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Abstract

In this paper, we propose an approach to address the
problem of 3D reconstruction of scenes from a single im-
age captured by a light-field camera equipped with a rolling
shutter sensor. Our method leverages the 3D informa-
tion cues present in the light-field and the motion infor-
mation provided by the rolling shutter effect. We present a
generic model for the imaging process of this sensor and a
two-stage algorithm that minimizes the re-projection error
while considering the position and motion of the camera
in a motion-shape bundle adjustment estimation strategy.
Thereby, we provide an instantaneous 3D shape-and-pose-
and-velocity sensing paradigm. To the best of our knowl-
edge, this is the first study to leverage this type of sensor
for this purpose. We also present a new benchmark dataset
composed of different light-fields showing rolling shutter ef-
fects, which can be used as a common base to improve the
evaluation and tracking the progress in the field. We demon-
strate the effectiveness and advantages of our approach
through several experiments conducted for different scenes
and types of motions. The source code and dataset are
publicly available at: https://github.com/ICB-
Vision-AI/RSLF.

1. Introduction

Light-field (LF) cameras (also known as plenoptic), in-
troduced by Adelson and Wang [1] and prototyped by
Ng [25], consist of a conventional camera with a micro-
lens array in front of the photosensitive sensor. This type
of imaging sensor has the particularity of being able to cap-
ture a light field of a scene in a single capture. LF cam-
eras are now an established solution used in computer vi-
sion, photogrammetry and robotics [7, 15, 37]. The minia-
turization of these cameras, e.g. in the context of applica-
tions such as intra-corporeal micro-robotics, requires the
choice of a rolling shutter (RS) photosensitive sensor. Con-
versely to global shutter (GS) cameras, where all pixels

Figure 1. Some central views of the proposed RSLF dataset. From
left to right: A global shutter view, the ground truth depth, and four
different rolling shutter views with increasing camera motions.

of the image are acquired at the same time, the image ac-
quisition by rolling shutter is sequential [24]. Notably, a
RS sensor creates image deformations in the case of dy-
namic scenes or when the camera is moving, as depicted in
Fig. 1. The rolling shutter then often degrades the perfor-
mance and challenge existing reconstruction and pose es-
timation approaches. Ait-Aider et al. [3] have shown that,
in the case of a conventional perspective monocular cam-
era, these deformations can be leveraged in order to com-
pute the motion of the scene with respect to the camera.
However, their proposed model and subsequent improved
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strategies [4, 18] have the strong limitation of requiring the
shape of the object/scenes to be known. Conversely, this pa-
per proposes to jointly estimate the motion and the structure
of a scene from a single view shot and in less constrained
conditions. Although the possibilities given by RS, when
properly modelled, has been shown for several computer
vision and graphics problems, the combination with LF has
not been yet exploited in a unified approach. One important
motivation of this paper is to show the possibilities that this
sensor modality presents, such as of being able to allow the
estimation of the camera motion (or from the scene/object)
from a single view without priors on the scene shape. We
are particularly motivated by showing the interest of a uni-
fied approach (and its properties) that is capable of leverag-
ing RS with existing light-field consumer devices. Indeed,
such sensors are available, like the entry level cameras of
Raytrix (R8, R42, R10µ, R20) or any camera array with RS
sensors (like Pelican Imaging), but unfortunately no public
dataset is available to be the best of the authors’ knowledge.
In this context, another core motivation of this paper is to
present a suitable and challenging LF dataset collected with
a RS camera with different motion levels and scene geome-
tries. For that, we have generated new models and leveraged
existing scene models (from Matterport3D) into an adapted
rendering engine (based on Blender) to create LF data af-
fected by RS distortions in different conditions (e.g., from
mild to strong motions). The main contributions of this pa-
per are as follows:

• We propose a generic projection model of a rolling
shutter light-field (RSLF) camera. This model is ca-
pable to represent a light-field with both global shutter
and rolling shutter settings.

• A non-linear bundle adjustment strategy is designed
to estimate jointly the 3D shape and motion for this
sensor modality. We also design a linear initialization
strategy in order to recover a first coarse estimate of
the 3D shape. This initialization is essential for the
convergence of our approach as shown in the ablation
studies.

