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Abstract

A powerful way to adapt a visual recognition model to a

new domain is through image translation. However, com-

mon image translation approaches only focus on generat-

ing data from the same distribution as the target domain.

Given a cross-modal application, such as pedestrian detec-

tion from aerial images, with a considerable shift in data

distribution between infrared (IR) to visible (RGB) images,

a translation focused on generation might lead to poor per-

formance as the loss focuses on irrelevant details for the

task. In this paper, we propose HalluciDet, an IR-RGB im-

age translation model for object detection. Instead of focus-

ing on reconstructing the original image on the IR modal-

ity, it seeks to reduce the detection loss of an RGB detector,

and therefore avoids the need to access RGB data. This

model produces a new image representation that enhances

objects of interest in the scene and greatly improves detec-

tion performance. We empirically compare our approach

against state-of-the-art methods for image translation and

for fine-tuning on IR, and show that our HalluciDet im-

proves detection accuracy in most cases by exploiting the

privileged information encoded in a pre-trained RGB detec-

tor. Code: https://github.com/heitorrapela/

HalluciDet.

1. Introduction

The proliferation of hardware sensors has greatly ad-

vanced the collection of large-scale datasets. Such datasets

have significantly improved the performance of deep learn-

ing (DL) algorithms across various fields, including surveil-

lance [2], industrial monitoring [16], self-driving cars [31],

and robotics [25]. By providing high-resolution data, these

sensors offer additional observations of common environ-

mental phenomena to aid in the effectiveness of DL algo-

a) RGB image - Ground truth b) IR - Fine-tuned detections

c) FastCUT - RGB detections d) HalluciDet - RGB detections

Figure 1. Example of detections using baseline and HalluciDet

methods on LLVIP data. (a) Original RGB image with ground

truth annotations (yellow). (b) IR image with corresponding de-

tections of a fine-tuned model (green). (c) Translated image from

IR to RGB produced by FastCUT and corresponding RGB detec-

tions (green). (d) Hallucinated image produced by our method and

RGB detections (green); HalluciDet does not seek to reconstruct

all image details but only to enhance the objects of interest.

rithms [26].

The additional information from different sensors has

been employed in diverse settings [13, 30]. In computer

vision applications, combining sensors with distinct envi-

ronmental sensing perspectives, such as varying points of

view and modality sensing information, can increase model

performance, enabling possibilities that were previously un-

available. Furthermore, in the context of self-driving cars

and intelligent building applications, two modalities com-

monly used are visible (RGB) and infrared (IR) [32]. In par-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.
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ticular, the RGB modality offers valuable information for

tasks like object detection, which generates bounding boxes

for target objects within colored images. These colored im-

ages are known to have more diverse information due to

their characteristics on the RGB light spectrum, especially

in the presence of light. Thus, these RGB sensors are pre-

ferred to be used in daily activities where there is the pres-

ence of sunlight. On the other hand, the IR spectrum pro-

vides additional information for the visible modality when

the light is low, especially during the night [15], and also

complementary information, primarily related to thermal

sensing. Furthermore, IR is vastly applied in surveillance

applications [38], which require the device to capture infor-

mation in light-restricted environments. IR object detection

is known to detect objects using IR radiation emitted from

the object, which varies depending on the object’s material.

Despite the impressive performance of DL models, their

effectiveness can significantly deteriorate when applied to

modalities that were not present during the training [3, 33].

For example, a model trained on RGB images may not per-

form well on IR images during testing [35]. To address the

issue, some studies utilize image-to-image translation tech-

niques to narrow the gap between modalities distributions.

Typically, these methods employ classical pixel manipula-

tion techniques or deep neural networks to generate inter-

mediate representations, which are then fed into a detector

trained on the source modality. However, transitioning from

IR to RGB has proven challenging due to generating color

information while filtering out non-meaningful data asso-

ciated with diverse heat sources. This challenge is partic-

ularly pronounced when the target category is also a heat-

emitting source, such as a person.

