
Context-based Interpretable Spatio-Temporal Graph Convolutional Network for
Human Motion Forecasting

Edgar Medina, Leyong Loh, Namrata Gurung, Kyung Hun Oh, Niels Heller,
QualityMinds GmbH

{edgar.medina, leyong.loh, namrata.gurung, kyung-hun.oh, niels.heller}@qualityminds.de

Abstract

Human motion prediction is still an open problem ex-
tremely important for autonomous driving and safety ap-
plications. Due to the complex spatiotemporal relation of
motion sequences, this remains a challenging problem not
only for movement prediction but also to perform a prelim-
inary interpretation of the joint connections. In this work,
we present a Context-based Interpretable Spatio-Temporal
Graph Convolutional Network (CIST-GCN), as an efficient
3D human pose forecasting model based on GCNs that en-
compasses specific layers, aiding model interpretability and
providing information that might be useful when analyzing
motion distribution and body behavior. Our architecture ex-
tracts meaningful information from pose sequences, aggre-
gates displacements and accelerations into the input model,
and finally predicts the output displacements. Extensive
experiments on Human 3.6M, AMASS, 3DPW, and ExPI
datasets demonstrate that CIST-GCN outperforms previous
methods in human motion prediction and robustness. Since
the idea of enhancing interpretability for motion prediction
has its merits, we showcase experiments towards it and pro-
vide preliminary evaluations of such insights here. 1

1. Introduction
Human motion prediction plays a critical role in au-

tonomous driving, robotics, and safety applications. In the
recent past, several methods for human motion prediction
and modeling have led to significant results with the use
of neural networks [24]. Recently, the main approaches to
tackle this task have been by means of Graph Convolutional
Networks (GCN) [15,16,25,27,28,34,39,42,44], Recurrent
Networks (RNN) [9, 22, 28, 30, 35, 37] and GANs [24]. Al-
though in the last years, RNN-based models were the most
effective methods, they come with the drawback of vanish-
ing or exploding gradients. Recent approaches mix more
sophisticated architectures such as Gated recurrent units
(GRU) [35] or transformers [1, 24] with feature extraction

1available code: qualityminds.cistgcn

using CNN or a gate system in the hidden states. Alter-
nately, the GAN-based approach [24] is another methodol-
ogy for generating the sequence from a hidden vector, but
this approach neglects the kinematic dependencies between
pose joints and ignores the temporal correlation between
frames. Instead, GCNs have received increasing attention
because this architecture can find a temporal relation be-
tween poses and can understand relationships among joints.

A second branch in this work uses interpretability con-
cepts, initial stages were inspired by class-activation [43] or
saliency maps. However, the authors using saliency maps
only performed a visual analysis without providing formal
statistical evaluations. [18,41,43]. Nowadays, more sophis-
ticated methods quantify the error or even measure the un-
certainty level of movement predictions [31, 32]. Despite
the great advances in interpretability of CNNs in classifica-
tion tasks, GCNs are not yet properly covered [4, 12], espe-
cially for regression tasks (such as motion prediction) and
not classification tasks.

The motivation for designing this architecture is to close
the gap between motion prediction and interpretability and
apply it to real-world problems to gain meaningful insights
into why the model predicted a specific output. In our pro-
posed Context-based Interpretable Spatio-Temporal GCN
(CIST-GCN) architecture, we embed GCN layers which
provide sample-specific adjacency matrices and importance
vectors to explain motion forecasting. The matrices are
composed of learnable parameters while the importance
vectors are generated at output layers a mix of CNN and
MLP layers. It stands to reason that these features are
human-interpretable. While we provide some of such in-
terpretations in this paper. To the best of our knowledge,
this is the first work that drives a GCN-based architecture
in this direction. Finally, data augmentation has been added
to speed up the training and also make the system more ro-
bust to possible data glitches that may occur in production
use-case such as faulty 3D-transformations or falsy recon-
structed 3d poses. We conducted experiments to study the
robustness of our model against out-of-distribution (OOD)
data samples, for example, rotations, glitches in poses.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3232



Figure 1. Illustration of our method. (a) Overview of the proposed CIST-GCN. X and X̂ are the input and output respectively. (b) The
basic block of DST-GCN, (c) the Atraus Pyramid TCN, and (d) Context Network. More detailed, (e) Gating network weights the output of
DSGN and DTGN, and (f) Dynamic Adjacency Encoder (DAE) to compute the adjacency matrices.

Our approach consistently obtains comparable results to
the previous results on short- and long-term motion predic-
tion by training a single unified model for both settings.
Specifically, we achieve superior performance in 6 out of
15 actions on the Human3.6M benchmark, while remain-
ing comparable in the other motion predictions. Our model
also surpasses previous works in 3DPW and 12 out of 16
actions on ExPI datasets, while also achieving comparable
results on the AMASS benchmark. The main contributions
of our work can be summarized as follows: 1) we propose a
new architecture that provides not only human motion pre-
diction, but also interpretability to some extent given an in-
put sample, 2) we perform extensive experiments on Hu-
man3.6M [11], AMASS [26], 3DPW [36], and ExPI [8]
datasets, showing that quantitative and qualitative results
are comparable to state-of-the-art (SOTA) models, 3) we
discuss the different extents of interpretations such as rela-
tion matrices, and importance vectors, and 4) we perform
robustness experiments that showcases our model to be bet-
ter than existing SOTA models for ODD samples.

2. Related work

2.1. Motion Prediction

Initial research prove the strength of relations between
joint connections in pose sequences both in the temporal
and spatial domains [24]. Subsequent work [16, 19, 28, 39,
44] research deeper into this approach by grouping the in-
put joints in several ways or merging GCN, CNN, and GRU
layers to learn the graph connectivity (forming a spatio-
temporal graph). In [34], STS-GCN receives the 3D coor-
dinates as input but uses two GCNs to encode sequentially
temporal and spatial data in every encoding layer to feed
the decoder. This decoder is composed of a 4-block Tem-
poral Convolution Network (TCN) [27] that converts input
frames into output frames. Overall, this work requires a
lower number of parameters than previous approaches and
inspired recent architectures.

Another newest branch, such as MotionMixer [2], em-
ploys linear and feature mix layers to merge information.
Although the results are promising, there are problems in

understanding which joints or frames may be relevant for
further analysis such as prediction reliability or action clus-
tering. Since the architecture behaves as a black box model,
we cannot obtain correlation or relationship matrices com-
ing from the model. Also, experiments such as the applica-
tion of 3D transformations can illustrate its limitations.

