresses the joint locations through the SMPL model.
Mesh Graphormer extracts the grid features and then feeds
the tokenized features to a multi-layer Graphormer encoder
to process a coarse mesh. After upsampling the coarse
mesh, Mesh Graphormer predicts the joint locations and
mesh vertices at the same time.

We conduct experiments with the settings following their
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rhip rkne rank lhip lkne lank tors neck head htop lsho lelb lwri rsho relb rwri

MSH 21.1 57.2 97.7 21.2 56.5 103.9 41.6 50.5 63.1 64.0 62.9 75.8 90.3 61.4 80.7 94.0
MSH + C1b 23.5 48.7 69.0 21.5 49.9 76.4 42.6 48.5 65.2 68.3 61.8 78.2 90.4 58.1 79.2 93.0

Table 4. Quantitative comparision of MPJPE per keypoints (kne=knee, ank=ankle, tors=torso, sho=sholder, elb=elbow, wri=wrist). The
initials r and l stand for right and left, respectively. Bold denotes the best result.

Dir. Dis. Eat Gre. Phn. Pose Pur. Sit SitD Sm. Pht. Wait Walk WD WT Avg↓
MPJPE↓

MeTRAbs (w/o GLC) 51.3 53.7 56.5 60.2 55.9 65.7 60.6 55.2 56.6 52.9 64.3 63.3 56.7 65.8 61.7 57.8
MeTRAbs (w GLC) 51.6 54.1 55.8 59.3 55.3 65.5 61.0 54.8 54.9 52.3 63.0 61.8 55.4 63.8 60.1 57.1

(a) Evaluation results on Human3.6M [13] dataset.
Stand
/Walk

Exer
-cize

Sit on
Chair

Cro./
reach

On
floor

Sport Misc.
Green
screen

No
gr.sc.

out-
door

Total

PCK↑ PCK↑ AUC↑ MPJPE↓
MeTRAbs (w/o GLC) 91.8 88.6 87.8 87.8 71.8 90.7 88.4 92.2 85.6 81.6 87.3 49.1 87.4
MeTRAbs (w GLC) 93.1 89.1 88.9 91.4 71.7 92.0 89.6 93.0 86.3 85.0 88.7 49.6 85.4

(b) Evaluation results on MPI-INF-3DHP [32] dataset.

Table 5. Validation on different datasets. Bold denotes the best result. The MeTRAbs [43] result above is our re-trained version.

Method
GLC
(ours)

MPJPE↓

Human3.6M 3DPW
[13] [49]

ROMP [46]
× –.– 75.7
✓ –.– 75.3

Mesh
Graphormer [26]

× 56.0 –.–
✓ 55.0 –.–

MeTRAbs [43]
× 57.8 69.7
✓ 57.1 64.8

Table 6. Ablation study of different models w and w/o our geom-
etry loss combination (GLC=geometry loss combination). Bold
denotes the best result.

papers [26,43,46]. The results are shown in Tab. 6. The pro-
posed method shows improved performance for all models:
1.0 for Mesh Graphormer and 0.7 for MeTRAbs on the Hu-
man3.6M [13] dataset and 0.4 for ROMP and 4.9 for Me-
TRAbs on the 3DPW [49] dataset for MPJPE. This proves
the effectiveness of our proposed method on different mod-
els.

4.8. Comparison to Prior Geometry Loss Functions

We compare our proposed methods to two existing loss
functions: symmetry loss and illegal-angle loss [7]. These
loss functions are most relevant to our proposed method be-
cause they provide constraints based on body geometry. We
re-implement these two loss functions and train them on the
Human3.6M [13] dataset with MeTRAbs. For a fair com-
parison, the L1 loss function is used as the loss function to
calculate the symmetry of the left and right bone lengths.
The results are shown in Tab. 7.

E1 E2 E3 E4 E5 E6 E7

ours
root-relative ✓ ✓ ✓ ✓ ✓ ✓ ✓
bone length × ✓ × ✓ × × ×

bpo (C1) × × ✓ ✓ × × ×

[7]
symmetry × × × × ✓ × ✓

illegal-angle × × × × × ✓ ✓
MPJPE↓ 57.8 57.5 57.1 57.1 58.4 57.4 57.6

Table 7. Comparison to prior geometry loss functions. Bold de-
notes the best result.