In this work, we argue that achieving a robust inter-

mediate representation for a given task needs guiding the

image-to-image translation using a task-specific loss func-

tion. Here, we introduce HalluciDet, a novel approach

for image translation focusing on detection tasks. In-

spired by the learning using privileged information (LUPI)

paradigm [34], we utilize a robust people detection network

previously trained on an RGB dataset to guide our trans-

lation process from IR to RGB. Our translation approach

relies on an annotated IR dataset and an RGB detector to

identify the appropriate representation space. The ultimate

goal is to find a translation model, hereafter referred to as

the Hallucination network, capable of translating IR images

into meaningful representation to achieve accurate detec-

tions with an RGB detector.

Our main contributions can be summarized as follows:

(1) We propose HalluciDet, a novel approach that leverages

privileged information from pre-trained detectors in the

RGB modality to guide end-to-end image-to-image transla-

tion for the IR modality.

(2) Given that our model focuses on the IR detection task,

HalluciDet uses a straightforward yet powerful image

translation network to reduce the domain gap between

IR-RGB modalities, guided by the proposed hallucination

loss function incorporating standard object detection terms.

(3) Through experiments conducted on two challeng-

ing IR-RGB datasets (LLVIP and FLIR ADAS), we

compare HalluciDet against various image-to-image trans-

lation and traditional pixel manipulation methods. Our

approach is seen to improve detection accuracy on the

IR modality by incorporating privileged information from

RGB.

2. Related Work

Object detection. Different from classification tasks, in

which we want only to classify the object category, in ob-

ject detection, additionally, the task is to know specific po-

sitions of the objects [36]. Deep learning object detection

methods are categorized as two-stage and one-stage detec-

tors. The two-stage detector extracts regions of interest

or proposals for a second-stage classifier. Then, the sec-

ond stage is responsible for classifying if there is an ob-

ject in that region. One commonly used two-stage detector

is the Faster R-CNN proposed by [27]. It is the first end-

to-end DL object detector to reach real-time speed. The

speedup was achieved by introducing the Region Proposal

Network (RPN), a network responsible for the region pro-

posals without impacting the computational performance

compared with previous region proposals algorithms [28].

The one-stage detectors mainly focus on end-to-end train-

ing and real-time inference speed of the object detectors. In

this scenario, the object detector has a single neural network

to extract the features for the regression of the bounding box

and give the class probabilities without an auxiliary network

for the region proposals. Recently, there are detectors that

were developed to remove the requirement of defining an-

chor boxes during training. For instance, the Fully Con-

volutional One-Stage Object Detection (FCOS) is one of

these models that, due to its nature, reduces all complicated

computation related to anchor boxes, which can lead to an

increase in inference time.

Learning using Privileged Information (LUPI). In hu-

man learning, the role of a teacher is crucial, guiding the

students with additional information, such as explanations,

comparisons, and so on [34]. In the LUPI setting, during

the training, we have additional information provided by a

teacher to help the learning procedure. Since the additional

information is available at the training stage but not during

the test time, we call it privileged information [34]. Re-
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cently, [17] proposed the usage of privileged information to

guide the variance of a Gaussian dropout. In a classification

scenario, additional localization information is used, and its

results show that it improves the generalization, requiring

fewer samples for the learning process [17]. [21] designed a

large-margin classifier using information bottleneck learn-

ing with privileged information for visual recognition tasks.

In the object detection problem, [12] was the first work to

present a modality hallucination framework, which incor-

porates the training RGB and Depth images, and during test

time, RGB images are processed through the multi-modal

framework to improve the performance of the detection.

The modality hallucination network is responsible for mim-

icking depth mid-level features using RGB as input during

the test phase. [20] used depth as privileged information for

object detection with a Depth-Enhanced Deformable Con-

volution Network. In this work, we use the privileged infor-

mation coming from a pre-trained RGB detector to improve

the performance of the infrared detection. In practice, in-

stead of destroying the information of the RGB detector by

fine-tuning, we use the RGB detector as a guide for trans-

lating the IR input image into a new representation, which

can help the RGB detector boost performance by enhancing

the objects of interest.