In [7], several modifications to DSTD-GCN are pro-
posed such as dynamic spatial and temporal graph convo-
lutions are presented as separate units, allowing features to
be learned independently. The authors suggest using con-
strained training with different strategies. Later, they show
that relations can be acquired in unshared sample-specific
forms, reducing MPJPE significantly. The impact of this ap-
proach on metrics inspired us to incorporate learnable adja-
cency matrices in all our GCN layers, removing the need for
duplicating dynamic spatial GCN. This results in fewer pa-
rameters compared to DSTD-GCN. Also, in Section 5, we
explore the potential application of this as an interpretable
output for individual samples. In [42], a gating network is
proposed to generate blending coefficients that weighs the
most meaningful features of the adjacency matrices from
GCNs. Number of weight vectors for the temporal and spa-
tial GCNs are equal. Also, the authors suggest that these ac-
quired vectors could aid in action grouping and emphasize
the most important features in motion prediction. Motivated
by this approach, we use weighting vectors in a similar man-
ner, adding layers with interpretable variables, but reducing
the number of channels in every layer required for motion
prediction. We show how similar movements have similar
interpretable patterns in later sections.

2.2. Model Interpretability

The application of the CAM [33, 41, 43] methods is lim-
ited to GNN structures due to they have special require-
ments and assume heuristically that the final node embed-
ding can reflect the input importance. This assumption may
be wrong [40]. While saliency map techniques are com-
monly employed for model interpretability, they are pri-
marily designed for images. Many of these methods were
evaluated solely in classification tasks, applied as indepen-
dent post-training steps, or require subsequent visual val-

3233



idation. Given the nature of our problem, graph interpre-
tation is required [40]. In [12], a model capable of incor-
porating interpretable attention is proposed. Later, applica-
tions started to use interpretable GCNs (IGCN) [4, 12, 13].
Other approaches [5, 17, 23, 38] need extra heavy computa-
tion to obtain interpretable features. A new method called
GraphLIME [10] proposed a generic GNN-model explana-
tion framework consisting of a local interpretable model
explanation. Our model has similarities with IGCN and
GraphLIME methods. However, we distinguish ourselves
by explaining the relationship between frame-to-frame and
joint-to-joint predictions, which deals with a subset of graph
data. Specifically, GraphLIME [10] offers prediction ex-
planations for GNN architectures, whereas our model pro-
vides interpretation output alongside motion predictions in
a specific data structure. While IGCN [12] has shown com-
bining prediction and interpretation on classification tasks
with diverse situations, it only was tested on classification
tasks and different data structures. In [5], self-explainable
GNN can find K-nearest labeled nodes for the unlabeled
nodes to explain the classification output. However, this
approach only was tested with a synthetic dataset on clas-
sification tasks not related to motion movements. Also, it
is well-known that post-hoc explanations can suffer bias
and misrepresentation due to interpretations are not directly
obtained from the GNNs [5]. In contrast, our model pre-
dicts not only motion but also its interpretations by means
of adjacency matrices and weighting vectors, solely utiliz-
ing GCN layers without requiring external post-processing
methods while being applied to regression tasks.

3. Methodology
3.1. Problem Formalization

We define the body motion as a sequence of poses
X ∈ RT×J×D where T and J define a number of frames
and joints from the sequence, and D parameterizes each
body joint dimension for angles or 3D coordinates. Our
model receives a historical input poses Xin = X0:t1 =
x0, x1, ..., xt1−1 ∈ Rt1×J×D and predict a sequence of
poses X̂ = Xt1:t2 = x̂t1 , x̂t1+1, ..., x̂t1+t2 ∈ Rt2×J×D.
The math representation for an adjacency matrix is given
by A ∈ RP×P where P ∈ Rn is the node representation.

3.2. Review of GCN

Graph Convolutional Networks Graph Convolutions
(GCs) are suitable for non-grid data, where data is rep-
resented by a set of nodes (e.g. x,y,z coordinates) carry-
ing n-dimensional information. When GCs are stacked se-
quentially then they together become a GCN. In this work,
such a set of nodes is called a pose, and an adjacency ma-
trix shows the connection between pairs of nodes from the
whole graph. Formally, let H l ∈ RP×F l

, Al ∈ RP×P

be the input and the adjacency matrix at the current layer l,
whereas the trainable parameters at current layer l are repre-
sented by W l ∈ RF l×F l+1

. F is the number of channels of
this layer. We show the mathematical operation in Eq. (1)
where σ is the activation function and H l+1 ∈ RP×F l+1

is
the GC output.

H l+1 = σ(AlH lW l) (1)

Spatio-Temporal GCN Given that our problem con-
tains a temporal factor in the data, we thus have a spatial-
temporal graph. To process this graph we use two graph
convolution operations, for the spatial and temporal do-
mains, just like the STS-GCN model [34], which takes the
interactions of the temporal evolution and the spatial joints.
Spatial and temporal graph convolutions are presented in
Eq. (2). Where W l

s and W l
t ∈ RF l×F l+1

are trainable pa-
rameters. Graph convolutions are separable if we operate
independently and stack later, as argued later in [7].

H l+1 = σ(Al
tA

l
sH

lW l) = σ(Al
t(A

l
sH

lW l
s)W

l
t ) (2)

We perform a similar approach and demonstrate via ex-
perimentation this operation is stable in Eq. (3). Where W l

D

∈ RF l×F l+1

are trainable parameters, and D represents the
temporal or spatial domain.

H l+1
D = σ(Al

DH l
DW l

D) (3)

3.3. Model architecture

Motivated by the interpretability of the feature impor-
tance of random forest, we built a model not only for pose
sequence prediction but also for output understanding via
feature importance and connectivity matrices similar to pre-
vious works [7, 34, 42]. This architecture is shown in Fig.
1. We argue that our results generate feature maps that
can be used to observe and figure out unexpected behav-
iors in certain OOD data. More concretely, Fig. 1a uses
an encoder-decoder architecture but splits the temporal and
spatial GCNs. Inspired by DeepLabv3+ [3], we propose
to replace the original TCN described in [34] with a new
Atrous Pyramid TCN (APTCN). Also, we propose the Con-
text Network (ConNet) and the Dynamic Spatio-Temporal
Graph Convolutions Network (DST-GCN) placed in paral-
lel that sum the results with a global residual connection to
obtain the final pose sequence. Additionally, following pre-
vious works that use trajectory representation successfully
as inputs [20, 21, 35]. We propose to use an overall of 10
input dimensions, 3 for joint positions, 6 for joint instant
velocities and accelerations in x,y and z, and 1 L2-norm
vector of the instant velocities. We support the idea that the
last two layers from the model, DST-GCN and ConNet, can

3234



Table 1. Performance comparison for motion prediction using MPJPE in every action from the Human3.6M dataset. (∗) implies metric is
computed by us using our pipeline and the standard metric. (†) metric takes the average MPJPE over all previous frames.