• We also present a new dataset composed of Rolling
Shutter Light Fields (RSLF) paired with ground truth
depth maps, on several synthetic scenes and with dif-
ferent types and levels of motion. We aim this dataset
to be used as a common base to improve the evaluation
and help tracking the progress in the field.

2. Related Work
Depth estimation from light-fields. Light-field contains
rich information cues about the geometry of the scene. The
seminal work of Adelson and Wang [1] for the plenoptic
camera exploit this ability for “single lens stereo”. They
used sub-aperture images (SAI) to perform a standard two

frame displacement analysis with multiple pairs horizon-
tally and vertically. In the same direction, multi-view stereo
matching-based methods try to reproduce the results of clas-
sical stereo with plenoptic images [12, 16, 27, 38]. In this
context, Georgiev and Lumsdaine [12] introduced the fo-
cused plenoptic camera and proposed a complete setup in
order to recover depth with this new design. The method
simultaneously render the image and estimate a per micro-
lens depth map by computing the cross correlation be-
tween patches in micro images. Similarly, Perwass and
Wietzke [27] introduced a multi-focused plenoptic cam-
era model alongside a depth estimation algorithm based on
point correspondences between micro images. Jeon and
Park [16] explored the phase-shift theorem of the Fourier
transform to estimate an accurate sub-pixel disparity map
by computing a matching cost volume between SAI. Zeller
et al. [38] proposed a filtering method for the estimation of
semi-dense probabilistic depth maps for focused plenoptic
cameras, with a Kalman filter like approach preserving dis-
continuities in the depth map. Ferreira and Goncalves [11]
proposed a similar but faster depth map estimation method,
with SIFT correspondences and through epipolar lines on
the micro images. Bok et al. [5] proposed a calibration of
the light-field camera based on a bundle adjustment method
and Zhang et al. [39] proposed a generic multi-projection
model (along with its calibration algorithm) for LF cameras.
Most of these techniques rely on generating SAI and then
applying classic stereo matching algorithms to estimate the
depth of the scene. However, they assume GS cameras (or
with slow moving objects and camera motions). Our ap-
proach, on the other hand, can handle scenes with a camera
in movement and is far less affected by RS distortions due
to camera motions.

Epipolar plane images and learning-based LF analysis.
The scene structure can also be extracted from Epipolar
Plane Images (EPI) [6, 8, 32, 36]. These approaches es-
timate depth information from the slopes of the lines ob-
served in the Epipolar planes. Tao et al. [34] improved the
accuracy of the depth estimation with a weighted sum be-
tween the defocus and correspondence cues present in EPIs.
Zhang et al. [40] proposed a spinning parallelogram oper-
ator to determine the line slopes. Lin et al. [21] leveraged
the refocus capability of light-fields and the possibility to
use Shape-From-Focus. Closely related to our work, Srini-
vasan et al. [33] proposed a motion estimation from a single
view with a light-field camera based on motion blur. Heber
and Pock [13] first used a Convolutional Neural Network to
compute depth from light-field images. Shin et al. [31] pro-
posed a fast and accurate light field depth estimation method
based on a fully-convolutional neural network and a light-
field image-specific data augmentation. These techniques
suffer by the lack of generalization to new/unseen scenes
and often dependence on significant amount of data.
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Rolling shutter structure-from-motion estimation. The
potential of RS images received increased attention for
scene analysis. Meingast et al. [24] developed a general
projection equation for a rolling shutter camera and also
proposed a calibration to estimate the rate of the rolling
shutter. Ait-Aider et al. [3] first showed that the rolling
shutter effect could be leveraged to estimate the motion of
an object, but of known shape, when the majority of previ-
ous studies on the rolling shutter were about compensating
it [17, 20]. This is notably done for blur compensation with
both model and learning-based approaches [10, 23]. Saurer
et al. [30] and Ait-Aider et al. [4] investigated RS ef-
fects for stereo vision. Recently Lao et al. [19] proposed a
analogy with non-rigidity to solve shape estimation with a
monocular rolling shutter image. Different than these pre-
vious methods, we address the ambiguity between shape
and motion inherent to RS images exploiting the proper-
ties of the LF. We show that a micro-lens array in front of
the RS sensor allows to model the RS effect in the case of
3D scenes and to estimate the movement of the scene with
respect to the camera without prior knowledge of the scene
geometry.