Image Translation. The objective of image translation is

to learn a mapping between two given domains such that

images from the source domain can be translated to the tar-

get domain. In other words, the aim is to find a function

hϑ : Xs → Xt such that the distribution of images hϑ(Xs)
in the translated domain is close to the distribution of im-

ages Xt in the target domain. Early methods rely on au-

toencoders (AEs) [11] and generative adversarial networks

(GANs) [8] to learn cross-domain mapping. Unsupervised

AE methods aim to learn a representation of the data by

reconstructing the input data. GANs are a type of genera-

tive model that can learn to generate new data that is similar

to the training data. More recently, diffusion models have

gained popularity. They are capable of generating high-

quality images but lack some properties for domain trans-

lation, like on CycleGANs. For improving models such as

CycleGAN, techniques such as Contrastive Unpaired Trans-

lation (CUT) [23] and FastCUT [23] were developed. CUT

is an image translation model based on maximizing mu-

tual information of patches, which is faster than previous

methods while providing results as good as others. On

RGB/IR modalities, the InfraGAN [22] proposes an image-

level adaptation using a model based on GANs, but for RGB

to IR adaptation, with a focus on the quality of the generated

images, thus optimizing image quality losses. Additionally,

using image translation for object detection on RGB/IR us-

ing pre-train models, Herrmann et al. [10] used RGB object

detectors without changing their parameters. The IR images

are adapted to the RGB images using traditional computer

vision pre-processing at the image level before applying it

as input to the RGB object detector.

None of these methods provides an end-to-end way to

directly train the image translation methods for detection

applications. Furthermore, traditionally, they require more

than one kind of data set composed of the original domain

and the target domain. For instance, CycleGAN is based on

adversarial loss, and U-net is based on reconstruction loss.

Thus, if we have access to the already trained detector on

the original domain, this knowledge can possibly be used

during the learning of the translation network.

3. Proposed Method

Preliminary definitions. Let xi be a given image with

spatial resolution W ×H and C channels. An object detec-

tor aims to output a set of Nreg object proposals, each repre-

sented as a bounding box bi,j = (c, d, e, w, h), where (d, e)
is the location of the top-left pixel of the bounding box for

the j-th object, and w and h are the width and height of

the object, respectively. Additionally, a classification label

c ∈ {1, 2, ..., Ncls} is assigned to each object of interest rep-

resenting the region’s class. In terms of optimization, such

a task aims to maximize the detection accuracy, which typ-

ically is approximated through the average precision (AP)

metric over all classes. Then, to train a detector, formally

defined as the mapping fθ : xi → b̂i, a differentiable surro-

gate for AP metric is used, also known as the detection loss

function, Ldet(b,x; θ).
The detection loss can be divided into two terms. The

first one is the classification loss Lcls(ŷc,yc) responsible for

learning the class label c. In this work, we use the cross-

entropy loss function to assess the matching of bounding

boxes categories Lce(ŷc, yc) = −
1

Ncls

Ncls
∑

j=1

ycj
log(pj), where

Ncls is the total number of classes, and ycj
is the class indi-

cator function, i.e., ycj
= 1 if cj is the true class of the ob-

ject, or ycj
= 0 otherwise. The probability provided by the

detector for each category j is pj. To ensure the right posi-

tioning of the object, a second regression term Lreg(ŷb,yb)

is used, being the LL1(ŷbi
, ybi

) =
∑Nreg

i=1

∣

∣ybi
− ŷbi

∣

∣ and

LL2(ŷbi
, ybi

) =
∑Nreg

i=1
(ybi

− ŷbi
)2 losses the most com-

monly employed in the literature. Here Nreg is the number

of bounding boxes on the image xi. Then, the final detection

loss function can be defined in general terms as:

Ldet(x, b; θ) = Lcls(fθ(x), c)

+ λ · Lreg(fθ(x), b),
(1)

where λ is a hyperparameter that controls the balance be-

tween the two terms, and θ is a vector containing the detec-
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Figure 2. HalluciDet leverages privileged information for modality hallucination with pre-trained detectors. During training, the hallucina-

tion network learns how to use the privileged information encoded by the RGB detector to translate the IR image into a new hallucination

modality representation. Then, during inference, the model provides better IR detection using the translated modality.

tor learnable parameters. The detectors used in this work

use this general objective during their optimization process.

However, they adapt each term to their specific architecture.

HalluciDet. Our goal is to generate a representation from

an IR image that a given RGB detector can effectively pro-

cess. Let X ⊂ R
W×H be the set of IR data containing

N images. During the learning phase, a training dataset

S = {(xi,bi)} is given such that xi ∈ X is an IR im-

age and bi is a set of bounding boxes as defined in the

previous section. In addition, an RGB detector fθ is also

available. Then, a representation mapping is here defined

as hϑ : X → R, where R is the representation space and

ϑ are the learnable parameters of the translation model.