Walking Eating Smoking Discussion
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

ConvSeq2Seq [14] 17.7 33.5 56.3 63.6 72.2 82.3 11.0 22.4 40.7 48.4 61.3 87.1 11.6 22.8 41.3 48.9 60.0 81.7 17.1 34.5 64.8 77.6 98.1 129.3
Traj-CNN [19] 11.9 22.5 38.7 45.7 54.5 62. 8.4 16.6 32.4 39.8 53.5 78.4 8.4 16.2 31.1 37.6 49.3 72.3 11.7 26.3 57.3 70.4 91.4 122.7

STS-GCN [34]∗ 12.0 23.0 41.5 48.5 56.6 62.7 7.9 16.8 33.4 40.7 53.1 76.7 7.5 15.7 31.3 38.4 50.7 73.1 11.4 26.4 57.8 71.1 91.2 120.8
MSR-GCN [6] 12.2 22.6 38.6 45.2 52.7 63.0 8.4 17.0 33.0 40.4 52.5 77.1 8.0 16.3 31.3 38.2 49.4 71.6 12.0 26.8 57.1 69.7 88.6 117.6

MultiAttention [29] 9.9 19.3 33.7 39.0 46.2 57.1 7.9 17.5 37.4 45.2 48.6 73.7 7.0 14.3 25.4 29.0 46.5 68.7 8.6 22.8 51.0 64.0 85.2 117.5
DSTD-GCN [7] 11.0 22.4 38.8 45.2 52.7 59.8 7.0 15.5 31.7 39.2 51.9 76.2 6.6 14.8 29.8 36.7 48.1 71.2 10.0 24.4 54.5 67.4 87.0 116.3
MotionMixer [2] 10.8 22.4 36.5 42.4 - 59.9 7.7 14.0 27.3 36.1 - 76.6 7.1 14.0 29.1 36.8 - 68.5 10.2 22.5 51.0 64.1 - 117.4

PGBIG [25] 10.2 19.8 34.5 40.3 48.1 56.4 7.0 15.1 30.6 38.1 51.1 76.0 6.6 14.1 28.2 34.7 46.5 69.5 10.0 23.8 53.6 66.7 87.1 118.2

M16 12.0 23.6 41.0 46.8 54.3 61.9 6.9 15.1 30.6 37.8 50.8 75.3 7.5 15.7 31.5 38.4 49.7 71.5 10.3 24.1 52.8 65.8 85.9 115.1
M32 11.8 23.4 40.5 46.5 54.1 61.3 6.7 14.8 29.8 36.8 49.8 74.7 7.3 15.6 31.0 38.0 49.4 70.7 10.2 23.7 52.3 65.3 86.1 115.9

Directions Greeting Phoning Posing
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

ConvSeq2Seq [14] 13.5 29.0 57.6 69.7 86.6 115.8 22.0 45.0 82.0 96.0 116.9 147.3 13.5 26.6 49.9 59.9 77.1 114.0 16.9 36.7 75.7 92.9 122.5 187.4
Traj-CNN [19] 8.7 19.3 43.6 54.4 74.6 109.4 15.8 35.1 73.6 88.9 110.8 149.6 10.1 20.5 42.0 51.9 69.3 104.4 12.1 26.9 62.4 79.3 108.4 170.9

STS-GCN [34]∗ 7.8 18.7 42.6 53.2 71.0 102.1 15.3 35.0 73.4 89.1 112.2 143.9 9.5 20.4 41.6 51.1 68.3 103.7 11.6 27.6 63.8 81.2 111.7 168.4
MSR-GCN [6] 8.6 19.6 43.3 53.8 71.2 100.6 16.5 37.0 77.3 93.4 116.3 147.3 10.1 20.7 41.5 51.3 68.3 104.3 12.8 29.4 67.0 85.0 116.3 174.3

MultiAttention [29] 11.3 22.9 50.6 62.6 72.4 105.7 12.9 26.6 68.2 85.4 100.5 136.7 11.2 19.6 37.7 44.1 66.5 104.6 9.8 23.7 62.2 78.7 105.8 172.9
DSTD-GCN [7] 6.9 17.4 41.0 51.7 69.0 99.0 14.3 33.5 72.2 87.3 108.7 142.3 8.5 19.2 40.3 49.9 66.7 102.2 10.1 25.4 60.6 77.3 106.5 163.3
MotionMixer [2] 8.3 18.1 43.8 53.4 - 105.4 12.8 33.4 62.3 82.2 - 136.5 10.0 20.1 37.4 51.1 - 104.4 11.7 23.3 62.4 79.5 - 174.9

PGBIG [25] 7.2 17.6 40.9 51.5 69.3 100.4 15.2 34.1 71.6 87.1 110.2 143.5 8.3 18.3 38.7 48.4 65.9 102.7 10.7 25.7 60.0 76.6 106.1 164.8

M16 7.5 18.7 44.8 56.4 73.6 105.2 13.8 31.1 66.7 80.8 102.6 133.9 8.6 18.5 39.5 49.4 67.3 103.6 10.0 24.1 58.9 76.2 107.2 169.3
M32 7.3 18.1 43.6 55.3 72.8 105.5 13.7 31.0 65.7 79.9 101.4 135.7 8.6 18.5 39.3 49.6 67.4 103.5 9.6 23.7 57.7 75.0 105.8 168.7

Purchases Sitting Sitting Down Taking Photo
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

ConvSeq2Seq [14] 20.3 41.8 76.5 89.9 111.3 151.5 13.5 27.0 52.0 63.1 82.4 120.7 20.7 40.6 70.4 82.7 106.5 150.3 12.7 26.0 52.1 63.6 84.4 128.1
Traj-CNN [19] 14.5 31.9 66.6 80.8 103.6 141.0 11.0 21.2 45.5 57.5 79.0 120.1 16.1 29.6 58.7 72.6 97.0 147.0 10.4 20.6 44.4 55.8 76.8 120.1

STS-GCN [34]∗ 13.9 31.7 66.0 80.0 102.5 142.5 9.6 20.6 45.2 57.3 79.0 122.0 15.0 29.6 59.4 73.6 98.8 149.5 9.2 19.9 43.4 55.0 76.2 118.8
MSR-GCN [6] 14.8 32.4 66.1 79.6 101.6 139.2 10.5 22.0 46.3 57.8 78.2 120.0 16.1 31.6 62.4 76.8 102.8 155.5 9.9 21.0 44.6 56.3 78.0 121.9

MultiAttention [29] 18.1 36.8 58.4 67.9 94.5 133.1 9.9 24.3 53.8 66.3 75.8 115.0 10.4 26.6 54.6 66.3 96.0 141.8 5.9 14.8 38.0 49.4 71.8 115.2
DSTD-GCN [7] 12.7 29.6 62.3 75.8 97.5 137.8 8.8 19.3 42.9 54.3 74.9 117.8 14.1 28.0 57.3 71.2 96.1 147.2 8.4 18.8 42.0 53.5 74.5 117.9
MotionMixer [2] 14.6 31.3 62.8 76.1 - 135.1 10.0 20.9 43.7 54.5 - 115.7 12.0 31.4 61.4 74.5 - 141.1 9.0 18.9 41.0 51.6 - 114.6