3. Method

Our joint 3D scene reconstruction and camera motion
estimation approach has two main stages. Firstly, a coarse
linear solution is computed to provide an initialization for
a non-linear bundle adjustment method. This method is de-
signed to handle the geometric and temporal constraints that
are present in the Rolling Shutter Light-Field setting.

Light-field modeling and RS projection. To provide a
comprehensive theoretical framework for our proposed ap-
proach, we begin by presenting an overview of the light field
projection modeling. Subsequently, we use this framework
to introduce a projection model formulation that is specif-
ically designed for the RSLF setting. A more detailed de-
scription of the projection model formulation and theoret-
ical analysis are given in the Supplementary material. An
overview of the adopted light-field modeling and geome-
try is shown in Fig. 2. The pose of the camera with re-
spect to the scene expressed in the world coordinates frame
(Ow, Xw, Yw, Zw) is [R | T] ∈ SE(3). The camera posi-
tion defines a new coordinate frame (Oc, Xc, Yc, Zc) with
origin placed in the optical center of the main lens. The
view plane (MLA plane) has coordinate frame (O, X, Y, Z)
expressed in relation to the camera frame by a pure trans-
lation (Ox, Oy, d) expressed by the transformation matrix
D ∈ SE(3), with O = (Ox, Oy, 0)

⊤ the intersection of
the optical axis and the view plane, and d the distance be-
tween the optical center of the main lens and the view plane.
The micro-image local frames (x, y) are attached to the im-
age plane and are dependent of the considered viewpoint, as

shown in Fig. 2. Given a point in the world homogeneous
coordinates frame wp̃ = (xw, yw, zw, 1)

⊤ and the matri-
ces cMw (the transformation between the camera to world
coordinates) and Kc (thin lens projection matrix), we can
obtain the virtual projection of the 3D point inside the cam-
era as:

λcp̃ = DKc
cMw

wp̃, (1)

with λc a scaling factor. For a given viewpoint c =
(s, t, 0)⊤, i.e. a projection center, the projection of the point
p̃ onto the image plane is given by:

λs,t
s m̃s,t = Ks,t

s p̃ =

f 0 0 −fs
0 f 0 −ft
0 0 1 0

 p̃, (2)

with m̃s,t = (xs,t, ys,t, 1)⊤ the final LF image points, f the
focal length of the micro-lenses and λs a scaling factor.

Rolling shutter modeling. We follow a similar formal-
ism to Ait-Aider et al. [3] to represent an RS imaging pro-
cess. The main insight is to define a projection model de-
pendent of the camera pose and as a function of the micro-
image line t being observed. We adopt the hypothesis that
the speeds (v,Ω) are constant during the LF acquisition.
Adapting the initial projection defined in Eq. (1) for the RS
we have:

λcp̃ = DKc

[
δRtcRw

cTw + δTt

0⊤ 1

]
wp̃, (3)

with δRt = aa⊤(1 − cos(Ωτt)) + I cos(Ωτt) +
[a]∧ sin(Ωτt), and δTt = vτt, where a (axis of rotation),
Ω (angular velocity) and v (linear velocity) describe the
uniform movement of the camera coordinate frame with re-
spect to the world coordinates frame and τ the time between
the acquisition of two lines of the micro-images. The full
Rolling Shutter LF projection from Eq. (3) that projects the
3D point wp̃i to an image point ms,t

i ∈ P2, given a center
of projection c = (s, t, 0)⊤ is then

λms,t
i = Ks,t

s DKc[δR
tcRw | cTw + δTt]wp̃i, (4)

where Ks,t
s DKc can be represented as a single compact in-

trinsic Rolling Shutter LF tensor:

Ks,t
s DKc =

f 0 − f
F (Ox − s) f(Ox − s)

0 f − f
F (Oy − t) f(Oy − t)