Such a representation space, R ⊂ R
W×H×3, is condi-

tioned to the subset of plausible RGB images that are suf-

ficient to obtain a proper response from the RGB detector

fθ. To find such a mapping we solve the optimization prob-

lem ϑ∗ = argminϑ Lhall(x, b;ϑ) which implicitly uses the

composition (hϑ ◦ fθ)(x) to guide the intermediate repre-

sentation.

Our proposed model, HalluciDet, comprises two mod-

ules: a hallucination network responsible for the image-

to-image harmonization and a detector. The Hallucination

network is based on U-net [29], but modified with atten-

tion blocks which are more robust for image translation

tasks [6, 18]. For training the HalluciDet, we train the hal-

lucination module and condition it with the detection loss,

which is the only supervision necessary for guiding the hal-

lucination training with respect to the privileged informa-

tion of the pre-trained RGB detector. This phase is respon-

sible for translating the hallucinated image to a new repre-

sentation close to the RGB modality. Please note that this

strategy helps the final model to perform well on the IR

modality without changing the knowledge from the detec-

tor. Under this framework, the RGB detection performance

remains the same since the detector’s parameters θ are not

updated during the adaptation learning. On the other hand,

detections over IR images are obtained by adapting the in-

put using the Hallucination network, followed by the eval-

uation over the RGB detector. As a side advantage, our

model allows evaluating both modalities by providing the

appropriate modality identifier during the forward pass, i.e.,

RGB or IR. Figure 2 depicts the training and evaluation pro-

cess of an IR image using privileged information from the

RGB detector.

The detector fθ layers are frozen, thus preserving the

prior knowledge, but the weights ϑ of the hallucination net-

work hϑ are updated during the backward pass. The input

minibatch is created with images from X set, leading to the

hallucinated minibatch, which is then evaluated on fθ to ob-

tain the associated detections. To find the appropriate rep-

resentation space, the hallucination loss Lhall(x, b, ϑ) drives

the optimization by updating only the hallucination network

parameters. The representation space R is guided by Lhall

to be closer enough to the RGB modality, which allows the

detector to make successful predictions. As the representa-

tion is being learned with feedback from the frozen detector,

it extracts the previous knowledge so that this new interme-

diate representation is tuned for the final detection task. The
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proposed hallucination loss shares some similarities with

the aforementioned detection loss but with the distinction

of only updating the modality adaptation parameters:

Lhall(x, b, ϑ) = Lcls(fθ(hϑ(x)), c)

+ λ · Lreg(fθ(hϑ(x)), b)
(2)

Equation 2 is optimized w.r.t ϑ. We added the hyperpa-

rameter λ to weigh the contribution of each term and for

numerical stability purposes.

4. Experimental results and analysis

Experimental Methodology. Hallucidet is evaluated on

two different popular IR/RGB datasets, the LLVIP [15], and

FLIR ADAS [7]. The LLVIP dataset is composed of 30, 976
images, in which 24, 050 (12, 025 IR and 12, 025 RGB

paired images) are used for training and 6, 926 for testing

(3, 463 IR and 3, 463 RGB paired images). For the FLIR,

we used the sanitized and aligned paired sets provided by

Zhang et al. [37], which have 10, 284 images, being 8, 258
for training (4, 129 IRs and 4, 129 RGBs) and 2, 026 (1, 013
IRs and 1, 013 RGBs) for test. We chose to utilize these

paired IR/RGB datasets to ensure a fair comparison with

other image-to-image translation techniques that employ re-

construction losses. In our experiments, we use 80% of the

training set for training and the rest for validation. All re-

sults reported are on the test set. As for the FLIR dataset, we

only used the person category. Initially, we have the RGB

detector trained on the datasets using 5 different seeds. It’s

worth noting that this model starts with pre-trained weights

from COCO [19]. Then with the RGB model trained, we

use the model to perform the Hallucidet training. We tried

ResNet50 as the backbone for the detectors and ResNet34
as the backbone for the Hallucination network. To ensure

fairness we trained the detectors under the same conditions,

i.e., data order, augmentations, etc. All the code is available

at GitHub 1 for the reproducibility of the experiments. To

develop the code, we used Torchvision models for the de-

tectors and PyTorch Segmentation Models [14] for the U-

Net architecture of the hallucination network. Additionally,

we trained with PyTorch Lightning [5] training framework,

evaluated the AP with TorchMetrics [4], and logged all ex-

periments with WandB [1] logging tool.