PGBIG [25] 12.5 28.7 60.1 73.3 95.3 133.3 8.8 19.2 42.4 53.8 74.4 116.1 13.9 27.9 57.4 71.5 96.7 147.8 8.4 18.9 42.0 53.3 74.3 118.6

M16 13.0 30.3 62.8 76.7 97.9 136.2 8.9 19.4 42.7 53.9 74.2 113.4 14.4 30.2 58.5 71.3 95.7 141.6 8.5 18.6 41.0 51.7 72.9 116.4
M32 13.3 30.2 63.0 77.3 97.7 134.8 8.9 19.4 42.3 53.6 73.9 113.0 14.1 29.8 57.3 69.8 94.3 140.2 8.2 18.4 40.6 51.8 73.0 116.6

Waiting Walking Dog Walking Together Average
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

ConvSeq2Seq [14] 14.6 29.7 58.1 69.7 87.3 117.7 27.7 53.6 90.7 103.3 122.4 162.4 15.3 30.4 53.1 61.2 72.0 87.4 16.6 33.5 62.0 73.5 92.1 126.8
Traj-CNN [19] 10.5 21.8 45.8 56.3 73.4 104.5 21.3 43.3 80.8 94.5 115.6 153.5 10.3 21.1 38.5 44.8 54.8 68.0 12.1 24.9 50.7 62.0 80.8 114.9

STS-GCN [34]∗ 10.0 21.9 47.0 58.2 76.4 107.7 20.8 43.6 81.8 95.2 114.4 151.9 10.1 20.7 39.1 46.0 54.9 62.9 11.4 24.8 51.2 62.6 81.1 113.8
MSR-GCN [6] 10.7 23.1 48.2 59.2 76.3 106.3 20.6 42.9 80.4 93.3 111.9 148.2 10.6 20.9 37.4 43.8 52.9 65.9 12.1 25.6 51.6 62.9 81.1 114.2

MultiAttention [29] 9.0 22.5 55.7 71.1 72.7 105.1 29.5 54.8 100.3 105.1 119.0 141.4 8.0 17.6 33.2 42.0 51.2 63.2 11.0 23.6 49.2 60.0 75.9 110.1
DSTD-GCN [7] 8.7 20.2 44.3 55.2 73.2 105.7 19.6 41.8 77.6 90.2 109.8 147.7 9.1 19.8 36.3 42.7 50.5 61.2 10.4 23.3 48.8 59.8 77.8 111.0
MotionMixer [2] 10.2 21.1 45.2 56.4 - 107.7 20.5 42.8 75.6 87.8 - 142.2 10.5 20.6 38.7 43.5 - 65.4 11.0 23.6 47.8 59.3 - 111.0

PGBIG [25] 8.9 20.1 43.6 54.3 72.2 103.4 18.8 39.3 73.7 86.4 104.7 139.8 8.7 18.6 34.4 41.0 51.9 64.3 10.3 22.7 47.4 58.5 76.9 110.3

M16 8.7 19.5 43.6 54.6 73.2 104.6 19.9 40.9 74.1 86.6 106.6 149.2 9.7 20.4 38.5 45.8 55.2 64.7 10.6 23.3 48.5 59.5 77.8 110.8
M32 8.6 19.4 43.5 54.8 73.6 105.4 20.0 41.4 73.7 85.1 103.8 143.2 9.6 20.3 38.2 45.6 55.4 64.6 10.5 23.2 47.9 59.0 77.2 110.3

Table 2. Performance comparison on different architectures using MPJPE for common action split from the ExPI dataset.

A1 A2 A3 A4 A5 A6 A7 AVG

Time (ms) 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

LTD [28] 70 125 157 - 189 131 242 321 - 426 102 194 260 - 357 62 117 155 - 197 72 131 173 - 231 81 151 200 - 280 112 223 315 - 442 90 169 226 - 303
HRI [27] 52 103 139 - 188 96 186 256 - 349 57 118 167 - 240 45 93 131 - 180 51 105 149 - 214 61 125 176 - 252 71 150 222 - 333 62 126 177 - 251

MSR-GCN [6] 56 100 132 - 175 102 187 256 - 365 65 120 166 - 244 50 95 127 - 172 54 100 138 - 202 70 132 182 - 258 82 154 218 - 321 69 127 174 - 248
XIA [8] 49 98 140 - 192 84 166 234 - 346 51 105 154 - 234 41 84 120 - 161 43 90 132 - 197 55 113 163 - 242 62 130 192 - 291 55 112 162 - 238

M16 50 92 124 149 173 89 171 241 296 350 54 109 157 195 235 40 80 115 141 163 47 95 138 174 208 58 115 166 212 255 72 157 236 313 376 58 117 168 211 251
M32 47 89 120 145 169 82 159 228 282 338 49 100 147 183 218 38 76 109 136 159 45 89 128 162 194 55 110 159 203 245 70 155 238 313 378 55 111 161 203 243

satisfactorily obtain interpretability from the output pose se-
quence whereas the DST-GCN blocks in the input can ex-
tract relevant information regarding the input sequence.

Interpretable-GCN layer. We implement DST-GCN
split into the Dynamic Spatial Graph Network (DSGN) and
Dynamic Temporal Graph Network (DTGN) that are con-

trolled by a Gating Network (GaNet) as shown in 1b, F is
set given the model size and is detailed in Section 4.2. The
interpretable information from DST-GCN is located in the
adjacency matrices of the GCNs. In contrast to most GCNs,
we consider learning sample-specific connections in the ad-
jacency matrix has a more meaningful representation and

3235



Table 3. Performance comparison on different architectures using MPJPE for unseen action split from the ExPI dataset.

A8 A9 A10 A11 A12 A13 A14 A15 A16 AVG

Time (ms) 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

LTD [28] - 239 324 394 - - 175 226 259 - - 148 191 220 - - 176 240 286 - - 143 178 192 - - 146 193 226 - - 252 333 387 - - 174 228 264 - - 139 184 217 - - 177 233 272 -
HRI [27] - 195 283 358 - - 121 169 206 - - 92 129 160 - - 129 193 245 - - 80 104 121 - - 112 154 187 - - 157 219 257 - - 134 190 233 - - 96 146 187 - - 124 176 218 -

MSR-GCN [6] - 230 289 335 - - 188 245 290 - - 148 198 248 - - 234 319 384 - - 176 232 278 - - 162 218 266 - - 177 239 295 - - 143 179 213 - - 157 222 281 - - 179 238 288 -
XIA [8] - 191 287 377 - - 118 165 203 - - 91 129 162 - - 122 183 232 - - 81 107 128 - - 106 150 185 - - 156 216 256 - - 126 175 213 - - 96 152 205 - - 121 174 218 -

M16 54 115 170 220 257 55 90 110 128 153 52 104 147 185 219 80 156 213 256 293 65 130 183 226 260 43 88 129 171 212 94 192 282 356 410 63 126 172 210 258 50 98 135 166 203 62 122 171 213 252
M32 50 112 169 219 257 51 86 105 121 145 52 107 151 190 225 77 150 203 243 278 61 123 174 215 246 43 87 129 169 210 87 185 277 354 413 58 120 166 208 252 46 89 120 148 187 58 118 166 207 246

Table 4. (left) (a) Performance comparison between different architectures using MPJPE for the AMASS and 3DPW datasets. (∗) metric
is computed by us using our pipeline and the standard metric. (†) metric takes the average MPJPE over all previous frames. (right) (b)
Comparison summary of average MPJPE (using only 80, 160, 320, 400, and 1000ms), number of parameters and FLOPs.