0 0 1− d
F d

 , (5)

with F the focal length of the main lens. This formula-
tion has the strong advantage of being generic and represent
both GS and RS configurations. Another advantage is that
all parameters of this unified model can be calibrated with
existing techniques such as Bok et al. [5] for the intrinsic
parameters and Meingast et al. [24] for the rolling shutter
rate.
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Figure 2. left - A raw plenoptic image from a near viewpoint in the scene shown in Fig. 1 and a detail of the micro-images. right - The
adopted LF coordinate frames: The 3D point is projected in a 3D virtual scene by thin lens projection, then on the 2D image plane by
pinhole projection which coordinate frame depends on the considered viewpoint.

Generalization and particular cases. When τ = 0 (i.e.,
no temporal delay between two consecutive lines), this
model can be simplified to a GS light-field camera as the po-
sition of the sensor with respect to the scene will be identical
for any t. The situation where the camera has no velocity
with respect to the scene can also be seen as GS for similar
reasons. The proposed projection model in Eq. (4) general-
izes to a conventional pinhole camera projection in the case
where the MLA is composed of a unique lens. More details
are given in the Supplementary material.

3.1. Scene Structure and Motion Estimation

For a given set of matching points inside a calibrated LF
and assuming that all points belongs to the same rigid scene
in a uniform movement with respect to the camera, we can
recover the position of the points in the 3D world as well
as their motion at a given time. We will use a re-projection
error minimization in order to find jointly these 3D coordi-
nates wp̃i and the dynamic parameters describing the move-
ment of the camera.

Linear initialization. A classical multi-view stereo strat-
egy is applied to provide a first estimate of the 3D points in
the scene. In order to reduce the influence of the RS effect,
we apply the multi-view stereo only horizontally, thereby
ensuring that each measured point wp̃i ∈ R3 is captured at
the same instant. From the experiments, this first estimate
is essential to allow convergence of the following non-linear
optimization.

Non-linear bundle adjustment. Using this 3D initializa-
tion of the observed points in the light field and our pro-
jection model, we design a re-projection error in order to
recover simultaneously a refined structure of the scene and

the camera motion. From our projection in Eq. (4) we com-
pute the point:(

us,t
i , vs,ti , ws,t

i

)T
= Ks,t

s DKc[δR
t | δTt]wp̃i (6)

and deduce the Euclidean pixel coordinates, the scalars xs,t
i

and ys,ti , computed as:

xs,t
i =

us,t
i

ws,t
i

:= ξs,t(x)(
wp̃i,Ω,a,v), and

ys,ti =
vs,ti

ws,t
i

:= ξs,t(y)(
wp̃i,Ω,a,v),

(7)

with ξs,t the projection function that, given a center of pro-
jection c = (s, t, 0)⊤, return the coordinates of the image
point with respect to its static position and its movement.
The re-projection error function is obtained by computing
the distance between the measured points m̃s,t0

i (x̃i
s,t, ỹi

s,t)
and the coordinates estimated with ξs,t(x) and ξs,t(y) from
Eq. (7) as follows:

ϵ =
∑
s

∑
t

∑
i

(
x̃i

s,t − ξs,t(x)(
wp̃i,Ω,a,v)

)2

+
(
ỹi

s,t − ξs,t(y)(
wp̃i,Ω,a,v)

)2

.

(8)

This problem has three unknowns for Ωa, three unknowns
for v, and three unknowns for every wp̃i. It can be solved if
at least four non-coplanar 3D points can be observed, mean-
ing that they need to be located at least an LF image in
two different lines and at two different columns of micro-
images.

Regularization. For the moment, the rotation axis a in
Eq. (8) is defined to pass through the world origin, which
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corresponds to the optical center of the main lens. How-
ever, this is generally not the instantaneous center of rota-
tion of the movement between the camera and the scene. To
ease the description of the movement, we regularize the op-
timization by providing a “center of rotation” g to the point
cloud. This allows to express all points wpi in a new coordi-
nate frame centered on this center of rotation. It also allows
to compute normalized points npi from which the coordi-
nates are lying in the range [−1, 1]. The final non-linear
adapted re-projection error from Eq. (8) using the normal-
ized points and the center of rotation regularization is then:

ϵ =
∑
s

∑
t

∑
i

(
x̃i

s,t − nξs,t(x)(
npi,g,Ω,a,v)

)2

+
(
ỹi

s,t − nξs,t(y)(
npi,g,Ω,a,v)

)2

,

(9)

where nξs,t(x) and nξs,t(y) are designed to handle the normaliza-
tion, and g is also optimized in the loop so that the model is
able to find the optimal center of rotation on-the-fly. Further
details on the optimization are provided in the supplemen-
tary materials.