Main Comparative Results. In Table 1, we investi-

gate how our model behaved in comparison with standard

image-to-image approaches and classical computer vision

approaches that are normally used to reduce the distribution

gap between IR and RGB. Furthermore, we highlight the

1https://github.com/heitorrapela/HalluciDet.

impact of using the proposed Lhall loss to guide the repre-

sentation. This is accomplished by comparing our approach

with a U-Net that shares the same backbone as ours but em-

ploys a standard LL1 reconstruction loss. To guarantee com-

parability, we reproduce the experimental setting of [10]

on our pipeline. We included basic pre-processing tech-

niques that were shown to enhance IR performance on RGB

models by Hermann et al. [10]. These techniques include

a combination of blurring, histogram equalization, stretch-

ing, and inverting pixels. Furthermore, we included Cy-

cleGAN, which is a more powerful generative model com-

pared with UNet. It is important to mention that training

the CycleGAN is computationally more demanding than the

Hallucidet. Additionally, due to the adversarial nature of

the method, it does not ensure reliable convergence for the

subsequent detection task. The CycleGAN was diverging

with the same hyperparameters as [15] on the test set, so

we tuned the hyperparameters and trained until the images

became good qualitatively. Because CycleGAN introduces

significant noise to the images as a result of its adversarial

training, the detector’s performance has notably decreased.

This is particularly evident due to the increase in false pos-

itives. Given that our final goal is object detection, we se-

lected FCOS, RetinaNet, and Faster R-CNN, each repre-

senting distinct categories within the universe of detection

networks. We can see that straightforward approaches like

inverting pixels for the IR and expanding it to three chan-

nels significantly enhance the initial performance of IR in-

puts on RGB detectors. As indicated in the table, our re-

sults demonstrate a significant improvement over previous

image-to-image translation techniques in terms of detection

performance. The most significant enhancement was ob-

served in Faster R-CNN, where our proposal exhibited a

remarkable 17% improvement compared to pixel inversion.

Hallucidet Visual Output. In Figure 3, we present a Hal-

lucination image and compare it with both RGB and IR. The

Hallucination emphasizes the person while smoothing the

background, helping the detector to distinguish the regions

of interest. In contrast to RGB, our method allows for easy

person detection even in low-light conditions. However, IR

images may introduce additional non-person-related infor-

mation that could bias the detector. A visual comparison

with FastCUT is also provided, revealing a correlation be-

tween the method’s low performance and the high number

of False Positives detected. It is important to note that while

we show the Hallucination for representation demonstra-

tion, our main goal is on detection metrics. In the figure, the

ground truth bounding box annotations are shown in yellow

on the RGB images. The corresponding detections obtained

from the IR data are presented in the following lines. It is

important to note that we display the predicted detections

on top of the intermediate representation for convenience.

1448



Image-to-image translation Learning strategy

AP@50↑

Test Set (Dataset: LLVIP)