AMASS-BMLrub 3DPW
Time (ms) 80 160 320 400 560 720 880 1000 80 160 320 400 560 720 880 1000

GAGCN [42]† 10.0 11.9 20.1 24.0 30.4 - - 43.1 8.4 11.9 18.7 23.6 29.1 - - 39.9
HRI [27] 11.3 20.7 35.7 42.0 51.7 58.6 63.4 67.2 12.6 23.1 39.0 45.4 56.0 63.6 69.7 73.7

STS-GCN [34]∗ 11.2 20.6 36.5 43.1 52.5 59.2 64.3 68.7 11.7 20.7 35.0 40.3 48.7 55.0 59.4 62.4
MultiAttention [29] 11.0 20.3 35.0 41.2 50.7 57.4 61.9 65.8 12.4 22.6 38.1 44.4 54.7 62.1 67.9 71.8
MotionMixer [2]∗ 10.1 18.4 32.7 38.9 48.3 55.0 60.4 64.2 10.9 19.4 33.3 39.0 48.4 55.2 60.0 63.6

M16 9.9 18.9 34.1 40.4 50.2 56.9 61.3 64.9 10.6 19.6 33.4 39.0 48.0 54.1 58.8 62.0
M32 9.8 18.6 33.6 39.8 49.2 56.0 60.3 63.6 10.4 19.3 33.2 38.7 47.6 54.0 58.5 61.7

Human3.6M
Model MPJPE Params ≈FLOPs

MultiAttention [29] 50.8 3.42M 142.3M
MSR-GCN [6] 53.3 6.3M 192.4M
STS-GCN [34] 52.8 57.5k 7.1M

MotionMixer [2] 50.5 30.2K 2.1M
DSTD-GCN [7] 50.6 0.18M -

PGBIG [25] 49.8 1.74M 55.8M

M8 50.8 115.6K 19.5M
M16 50.5 164.0K 21.3M
M32 50.2 345.6K 27.5M
M64 49.6 1.048M 49.7M

also helps to interpret graph connections. To do this, we re-
place the adjacency matrix with a Dynamic Adjacency En-
coder (DAE) that provides a feature map of the same size,
described below.

Atrous Pyramid TCN. TCN architecture is widely used
as a decoder for the output sequences [7, 34, 42]. How-
ever, as explained above, we use a larger input dimension
and can increase the complexity of the feature search in the
output sequence. Given the outstanding results obtained by
DeepLabv3+ in image segmentation, we modified the TCN
to be pyramidal and used different dilation rates to later con-
catenate and compress the output, as shown in Fig. 1c.

Context Network. We propose a network to collect
statistics and generate feature importance vectors, detailed
in Fig. 1d. We think every pooling extracts different feature
information, as observed in point clouds [11, 20]. Specifi-
cally, we use 3 different pooling operations for the same in-
put. Conv+BN+PReLU blocks and linear layers are applied
before and after each pooling. Later, every output with size
o ∈ RT is merged in one unique vector with size O ∈ R3T .
Assuming we code the context information, we could ex-
tract two feature importance from this vector for spatial and
temporal domains: displacement and joint features.

Gating Network (GaNet). After obtaining the output
from DSGN and DTGN, we presume that not all feature
maps contribute equally, similar to [42], we weight the fea-
ture maps. But our GaNet blocks generate two vectors W1
and W2 with F length but with a different fusion mode.
GaNet, as shown in Fig. 1e, implements a lightweight ar-
chitecture with the use of separable convolutions that reduce
the number of parameters. Also, the aggregation of statistic
values computed from the same input makes the represen-

tation more meaningful to the weighting vectors.
Dynamic Adjacency Encoder (DAE). This block, as

shown in Fig. 1f, is responsible to compute the adjacency
matrix used in every GCN. This efficient architecture uses
convolutional layers not only to map an input feature map
into a matrix adjacency shape but also to generate this ma-
trix with a lower number of parameters than other GCNs.

4. Experimental Evaluation

4.1. Datasets

Using a unique model to evaluate short- and long-
predictions, same as [27,29], we conducted experiments on
widely used datasets: Human 3.6M [11], AMASS [26], and
3DPW [36]. Additionally, we analyzed multi-pose motion
prediction using the ExPI dataset [8].

Human 3.6M. Consists of 15 different actions per-
formed by 7 different actors per action. Following [27]
and [7], we downsample the frame rate to 25Hz and use 22
joints from the overall subjects 1,6,7,8,9 for training, sub-
ject 11 for validation, and subject 5 for testing.

AMASS. Consists of a gathering of 18 existing datasets.
We perform a frame rate down-sampling to 25Hz as in Hu-
man 3.6M. Then, following [34] and [2], we select 8, 4,
and 1 (BMLrub) datasets for training, validation, and test-
ing respectively. For each body pose, hand joints are dis-
carded and we consider 18 joints for training from the 22
body joints, skipping 5 frames instead of 1.

3DPW. Consists of both indoor and outdoor actions,
containing 51,000 frames captured at 30Hz. Following [34]
and [2], we only use 3DPW to test the generalization of the
models trained on AMASS.

3236



Figure 2. Motion prediction results on “walking” (top) and “eating” (bottom) motion classes from H3.6M dataset. Sorted by the lowest
(left) and the largest errors (right). Solid lines are ground truth. Dashed lines are predictions from the M32 model. Blue color of the poses
represents ground truth while the red color of the poses represents the predicted ones.

ExPI. The recent ExPI dataset contains 115 sequences
of 2 professional couples performing 16 different dance ac-
tions. It is recorded in a multiview motion capture studio at
25 fps. Following [8], The experiments performed include
two persons represented by 18 joints each one in all the 30K
frames. We benchmark in both protocols for common and
unseen action splits using the same settings.

4.2. Experimental results

Metric. The Mean Per Joint Position Error (MPJPE) is
a widely adopted evaluation metric used in previous works
[6, 19, 24] to compare two pose sequences and is described
in Eq. (4). We evaluate our topology defined as M and
the number of channels in the hidden DST-GCN layers for
various experiments, i.e. M8, M16, M32, and M64.