4. Rolling Shutter Light-Field Dataset
Despite the potential of rolling shutter plenoptic cam-

eras, to the best of the authors’ knowledge, all existing
LF datasets are done assuming a global shutter hypothe-
sis [2, 9, 26, 29]. Unfortunately, there is no public data
available showing the rolling shutter effect on light-field
images. Therefore, we have carefully designed and col-
lected a new dataset with seven different synthetic scenes
build on Blender, containing notably pseudo-real scenes
created from Habitat-Matterport benchmark [28]. This new
dataset (inspired by the HCI 4D LF benchmark [14]) is
composed of four photo-realistic scenes from Matterport
and three synthetic ones (as the examples depicted in Fig. 1
and Fig. 4). We provide, per scene, the following data:

(i) Config files with camera settings and disparity ranges.
(ii) Different motion scenarios:

• GS: This is the static configuration. It allows to
have a good measure of the performance differ-
ence with or without RS distortion by having the
same scene in both scenarios. It is equivalent to
a GS light field.

• slow: The motions affect the image enough to af-
fect largely the perception of the scene geometry.

• fast: The linear and angular camera velocities
are about three times more important than for the
slow motions.

We collect 11 light field sequences per scene (1 GS, 5
slow, 5 fast). Please see the table in the supplementary
with the velocity intervals for each motion scenario.

(iii) Each light field is of dimension 9 × 9 × 512 × 512 ×
3, which is equivalent to a light field captured from a
plenoptic camera with a 512 × 512 micro-lense array
and 9× 9 micro-images.

(iv) A depth map corresponding to the geometry of the
scene at middle time of exposition (i.e., the pose of
the camera during the acquisition of the center line).

We believe this dataset has the potential to help the evalua-
tion and to promote futher investigation of RS applications
for scene analysis with light fields. Visualizations and addi-
tional details of the dataset are given in the Supplementary
material.

5. Experiments
Metrics and competitors. We have selected two repre-
sentative algorithms for comparison: the model-based ap-
proach of Jeon et al. [16], and a recent learning-based 3D
estimation from LF of Wang et al. [35]. The comparison is
done in both GS and RS scenarios for all methods with the
aim of fair conditions for the competitors. Six commonly
used metrics are selected for the evaluation abs rel, abs diff,
RMS, δ < 1.25, δ < 1.252 and δ < 1.253. abs rel is the
absolute difference between the estimation and the ground
truth (gt), normalized by the gt. abs diff is the absolute
difference between the estimation and the gt. RMS is the
Root Mean Square Error between the estimation and the gt.
δ < 1.25, δ < 1.252 and δ < 1.253 are respectively the pro-
portion of the points in a range of 1.25 times the gt, 1.252

times the gt and 1.253 times the gt.

5.1. Results

The evaluation and averaged metrics for all scenes (and
different motion conditions) are shown in Tab. 1. We can
observe the proposed method achieves the best scores over-
all in several of the considered metrics (e.g., “abs rel” and
“abs diff”), and notably for all metrics of the “fast” se-
quences’ split. We can also notice that it has even a compet-
itive performance to the recent competitors in the GS sce-
nario. This aspect will be further investigated in the abla-
tion and sensitivity analysis. As we can observe, the two
competitors perform far worse when motion is present. The
detailed metrics for three representative scenes considering
the eleven light fields sequences per scene (1 GS, 5 slow, 5
fast) are shown in Tab. 2, where we can see that our method
performs better in most cases. Please check some quali-
tative examples of the obtained shape reconstructions for
these three scenes shown in Fig. 4. We alternate, for these
three scenes, the GS case and a RS case with high velocity
(motion scenario number 9). We can clearly see the capacity
of our algorithm to model the RS deformations. In the scene
“bedroom”, motion scenario 9, (the last line of Fig. 4), one
can clearly notice from visual inspection the compensation
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abs rel ↓ abs diff ↓ RMS ↓
Method GS slow fast GS slow fast GS slow fast