FCOS RetinaNet Faster R-CNN

Blur [10] - 42.59 ± 4.17 47.06 ± 1.99 63.05 ± 1.96

Histogram Equalization [10] - 33.10 ± 4.64 36.45 ± 2.02 51.47 ± 4.03

Histogram Stretching [10] - 38.55 ± 4.25 41.97 ± 1.39 57.69 ± 2.78

Invert [10] - 53.62 ± 2.07 55.43 ± 2.03 71.83 ± 3.04

Invert + Equalization [10] - 50.03 ± 2.44 52.57 ± 1.50 68.69 ± 2.73

Invert + Equalization + Blur [10] - 50.58 ± 2.41 52.62 ± 1.36 68.91 ± 2.74

Invert + Stretching [10] - 51.48 ± 2.17 52.87 ± 1.80 69.34 ± 3.07

Invert + Stretching + Blur [10] - 51.54 ± 1.92 52.96 ± 1.80 69.59 ± 2.90

Parallel Combination [10] - 50.18 ± 2.25 52.52 ± 1.39 68.14 ± 2.98

U-Net [29] Reconstruction 42.94 ± 4.14 47.35 ± 1.92 63.23 ± 2.03

CycleGAN [39] Adversarial 22.76 ± 1.94 27.04 ± 4.23 38.92 ± 5.09

CUT [24] Contrastive learning 19.16 ± 2.10 21.61 ± 2.09 35.17 ± 0.32

FastCUT [24] Contrastive learning 46.87 ± 2.28 52.39 ± 2.31 67.73 ± 2.14

HalluciDet (ours) Detection 63.28 ± 3.49 56.48 ± 3.39 88.34 ± 1.50

Table 1. Performance comparison of models on IR images using LLVIP dataset [15]. The table showcases the impact of different ap-

proaches, including pixel manipulation techniques, U-Net, CycleGAN, CUT, FastCUT, and HalluciDet. The detectors were trained with

RGB data and evaluated on IR. To make a fair comparison with our models, we decided to start with models that do not have strong data

augmentation that could benefit one modality over the other.

However, the actual inputs for HalluciDet approaches and

FastCUT are IR images. A significant number of False

Positives can be observed for FastCUT, while HalluciDet

(FCOS) and HalluciDet (RetinaNet) exhibit a high number

of False Negatives. The most accurate detection results are

achieved with HalluciDet (Faster R-CNN), which demon-

strates superior performance to the IR fine-tuned model in

cases where the person’s heat signature is not clearly evi-

dent, as seen in the last column. Additional figures can be

found in the supplementary material.

Comparison with fine-tuning. For this experiment, we

performed an evaluation of both RGB and fine-tuned IR de-

tectors that were trained on the LLVIP and FLIR datasets.

All methods from Table 2 were trained under the same ex-

perimental protocol using 3 different seeds.

Similar to the previous experiment, we utilized a detec-

tor from each family of methods, namely FCOS, RetinaNet,

and Faster R-CNN. The provided results include the mean

and standard deviation of the AP on the test set. In this ex-

periment, we compare three different approaches to adapt a

model trained on RGB images to IR. As baseline we con-

sider the case of No Adaptation, in which the model is used

directly on IR images. Then, we consider the case in which

a model is adapted to the IR data with normal fine-tuning,

which is the most common way of adaptation when anno-

tations are available. Finally, we train our HalluciDet to

generate a new representation of the image for the RGB de-

tector.

As seen in Table 2, in all cases, the fine-tuned IR model

outperformed the RGB detector over the IR modality, as ex-

pected. In the tables, we also observe a significant improve-

ment in the performance of HalluciDet compared to the per-

formance achieved through fine-tuning for Faster R-CNN.

This improvement aligns with the quality of the representa-

tion observed in Figure 3, where confusing factors, such as

car heat, have been removed from the image. A marginal

improvement was observed with center point-based archi-

tectures like FCOS for the LLVIP dataset, although a higher

difference in AP could be observed for the FLIR dataset. On

the other hand, the results using RetinaNet didn’t exhibit

much consistency; the AP was significantly worse than that

achieved through fine-tuning for the LLVIP dataset. Once

again, this is consistent with the observed representation

lacking the necessary discriminative information to detect

people in the image.

Hallucidet with different backbones. In Table 3, we in-

vestigated various encoder backbones for the Hallucination

network. The presented results include two MobileNet and

two ResNets with different widths. Additional outcomes

for alternative backbones are included in the supplementary

material. In all cases, the model consistently improves upon

the performance of the fine-tuned IR model. Notably, even

in models with a reduced number of parameters, such as

MobileNetv2 with less than 7 million additional parameters,

1449



a) RGB - Ground Truth annotations.

b) IR (Faster R-CNN) - Detections of the Fine-tuned model on the IR images.

c) FastCUT (Faster R-CNN) - Detections of the RGB model on the transformed images.

d) HalluciDet (Faster R-CNN) - Detections of the RGB model on the transformed images.

e) HalluciDet (FCOS) - Detections of the RGB model on the transformed images.

f) HalluciDet (RetinaNet) - Detections of the RGB model on the transformed images.

Figure 3. Illustration of a sequence of 8 images of LLVIP dataset. The first row is the RGB modality, then the IR modality, followed by

FastCUT and different representations created by HalluciDet over various detectors.

the gain remains consistent at nearly 5%.