LMPJPE =
1

J × T

T∑
t=1

J∑
j=1

∥x̂j,t − xj,t∥2 (4)

Quantitative results. We first compare our method with
the SOTA approaches on the four datasets. Since we re-
alized that some papers used another metric, which calcu-
lates the mean error across preceding frames with diverse
normalizations, resulting in a lower error compared to the
standard metric. we attempted to reproduce these outcomes
whenever feasible implementations were obtainable. but
our replication efforts relied solely on the standard met-
ric defined in Eq. (4). While running these experiments,
we found other noteworthy peculiarities in the literature:
Firstly, some authors did not use all motion classes for com-
parison. Secondly, some authors sampled 256 samples from
each motion class while others used the complete test sets.
We chose to use the 256-sample variation, as it is more
common in the literature and made more sense for a bal-
anced test set. We present in Tab. 1 our model results com-
pared to the benchmark architectures for H3.6M. Regret-
tably, we did not find an implementation for GAGCN [42].
In general, we observe that more complex actions such as
“Purchase”, “Sitting Down”, “Posing” and “Walking Dog”
yield lower performances for all methods since these “spon-
taneous movements” have large motion variations appear
after the input sequence. Although we outperformed most
of the SOTA models, we also obtained slightly lower but

still comparable performance to MultiAttention and PGBIG
models. But, these models are larger in both the number of
parameters and demanding complexity as detailed in sec-
tion 4.3. The newest MotionMixer [2] architecture obtains
comparable results using only a feature mix while keeping
a lower number of parameters. We also experimented with
OOD samples by introducing 3D transformations and noise
as adversarial examples to evaluate their impact on the mod-
els. Our model demonstrates its robustness on the test set
against random rotation attacks (Fig. 4a) when compared to
other models, and, performs slightly better than other mod-
els, for random noise attacks (depicted in Fig. 4b). This
shows the importance of data augmentation in the overall
robustness of the model against “natural perturbations”.

We also extend our experiments to the AMASS and
3DPW datasets as detailed in Tab. 4a. Our M32 and M16
models outperform previous works and M16 is compara-
ble to MotionMixer. On AMASS, we observe that for some
models, the error is similar for short-term predictions while
differing more for long-term predictions. Interestingly, Mo-
tionMixer reduced significantly the short-term error but the
long-term margin remains similar. We obtain a similar be-
havior to MotionMixer with our two models and assume
that this is because of the nature of AMASS dataset which
contains many complex samples that are not necessarily
cyclic such as “Walking” action from H3.6M. On 3DPW
dataset, we observe that long-term predictions differ more
between models, and still M32 and M16 outperform pre-
vious approaches. We believe that this behavior happens
due to spontaneous movements, even when we find some
“Walking” motion in both datasets. GAGCN is not directly
comparable to the other methods shown in the table.

Finally, we wanted to explore the multi-pose motion
interaction in the new ExPI dataset and how CIST-GCN
may behave in this situation. CIST-GCN was initially de-
signed for single-pose predictions. However, it impres-
sively reaches previous SOTA methods in both short-term
and long-term. In Tabs. 2 and 3, our model outperforms
other approaches by a short margin independent of the pro-
tocol type. But, our model complexity is only 0.76M on
M32 compared to 8.5M from XIA model [8].

Qualitative results. In order to complement the quanti-
tative results, we present in Fig. 2 the results of the M32

3237



Figure 3. t-sne representation of the test set using (a) input poses
(b) all feature importance from the model concatenated. MPJPE
values are represented by scatter size.

Figure 4. Augmentation effect on test set evaluated on our
pipeline. Average MPJPE over the 25 output frames, with (a) ro-
tations between 0-360 degrees, and (b) noise rate between 0.0-0.2.

model for input sequences of the “walking” and “eating”
classes from the H3.6M test set. The plot shows the samples
with the lowest (left) and largest (right) errors with predic-
tions of 80, 160, 320, 400, 560, 720, and 1000 ms. As we
can see, the right side sample (OOD or most difficult case)
is arguably very hard to predict without context knowledge,
for example, “walking and raising your hand after the input
period”. This might even be considered as unexpected be-
havior after the input sequence which is similar to an OOD.

4.3. Computational Complexity

We assess the trade-off between the performance and
the approximated computational cost of SOTA architectures
versus our model across 4 complexity configurations, as
presented in Table 4b. We use the average MPJPE value
as a performance reference next to a number of parameters
and FLOPs approximation. We observe that our architec-
ture has a lower number of parameters compared to most of
the previous works and outperforms other approaches while
being lightweight. However, due to the interpretable fea-
tures implemented in our model, the number of FLOPs in-
creased significantly due to the matrix multiplications and
linear layers. Although M64 obtained the lowest error and
overcomes previous works, it requires a large number of pa-
rameters and sometimes has convergence issues. We believe
that the sum operator in the DST-GCN blocks can some-
times generate overflow or large gradients, making training
unstable. Therefore, we focus on M32 for further analy-
sis because of the accuracy-complexity trade-off. PGBIG
and MotionMixer have the best MPJPE values from the
SOTA models, however, the estimated complexity (FLOPs)
for PGBIG is larger due to it requires a multi-stage architec-

ture with intermediate targets whereas MotionMixer under-
performs in terms of MPJPE by a small margin our model.

4.4. Implementation details

Our model was trained end-to-end and in a fully super-
vised manner using Eq. (4) as the loss function for all the
experiments. We used data augmentation composed of ran-
dom noises, rotations, scales, and translations. Inspired by
scalable modeling, we control the model size by two hyper-
parameters, complexity, and the number of layers. We stack
the DST-GCN module five times for the input but only apply
the DST-GCN module once for the output layer as shown in
Fig. 1a. The complexity was set on 8, 16, 32, and 64 for
simplicity (details in supplementary material and our code).

5. Discussion
In this section, we focus on the M32 model. Additional

details can also be found in the supplementary materials.

5.1. Feature importance vectors

We explore the significance of interpretations learned
from the model by comparing them to another data repre-
sentation, as depicted in Fig. 3. We concatenate all fea-
tures’ importance obtained by every model layer. In con-
trast to the approach in GAGCN [42], where authors com-
puted the average of 16 samples from 4 motion classes and
plotted differences of the blending coefficients, we use the
t-SNE algorithm to visualize the entire test set. This ap-
proach avoids interpretation bias, especially when certain
classes share similar movements, as shown in Fig. 2. In
Fig. 3, only pure 3D euclidean poses and corresponding
feature importance representations are shown (see supple-
mentary material for displacement representations). Our
observation reveals that using pure input poses, as seen in
Fig. 3a, results in a cluster-like distribution visualization
for some motion sequences, while others exhibit less pro-
nounced grouping and higher variance without distinct cen-
troids. In comparison to other representations, Fig. 3b ef-
fectively shows well-grouped motion classes, while also un-
veiling instances of larger MPJPE located away from the
centroids. This experiment found a similar grouping as in
GAGCN [42] for “walking” and “sitting”. A similar inter-
pretation could be seen in other representations using other
grouping strategies. Quantitatively, we measured distances
from points to centroids and found that our data representa-
tion was more accurate. We can also utilize average vectors
for both the temporal and spatial domains to conduct soft
clustering on movements. Also, given our architecture uses
a global residual connection, the model indeed is learning
displacements from the last input. This is particularly use-
ful in inference since movements can be ambiguous some-
times, leading to instances where a sequence may exhibit
a blend of multiple motion actions such as “walking” and

3238



Figure 5. Normalized (0-1) and per-layer average adjacency matrices extracted from the CIST-GCN architecture in the spatial (left) and
temporal (right) domains for (a) walking, and (b) other motion actions. The right parts display changes in the angles of movement.