We observe that our proposed method performs better
than these methods. In the E2 vs. E5, our bone length loss
is 0.3 MPJPE better than E1, while E5 is lower than E1.
In the E3 vs. E6, our body part orientation loss achieves
better 0.3 MPJPE than illegal-angle loss. In the E4 vs. E7,
our proposed geometry loss combination achieves the best
57.1 MPJPE, while the combination of symmetry loss and
illegal-angle loss achieves 57.6 MPJPE. This comparison
further proves the validity of our proposed method.

4.9. Comparison to the State-of-the-Art Methods

We compare against the nine state-of-the-art 3D hu-
man pose estimation methods, such as CLIFF [24], Dyn-
aBOA [10], and Dozens-M [41] etc. As shown in Tab. 8,
the comparison only uses the 3DPW [49] dataset for evalu-
ation. This experiment set wbone to 0.1 and wbpo to 0.01.

In the protocol #PS, adding the proposed method im-
proves MPJPE by about 1.5 over the case without adding
it. The result of 65.0 MPJPE is also above the other meth-
ods. Besides, some methods [24, 26] use the training set of
3DPW for training or fine-tuning. In contrast, we did not
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(a) Visualization on Human3.6M dataset [13].

(b) Visualization on MPI-INF-3DHP dataset [32].

Figure 7. Visualization results for the validation in Sec. 4.6. Red indicates the GT pose, blue indicates the predicted pose.

Method PA-MPJPE↓ MPJPE↓

Protocol of SPIN [18] (#PS)
SPIN [18] 59.2 96.9
HybrIK [21] 48.8 80.0
METRO [25] 47.9 77.1
Mesh Graphormer [26] 45.6 74.7
CLIFF [24] 43.0 69.0
Cha et al. [4] 39.0 66.0
DynaBOA [10] 40.4 65.5
MeTRAbs+ (w/o GLC) 48.0 66.5
MeTRAbs+ (w GLC) 47.4 65.0

Protocol of MeTRAbs [43] (#PM)
MeTRAbs [43] 49.7 68.8
Dozens-M [41] 45.6 64.3
MeTRAbs+ (w/o GLC) 45.9 64.3
MeTRAbs+ (w GLC) 45.2 62.8

Table 8. Comparison to the state-of-the-art methods on 3DPW
dataset. Bold denotes the best result.

use any data from 3DPW while achieving a better result.
In the protocol #PM, MeTRAbs+ trained with the pro-

posed geometry loss combination obtains the best results
with 62.8 MPJPE. Training on the smaller level of data, our
results outperform the state-of-the-art Dozens-M [41].

These experimental results reveal that our proposed ge-
ometry loss combination improves the estimation perfor-
mance. This also demonstrates the effectiveness and gen-
erality of our loss combination in the wild datasets.

5. Conclusion
We proposed a simple and effective geometry loss com-

bination to improve the prediction for keypoints at the end
of limbs. This combination contains three loss functions:
root-relative loss, bone length loss and body part orienta-
tion loss. Experimental results proved the effectiveness and
importance of geometry constrain for 3D human pose es-
timation. Furthermore, our proposed loss combination is
general and can be easily applied to various related mod-
els. Extensive experiments demonstrate that our methods
achieve state-of-the-art performance on the 3DPW dataset.

3279



References
[1] Martı́n Abadi et al. TensorFlow: Large-scale machine learn-

ing on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, et al.
2d human pose estimation: New benchmark and state of the
art analysis. In CVPR, June 2014.

[3] Cristian Sminchisescu Catalin Ionescu, Fuxin Li. Latent
structured models for human pose estimation. In ICCV,
2011.

[4] Junuk Cha, Muhammad Saqlain, GeonU Kim, Mingyu Shin,
and Seungryul Baek. Multi-person 3d pose and shape es-
timation via inverse kinematics and refinement. In ECCV,
pages 660–677, 2022.

[5] Yucheng Chen, Yingli Tian, and Mingyi He. Monocu-
lar human pose estimation: A survey of deep learning-
based methods. Computer Vision and Image Understanding,
192:102897, 2020.

[6] Mickael Cormier, Aris Clepe, Andreas Specker, et al. Where
are we with human pose estimation in real-world surveil-
lance? In 2022 IEEE/CVF Winter Conference on Applica-
tions of Computer Vision Workshops (WACVW), pages 591–
601, 2022.

[7] Rishabh Dabral, Anurag Mundhada, Uday Kusupati, Safeer
Afaque, Abhishek Sharma, and Arjun Jain. Learning 3d hu-
man pose from structure and motion. In ECCV, September
2018.