Jeon-CVPR [16] 0.040 0.053 0.110 0.027 0.036 0.071 0.035 0.048 0.092
OACC-Net [35] 0.143 0.171 0.196 0.091 0.109 0.125 0.109 0.128 0.144
Ours 0.040 0.041 0.059 0.031 0.032 0.044 0.046 0.051 0.064

δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Method GS slow fast GS slow fast GS slow fast

Jeon-CVPR [16] 0.993 0.976 0.894 1.000 0.999 0.973 1.000 1.000 0.998
OACC-Net [35] 0.767 0.720 0.676 0.959 0.945 0.933 1.000 0.997 0.997
Ours 0.958 0.961 0.949 0.989 0.988 0.982 0.999 0.999 0.999

Table 1. Average reconstruction error metrics in different scenarios for all dataset sequences: GS (global shutter, equivalent to a static
camera scenario), slow (RS with small camera linear and angular velocities), and fast (RS with camera motion three times higher velocities
than in the slow case). The upward arrow means that a higher score is better. Our approach is significantly better than the considered
methods, and with competitive results even for the GS case. Please see the text for details.

abs rel ↓ δ < 1.25 ↑
rabbit 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Jeon-CVPR [16] 0.06 0.08 0.07 0.07 0.07 0.1 0.19 0.12 0.13 0.34 0.39 1.0 1.0 1.0 1.0 1.0 1.0 0.82 1.0 0.91 0.59 0.35
OACC-Net [35] 0.4 0.48 0.5 0.44 0.38 0.49 0.47 0.48 0.44 0.5 0.5 0.26 0.08 0.06 0.14 0.29 0.09 0.1 0.1 0.1 0.13 0.1
Ours 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.02 0.03 0.03 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

table 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Jeon-CVPR [16] 0.03 0.03 0.04 0.03 0.05 0.03 0.05 0.09 0.05 0.17 0.07 1.0 1.0 0.99 1.0 1.0 1.0 0.97 0.96 0.99 0.76 0.94
OACC-Net [35] 0.17 0.21 0.2 0.19 0.19 0.2 0.19 0.24 0.15 0.25 0.2 0.69 0.6 0.64 0.64 0.63 0.59 0.67 0.55 0.79 0.5 0.65
Ours 0.02 0.02 0.02 0.03 0.02 0.03 0.04 0.02 0.04 0.03 0.04 0.995 0.995 0.99 1.0 0.99 1.0 1.0 0.99 0.99 0.98 1.0

bedroom 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Jeon-CVPR [16] 0.02 0.03 0.02 0.04 0.06 0.03 0.07 0.02 0.11 0.03 0.07 1.0 1.0 1.0 1.0 0.97 1.0 0.99 1.0 0.89 1.0 0.94
OACC-Net [35] 0.03 0.05 0.03 0.06 0.1 0.05 0.13 0.03 0.13 0.05 0.13 1.0 0.98 1.0 0.99 0.93 0.98 0.8 1.0 0.77 1.0 0.79
Ours 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.05 1.0 1.0 1.0 0.999 1.0 1.0 1.0 1.0 1.0 1.0 0.99

Table 2. Detailed reconstruction error metrics for three representative scenes “rabbit”, “table” and “bedroom” considering the eleven
different motion scenarios (from 0 to 10) of the dataset. The upward arrow means that a higher score is better.

done on the painting (the rectangle is less stretched). Un-
fortunately, this qualitative observation is not highlighted in
the detailed quantitative metrics Tab. 2. Indeed, the paint-
ing is stretched in the estimation given by the competitors,
but is still close to the wall plane, resulting in similar scores.
However, the proposed formulation is at least twice as accu-
rate than the competitors for the other two scenes detailed
in Tab. 2 for all motion profiles, accordingly to the aver-
age scores for all sequences shown in Tab. 1. The detailed
results for all sequences and scenes are included for com-
pleteness in the Supplementary materials due to page space
limitations.