Figure 6. Normalized (0-1) and per-layer average adjacency ma-
trices for (a) “walkingtogether” and (b) “sitting” motion actions.

“eating”. Then, we could predict the future motion by also
getting an idea about the kind of motion that is observed.

5.2. Feature Maps

After evaluating Fig. 3b, we observe that motion classes
may behave as a mix of at least two motion classes. A
qualitative analysis of the saliency maps shows us the mo-
tion behavior. Consistent with DSTD-GCN [7], the inter-
pretable adjacency matrices are equivalent in some way to
relation matrices. In Fig. 5a, we present the saliency maps,
along with the spatial and temporal matrices, correspond-
ing to walking actions, as well as the associated variations
in movement angles (see supplementary materials for rel-
ative angle computation). We observe that when the in-
put sequence comprises cyclic movements like walking, the
temporal saliency maps (“tsgn-out” for the output) promi-
nently feature values close to 0. On the other hand, the out-
put spatial saliency maps (“dsgn-out”) present lower val-
ues when the right foot starts the cyclic movement before
the left foot, we observe the opposite behavior when these
spatial maps are mostly 1. We have observed that when
the input sequence comprises cyclic movements like walk-
ing, the output temporal saliency maps (“tsgn-out”) promi-
nently feature values close to 0. Conversely, the output spa-
tial saliency maps (dsgn-out) exhibit lower values when the
cyclic movement begins with the right foot before the left.
By contrast, when the left foot begins the movement, the
spatial maps predominantly display values near to 1. To
broaden this analysis to additional motion classes, we ob-
serve in Fig. 5b that similar patterns persist in “tsgn-out”
when the movement is cyclic, however, when the model
predict static motions “tsgn-out” displays a prevalence of
values near 1. Conversely, when we evaluate the averages
of the input saliency maps (“tsgn-in” and “dsgn-in”), the

patterns are faded in the hidden layers, making motion iden-
tification a challenging task. Sometimes, the saliency maps
exhibit inconsistencies for the highest MPJPE values. The
saliency maps should show the relation between frames and
joints, however, it becomes apparent that the precise val-
ues are distributed across consecutive rows and columns.
This phenomenon is evident when we present in Fig. 5 the
saliency label alongside the map’s mean and standard devi-
ation. Similar patterns are observed when input sequences
are rotated or slightly scaled as shown in Fig. 6. Essen-
tially, this shows that the matrices exhibit similarity for sim-
ilar predictions, enabling us to derive comparable interpre-
tations irrespective of the object’s position, orientation, or
scale. Given our model forecasts displacements, the output
layers contain more substantial and visually prominent in-
formation. Additional experiments are necessary to have a
deeper comprehension of which layer(s) within our network
transform input displacements into output displacements.

6. Conclusions and Future Outlook

We have introduced a novel architecture for human mo-
tion prediction using GCNs. The evaluations show that our
approach obtains comparable and/or superior performance
to SOTA models. As observed, our model is a robust ap-
proach not only for motion prediction but also for achieving
a certain interpretability level. We discussed the effects of
data augmentation and OOD data, also showed the robust-
ness of our models against previous works. For future out-
look, we plan to extend our study on adversarial attacks and
OOD to have a deeper understanding of the feature maps
and how the model complexity can be optimized.

Acknowledgement

The research leading to these results is funded by the
German Federal Ministry for Economic Affairs and Climate
Action within the project “ATTENTION – Artificial Intel-
ligence for realtime injury prediction”. The authors would
like to thank the consortium for the successful cooperation.

3239



References
[1] Emre Aksan, Manuel Kaufmann, Peng Cao, and Otmar

Hilliges. A Spatio-temporal Transformer for 3D Human Mo-
tion Prediction. apr 2020. 1

[2] Arij Bouazizi, Adrian Holzbock, Ulrich Kressel, Klaus Di-
etmayer, and Vasileios Belagiannis. MotionMixer: MLP-
based 3D Human Body Pose Forecasting. jul 2022. 2, 4, 5,
6

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-Decoder with Atrous
Separable Convolution for Semantic Image Segmentation.
feb 2018. 3

[4] Hejie Cui, Wei Dai, Yanqiao Zhu, Xiaoxiao Li, Lifang He,
and Carl Yang. Interpretable Graph Neural Networks for
Connectome-Based Brain Disorder Analysis. jun 2022. 1,
3

[5] Enyan Dai and Suhang Wang. Towards Self-Explainable
Graph Neural Network. aug 2021. 3

[6] Lingwei Dang, Yongwei Nie, Chengjiang Long, Qing
Zhang, and Guiqing Li. MSR-GCN: Multi-Scale Residual
Graph Convolution Networks for Human Motion Prediction.
aug 2021. 4, 5, 6

[7] Jiajun Fu, Fuxing Yang, Xiaoli Liu, and Jianqin Yin. Learn-
ing Constrained Dynamic Correlations in Spatiotemporal
Graphs for Motion Prediction. apr 2022. 2, 3, 4, 5, 8

[8] Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, and
Francesc Moreno-Noguer. Multi-Person Extreme Motion
Prediction. may 2021. 2, 4, 5, 6

[9] Xiao Guo and Jongmoo Choi. Human Motion Prediction
via Learning Local Structure Representations and Temporal
Dependencies. feb 2019. 1

[10] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh,
and Yi Chang. GraphLIME: Local Interpretable Model Ex-
planations for Graph Neural Networks. IEEE Transactions
on Knowledge and Data Engineering, pages 1–6, 2022. 3

[11] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6M: Large Scale Datasets and Pre-
dictive Methods for 3D Human Sensing in Natural Environ-
ments. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(7):1325–1339, jul 2014. 2, 5

[12] Anees Kazi, Soroush Farghadani, and Nassir Navab. IA-
GCN: Interpretable Attention based Graph Convolutional
Network for Disease prediction. mar 2021. 1, 3

[13] Anees Kazi, S. Arvind Krishna, Shayan Shekarforoush,
Karsten Kortuem, Shadi Albarqouni, and Nassir Navab. Self-
Attention Equipped Graph Convolutions for Disease Predic-
tion. dec 2018. 3