[8] Matteo Fabbri, Fabio Lanzi, Simone Calderara, et al. Com-
pressed volumetric heatmaps for multi-person 3d pose esti-
mation. In CVPR, June 2020.

[9] Mihai Fieraru, Mihai Zanfir, Silviu Cristian Pirlea, et al.
Aifit: Automatic 3d human-interpretable feedback models
for fitness training. In CVPR, pages 9914–9923, 2021.

[10] Shanyan Guan, Jingwei Xu, Michelle Zhang He, Yunbo
Wang, Bingbing Ni, and Xiaokang Yang. Out-of-domain hu-
man mesh reconstruction via dynamic bilevel online adapta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(4):5070–5086, 2023.

[11] Ikhsanul Habibie, Weipeng Xu, Dushyant Mehta, Gerard
Pons-Moll, and Christian Theobalt. In the wild human pose
estimation using explicit 2d features and intermediate 3d rep-
resentations. In CVPR, June 2019.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. Deep
residual learning for image recognition. In CVPR, pages
770–778, 2016.

[13] Catalin Ionescu, Dragos Papava, Vlad Olaru, et al. Hu-
man3.6m: Large scale datasets and predictive methods for 3d
human sensing in natural environments. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 36(7):1325–
1339, jul 2014.

[14] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Ham-
ming embedding and weak geometric consistency for large
scale image search. In ECCV, pages 304–317, 2008.

[15] Sam Johnson and Mark Everingham. Clustered pose and
nonlinear appearance models for human pose estimation. In
BMVC, pages 12.1–12.11, 2010.

[16] Hanbyul Joo, Tomas Simon, Xulong Li, et al. Panoptic stu-
dio: A massively multiview system for social interaction
capture. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2017.

[17] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, et al.
End-to-end recovery of human shape and pose. In CVPR,
June 2018.

[18] Nikos Kolotouros, Georgios Pavlakos, Michael J. Black, and
Kostas Daniilidis. Learning to reconstruct 3d human pose
and shape via model-fitting in the loop. In ICCV, October
2019.

[19] Nikos Kolotouros, Georgios Pavlakos, and Kostas Dani-
ilidis. Convolutional mesh regression for single-image hu-
man shape reconstruction. In CVPR, June 2019.

[20] Jiefeng Li, Can Wang, Hao Zhu, et al. Crowdpose: Efficient
crowded scenes pose estimation and a new benchmark. In
CVPR, June 2019.

[21] Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin Yang,
and Cewu Lu. Hybrik: A hybrid analytical-neural inverse
kinematics solution for 3d human pose and shape estimation.
In CVPR, pages 3383–3393, June 2021.

[22] Jizhizi Li, Jing Zhang, Stephen J Maybank, et al. Bridging
composite and real: Towards end-to-end deep image matting.
International Journal of Computer Vision, 2022.

[23] Ruilong Li, Shan Yang, David A. Ross, et al. Ai choreogra-
pher: Music conditioned 3d dance generation with aist++. In
ICCV, pages 13401–13412, October 2021.

[24] Zhihao Li, Jianzhuang Liu, Zhensong Zhang, Songcen Xu,
and Youliang Yan. Cliff: Carrying location information
in full frames into human pose and shape estimation. In
ECCV, pages 590–606, 2022.

[25] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers. In
CVPR, pages 1954–1963, June 2021.

[26] Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh
graphormer. In ICCV, pages 12939–12948, October 2021.

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, et al. Mi-
crosoft coco: Common objects in context. In ECCV, pages
740–755, 2014.

[28] Wu Liu, Qian Bao, Yu Sun, et al. Recent advances of monoc-
ular 2d and 3d human pose estimation: A deep learning per-
spective. ACM Comput. Surv., 55(4), nov 2022.

[29] Ze Liu, Han Hu, Yutong Lin, et al. Swin transformer v2:
Scaling up capacity and resolution. In CVPR, pages 12009–
12019, June 2022.

[30] Matthew Loper, Naureen Mahmood, Javier Romero, et al.
SMPL: A skinned multi-person linear model. ACM Trans.
Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–248:16,
Oct. 2015.

[31] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2017.

[32] Dushyant Mehta, Helge Rhodin, Dan Casas, et al. Monocu-
lar 3d human pose estimation in the wild using improved cnn
supervision. In 3D Vision (3DV), 2017 Fifth International
Conference on. IEEE, 2017.