Finally, we analyse the performance of the approaches in
the easy to understand ‘‘chart” scene as shown in the quan-
titative results from Tab. 3 and visualizations in Fig. 3. Sim-
ilarly to all other scenes, it is composed of eleven light fields
(1 GS, 5 slow, 5 fast), where a double checkerboard pattern
is joint in a 90◦ angle configuration. Our method achieves
the best scores for every metric in both the slow and fast
scenarios. However, we can also obtain competitive results
to both strong competitors in the case of GS. We can also
notice that sometimes our obtained estimation is more ac-
curate when the camera is moving slowly than when the
camera is static. This will be discussed in the ablation study
Sec. 5.2. Tab. 3 also indicates that our method slightly de-

grades with the augmentation of the camera speed, but it
still considerably outperforms all the competitors in the fast
scenarios for the four first metrics. Fig. 3 shows some qual-
itative examples of the three methods in the different sce-
narios and the associated point clouds. We can observe how
our method is still capable of fitting the object shape even
with the presence of RS and fast camera motions. Look-
ing at the object 3D reconstruction results obtained by the
other methods, we can clearly observe deformation effects
caused by the misinterpretation of the RS checkerboard im-
ages. These degradation of performance can be explained
if we observe that the computed disparity maps of the com-
petitors map the distortions of the scene due to RS from
the center view. They also interpret the movement of the
camera between vertically distant views only as spatial dis-
parity. Thus, if a point moves vertically downwards during
acquisition, it will have a bigger disparity than it should (be-
tween two viewpoints, where the point is moving because of
changes in point of view but also because of its own move-
ment). Inversely, if a point moves vertically upwards during
acquisition, it will have a smaller disparity than it should.
These two effects contribute to degrade the performance of
GS-designed algorithms in the estimation of the 3D geom-
etry of the scene.
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abs rel ↓ abs diff ↓ RMS ↓
Method GS slow fast GS slow fast GS slow fast

Jeon-CVPR [16] 0.003 0.013 0.049 8.464 30.293 76.824 17.489 47.647 129.720
OACC-Net [35] 0.003 0.013 0.051 12.214 30.882 79.938 26.197 54.799 140.215
Ours 0.004 0.003 0.003 13.692 15.395 23.754 22.146 25.327 44.791

δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Method GS slow fast GS slow fast GS slow fast

Jeon-CVPR [16] 1.000 0.923 0.745 1.000 0.992 0.898 1.000 0.995 0.991
OACC-Net [35] 1.000 0.922 0.730 1.000 0.993 0.895 1.000 0.996 0.939
Ours 0.988 0.982 0.973 0.996 0.999 0.995 1.000 1.000 0.998

Table 3. Detailed reconstruction error metrics in different scenarios for the “chart” sequence: GS (global shutter, equivalent to a static
camera scenario), slow (RS with small camera linear and angular velocities), and fast (RS with camera motion three times higher velocities
than in the slow case). The upward arrow means that a higher score is better. Our approach performed significantly better than the two
recent considered methods.

Figure 3. Qualitative examples of reconstruction for different motion scenarios for the “chart” sequence. The ”GS” scenario on the
left. A ”slow” scenario in the middle. A ”fast” scenario on the right. - first column: The central view of the LF, the disparity map of
Jeon-CVPR [16], the disparity map of OACC-Net [35]. - Second column: The 3D point clouds (red dots) obtained for our method, Jeon-
CVPR [16], OACC-Net [35]. Despite the fact that the images look different, due to the rolling shutter effect, the reconstruction is supposed
to give the same result (in green crosses in the point clouds).

5.2. Ablation study

We performed different ablation studies in order to eval-
uate the relevance of the different parts of the method. In
the first ablation, we retained two major components for
evaluation, the contribution of i) linear initialization strat-
egy (No Init.), and ii) the regularization (No Reg.) as shown
in Tab. 4. For the ablation of the initialization, we initialized
the optimization Eq. (9) with all the points clustered in a po-
sition near the center of mass of the point cloud we should
have found with the linear initialization. We show in Tab. 4
that, even after convergence, the solution is still far from
correct. For the ablation of the regularization, we see that
the method without the regularization gives worst results in
the RS scenarios. These evaluations confirm the importance
of these components in the designed method.