[14] Chen Li, Zhen Zhang, Wee Sun Lee, and Gim Hee Lee. Con-
volutional Sequence to Sequence Model for Human Dynam-
ics. may 2018. 4

[15] Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang, Yan-
feng Wang, and Qi Tian. Dynamic Multiscale Graph Neural
Networks for 3D Skeleton-Based Human Motion Prediction.
mar 2020. 1

[16] Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang, Yan-
feng Wang, and Qi Tian. Multiscale Spatio-Temporal Graph

Neural Networks for 3D Skeleton-Based Motion Prediction.
IEEE Transactions on Image Processing, 30:7760–7775, aug
2021. 1, 2

[17] Yuan Li, Li Liu, Guoyin Wang, Yong Du, and Penggang
Chen. EGNN: Constructing explainable graph neural net-
works via knowledge distillation. Knowledge-Based Sys-
tems, 241:108345, apr 2022. 3

[18] Lu Liu, Yibo Cao, and Yuhan Dong. Attention-Based Multi-
ple Graph Convolutional Recurrent Network for Traffic Fore-
casting. Sustainability, 15(6):4697, mar 2023. 1

[19] Xiaoli Liu, Jianqin Yin, Jin Liu, Pengxiang Ding, Jun Liu,
and Huaping Liu. TrajectoryCNN: A New Spatio-Temporal
Feature Learning Network for Human Motion Prediction.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 31(6):2133–2146, jun 2021. 2, 4, 6

[20] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-Shape Convolutional Neural Network for
Point Cloud Analysis. apr 2019. 3, 5

[21] Zhenguang Liu, Pengxiang Su, Shuang Wu, Xuanjing Shen,
Haipeng Chen, Yanbin Hao, and Meng Wang. Motion
Prediction using Trajectory Cues. In 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
13279–13288. IEEE, oct 2021. 3

[22] Zhenguang Liu, Shuang Wu, Shuyuan Jin, Shouling Ji, Qi
Liu, Shijian Lu, and Li Cheng. Investigating Pose Represen-
tations and Motion Contexts Modeling for 3D Motion Pre-
diction. dec 2021. 1

[23] Antonio Longa, Steve Azzolin, Gabriele Santin, Giulia
Cencetti, Pietro Liò, Bruno Lepri, and Andrea Passerini. Ex-
plaining the Explainers in Graph Neural Networks: a Com-
parative Study. oct 2022. 3

[24] Kedi Lyu, Haipeng Chen, Zhenguang Liu, Beiqi Zhang, and
Ruili Wang. 3D Human Motion Prediction: A Survey. mar
2022. 1, 2, 6

[25] Tiezheng Ma, Yongwei Nie, Chengjiang Long, Qing Zhang,
and Guiqing Li. Progressively Generating Better Initial
Guesses Towards Next Stages for High-Quality Human Mo-
tion Prediction. mar 2022. 1, 4, 5

[26] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael Black. AMASS: Archive of
Motion Capture As Surface Shapes. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
5441–5450. IEEE, oct 2019. 2, 5

[27] Wei Mao, Miaomiao Liu, and Mathieu Salzmann. History
Repeats Itself: Human Motion Prediction via Motion Atten-
tion. jul 2020. 1, 2, 4, 5

[28] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong
Li. Learning Trajectory Dependencies for Human Motion
Prediction. aug 2019. 1, 2, 4, 5

[29] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hong-
dong Li. Multi-level Motion Attention for Human Mo-
tion Prediction. International Journal of Computer Vision,
129(9):2513–2535, sep 2021. 4, 5

[30] Julieta Martinez, Michael J. Black, and Javier Romero. On
human motion prediction using recurrent neural networks.
may 2017. 1

3240



[31] Felipe Moreno-Vera, Edgar Medina, and Jorge Poco.
WSAM: Visual Explanations from Style Augmentation as
Adversarial Attacker and Their Influence in Image Classi-
fication. In Proceedings of the 18th International Joint Con-
ference on Computer Vision, Imaging and Computer Graph-
ics Theory and Applications, pages 830–837. SCITEPRESS
- Science and Technology Publications, 2023. 1

[32] Jishnu Mukhoti, Joost van Amersfoort, Philip H. S. Torr,
and Yarin Gal. Deep Deterministic Uncertainty for Semantic
Segmentation. oct 2021. 1

[33] Zhenyue Qin, Dongwoo Kim, and Tom Gedeon. Informative
Class Activation Maps. jun 2021. 2

[34] Theodoros Sofianos, Alessio Sampieri, Luca Franco, and
Fabio Galasso. Space-Time-Separable Graph Convolutional
Network for Pose Forecasting. oct 2021. 1, 2, 3, 4, 5

[35] Pengxiang Su, Zhenguang Liu, Shuang Wu, Lei Zhu, Yifang
Yin, and Xuanjing Shen. Motion Prediction via Joint Depen-
dency Modeling in Phase Space. jan 2022. 1, 3

[36] Timo von Marcard, Roberto Henschel, Michael J. Black,
Bodo Rosenhahn, and Gerard Pons-Moll. Recovering Accu-
rate 3D Human Pose in the Wild Using IMUs and a Moving
Camera. pages 614–631. 2018. 2, 5

[37] Hongsong Wang, Jian Dong, Bin Cheng, and Jiashi Feng.
PVRED: A Position-Velocity Recurrent Encoder-Decoder
for Human Motion Prediction. IEEE Transactions on Image
Processing, 30:6096–6106, 2021. 1

[38] Jiaxuan Xie, Yezi Liu, and Yanning Shen. Explaining
Dynamic Graph Neural Networks via Relevance Back-
propagation. jul 2022. 3

[39] Zigeng Yan, Di-Hua Zhai, and Yuanqing Xia. DMS-GCN:
Dynamic Mutiscale Spatiotemporal Graph Convolutional
Networks for Human Motion Prediction. dec 2021. 1, 2

[40] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Ex-
plainability in Graph Neural Networks: A Taxonomic Sur-
vey. dec 2020. 2, 3

[41] Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. A Sur-
vey on Neural Network Interpretability. dec 2020. 1, 2

[42] Chongyang Zhong, Lei Hu, Zihao Zhang, Yongjing Ye, and
Shihong Xia. Spatio-Temporal Gating-Adjacency GCN for
Human Motion Prediction. mar 2022. 1, 2, 3, 5, 6, 7

[43] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning Deep Features for Discrim-
inative Localization. dec 2015. 1, 2

[44] Honghong Zhou, Caili Guo, Hao Zhang, and Yanjun Wang.
Learning Multiscale Correlations for Human Motion Predic-
tion. In 2021 IEEE International Conference on Develop-
ment and Learning (ICDL), pages 1–7. IEEE, aug 2021. 1,
2

3241