[33] Dushyant Mehta, Oleksandr Sotnychenko, Franziska
Mueller, et al. Single-shot multi-person 3d pose estimation

3280



from monocular rgb. In 3D Vision (3DV), 2018 Sixth
International Conference on. IEEE, sep 2018.

[34] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko,
et al. Vnect: Real-time 3d human pose estimation with a
single rgb camera. ACM Trans. Graph., 36(4), jul 2017.

[35] Gyeongsik Moon, Hongsuk Choi, and Kyoung Mu Lee.
Neuralannot: Neural annotator for 3d human mesh training
sets. In CVPRW, pages 2299–2307, June 2022.

[36] Priyanka Patel, Chun-Hao P. Huang, Joachim Tesch, et al.
Agora: Avatars in geography optimized for regression anal-
ysis. In CVPR, pages 13468–13478, June 2021.

[37] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G. Derpa-
nis, et al. Coarse-to-fine volumetric prediction for single-
image 3d human pose. In CVPR, July 2017.

[38] Dario Pavllo, Christoph Feichtenhofer, David Grangier, et al.
3d human pose estimation in video with temporal convolu-
tions and semi-supervised training. In CVPR, June 2019.

[39] Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, et al. Geonet: Ge-
ometric neural network for joint depth and surface normal
estimation. In CVPR, pages 283–291, 2018.

[40] Alessio Sampieri, Guido Maria D’Amely di Melendugno,
Andrea Avogaro, et al. Pose forecasting in industrial human-
robot collaboration. In ECCV, pages 51–69, 2022.

[41] István Sárándi, Alexander Hermans, and Bastian Leibe.
Learning 3D human pose estimation from dozens of datasets
using a geometry-aware autoencoder to bridge between
skeleton formats. In WACV, 2023.

[42] István Sárándi, Timm Linder, Kai O. Arras, et al. Metric-
scale truncation-robust heatmaps for 3D human pose estima-
tion. In IEEE International Conference on Automatic Face
and Gesture Recognition (FG), 2020.

[43] István Sárándi, Timm Linder, Kai O. Arras, et al. MeTRAbs:
metric-scale truncation-robust heatmaps for absolute 3D hu-
man pose estimation. IEEE Transactions on Biometrics, Be-
havior, and Identity Science (T-BIOM), 3(1):16–30, 2021.

[44] Xiao Sun, Jiaxiang Shang, Shuang Liang, et al. Composi-
tional human pose regression. In ICCV, Oct 2017.

[45] Xiao Sun, Bin Xiao, Fangyin Wei, et al. Integral human pose
regression. In ECCV, pages 536–553, 2018.

[46] Yu Sun, Qian Bao, Wu Liu, et al. Monocular, one-stage,
regression of multiple 3d people. In ICCV, pages 11179–
11188, October 2021.

[47] Shuhei Tsuchida, Satoru Fukayama, Masahiro Hamasaki,
et al. Aist dance video database: Multi-genre, multi-dancer,
and multi-camera database for dance information processing.
In Proc. of the 20th International Society for Music Informa-
tion Retrieval Conference, ISMIR 2019, Delft, Netherlands,
Nov. 2019.

[48] Gul Varol, Javier Romero, Xavier Martin, et al. Learning
from synthetic humans. In CVPR, July 2017.

[49] Timo von Marcard, Roberto Henschel, Michael Black, et al.
Recovering accurate 3d human pose in the wild using imus
and a moving camera. In ECCV, sep 2018.

[50] Wei Yin, Yifan Liu, and Chunhua Shen. Virtual normal: En-
forcing geometric constraints for accurate and robust depth
prediction. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 44(10):7282–7295, 2022.

[51] Zhixuan Yu, Jae Shin Yoon, In Kyu Lee, et al. Humbi:
A large multiview dataset of human body expressions. In
CVPR, June 2020.

[52] Tianshu Zhang, Buzhen Huang, and Yangang Wang. Object-
occluded human shape and pose estimation from a single
color image. In CVPR, June 2020.

[53] Weichen Zhang, Zhiguang Liu, Liuyang Zhou, et al. Mar-
tial arts, dancing and sports dataset. Image Vision Comput.,
61(C):22–39, may 2017.

[54] Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, and
Yichen Wei. Towards 3d human pose estimation in the wild:
A weakly-supervised approach. In ICCV, Oct 2017.

3281