A second ablation study was designed to evaluate the

performance of our method without the RS modelling (Ours
No RS) depicted in Tab. 5. By modeling the RS effect we
also have additional degrees of freedom that lead to a slight
degradation of the results when compared to a GS scheme
for the GS scenes. We performed an evaluation to verify
the effect of constraining the dynamic degrees of freedom
(Ω = 0 and v = 0) in case of GS would result in the esti-
mation. The results in Tab. 5 show an improvement on all
the metrics of up to about 6%. This concurs with the afore-
mentioned hypothesis. The obtained performance is on par
with the competitors which are specifically designed for GS
settings.

5.3. Discussion

From the experiments, we can observe that our method is
capable of handling different camera motions and provides
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Figure 4. Some central views and associated point cloud recon-
structions for the scenes and results shown in Tab. 2. From right
to left, OACC-Net [35], Jeon-CVPR [16] and Ours. Ground truth
points in gray and estimated in green.

improved scene structure estimates. The proposed model
is designed to handle rigid scenes, yet it can estimate the
structure and motion parameters for 3D scene points inde-
pendently if at least four image points are available, i.e., to
compute a “3D scene flow” from a single LF image. We
assumed rigidity in order to compute a common set of dy-
namic parameters to each point (corresponding to a cam-
era motion in a rigid scene). We believe our strategy could
be also extended to handle scenes with dynamic objects
independently (or non-rigid) with multiple camera motion
hypotheses. The adopted RS projection also assumes that
both linear and angular velocities to be uniform during the
LF image acquisition (i.e., zero acceleration). However, RS
devices, while having a sequential acquisition, usually have
a small time of total exposure per frame (about 0.1 s for
a 4K image). Therefore the assumption of constant camera
speeds during the frame acquisition holds in typical motion-
scene scale scenarios. Nevertheless, the proposed approach
could still be applied for accelerated motions with a piece-
wise decomposition of the plenoptic image in horizontal
bands. Such a strategy of piece-wise decomposition in hori-

RMS ↓
Abl. GS slow fast

No Init. 0.243 0.242 0.240
No Reg. 0.045 0.060 0.086
Full 0.046 0.051 0.064

δ1 < 1.25 ↑
Abl. GS slow fast

No Init. 0.650 0.646 0.630
No Reg. 0.969 0.950 0.895
Full 0.958 0.961 0.949

Table 4. Reconstruction errors for the ablation study of our method
for the initialization and regularization steps.

Abl. abs rel ↓ abs diff ↓ RMS ↓ δ < 1.25 ↑
Jeon-CVPR [16] 0.040 0.027 0.035 0.993
Ours Full 0.040 0.031 0.046 0.958
Ours No RS 0.040 0.029 0.041 0.976

Table 5. Ablation study of the dynamic motion parameters with a
static GS scene.

zontal bands for classic images has been investigated in [22]
for a classic monocular RS sensor. The motion and shape
estimation could then be done at different time instants and
allow to recover more complex scenes (e.g., non-rigid) and
motion scenarios.

6. Conclusion
In this paper, we proposed a projection model for a light-

field camera equipped with a rolling shutter sensor. This
model allows us to jointly estimate the shape and motion
on unknown scenes from a single light field image. The
approach has been evaluated on different motions and 3D
scenes. Furthermore, it does not suffer from shape/motion
ambiguity thanks to the relatively reasonable assumption of
a row-wise GS. To fill the lack of publicly available rolling-
shutter LF data, we created a dataset that includes simulated
photo-realistic light fields with different motion scenarios,
and we will make it publicly available. We plan to build
upon this model to generate denser depth maps and extend
the motion estimations to non-rigid scenes. Our proposed
model shows improved 3D scene geometry estimates, and
we believe that it will inspire further research in this area,
notably for applications in the context of robot vision, ma-
nipulation and micro-robotics.
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