Hallucidet with a different number of training samples.

For the LLVIP dataset, in Figure 4, we explored various

quantities of training samples for our method, ranging from

1% to 100%. Notably, only 30% of the data was sufficient

for HalluciDet to achieve comparable performance to the

fine-tuned Faster R-CNN with the complete dataset. For the

FLIR dataset, in Figure 5, the trend to reduce the number of

training samples and improve over the fine-tuning is still

true, but in this case, around 70% of the training samples.

The different characteristics related to the exact number of

training samples with respect to the dataset are due to the

number of different environment changes on the datasets.

For the LLVIP, we do not have a big shift in the images

because the cameras are fixed in a surveillance context. In

the case of FLIR, the variance of the images is higher due to

the different capture settings; with the focus on autonomous

driving, the camera moves inside a car, which changes the

background consistency and introduces more variance to

the dataset.

5. Conclusion

In this work, we provided a framework that uses privi-

leged information of an RGB detector to perform the image-

to-image translation from IR. The approach involves utiliz-

ing a Hallucination network to generate intermediate repre-

sentations from IR data, which are then directly input into

an RGB detector. An appropriate loss function was also

proposed to lead the representation into a space that allows
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Method

AP@50↑

Test Set IR (Dataset: LLVIP)

No Adaptation Fine-tuning HalluciDet

FCOS 47.12 ± 4.32 63.79 ± 0.48 64.85 ± 1.46

RetinaNet 50.63 ± 3.22 76.26 ± 0.75 56.78 ± 3.85

Faster R-CNN 71.51 ± 1.16 84.94 ± 0.15 90.92 ± 0.20

Test Set IR (Dataset: FLIR)

No Adaptation Fine-tuning HalluciDet

FCOS 38.52 ± 0.79 42.22 ± 1.04 49.18 ± 0.99

RetinaNet 44.13 ± 2.01 47.87 ± 2.21 49.01 ± 4.08

Faster R-CNN 55.85 ± 1.19 61.48 ± 1.55 70.90 ± 1.35

Table 2. AP performance for various models following distinct

training approaches on two datasets of LLVIP [15] (top half) and

FLIR [9] (bottom half): starting from COCO pre-training and fine-

tuning on the RGB data shown as (No Adaptation) and fine-tuning

on the IR data shown as (Fine-tuning). In the case of HalluciDet,

the trained RGB detector serves as the initial point, with the subse-

quent optimization of the Hallucination network using the IR data.

The reported performance is exclusive to the person category.

Method Params. AP@50↑

Faster R-CNN 41.3 M 84.83

HalluciDet

MobileNetv3s + 3.1 M 85.20

MobileNetv2 + 6.6 M 89.73

ResNet18 + 14.3 M 90.42

ResNet34 + 24.4 M 90.65

Table 3. Comparison of the number of parameters for differ-

ent Hallucination Network backbones vs. AP@50 on the LLVIP

dataset with the Faster R-CNN detector.

for the enhancement of the target category’s importance.

In our experiments, we demonstrate that hallucination

networks can be helpful for modality adaptation by ob-

taining an intermediate representation that effectively sup-

ports accurate responses in the object detection task. The

proposed approach showed particular effectiveness for the

two-stage detector Faster R-CNN, resulting in a reduction

of non-person-related information. This reduction in back-

ground clutter had a positive effect on minimizing the num-

ber of False Positives, surpassing the performance of stan-

dard fine-tuning on IR data. The comparison with meth-

ods from the literature for image-to-image translation high-

lighted the significance of guiding the representation to

achieve successful detections. Our Hallucidet demonstrated

a significant performance improvement compared to the

other methods. Finally, the proposed framework offers

the additional advantage of maintaining performance in the

RGB task, which is beneficial for applications requiring ac-
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Figure 4. AP@50 vs. training samples percentages. The figure

shows the AP@50 over the LLVIP test set using various amounts

of training samples for the HalluciDet Faster R-CNN.
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Figure 5. AP@50 vs. training samples percentages. The figure

shows the AP@50 over the FLIR test set using various amounts of

training samples for the HalluciDet Faster R-CNN. Notably, 70%

of the data was sufficient for HalluciDet to achieve comparable

performance to the fine-tuned Faster R-CNN with the complete

dataset.

curate responses in both modalities.
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