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Abstract

Achieving high accuracy on data from domains un-
seen during training is a fundamental challenge in do-
main generalization (DG). While state-of-the-art (SOTA)
DG classifiers have demonstrated impressive performance
across various tasks, they have shown a bias towards
domain-dependent information, such as image styles, rather
than domain-invariant information, such as image content.
This bias renders them unreliable for deployment in risk-
sensitive scenarios such as autonomous driving where a
misclassification could have catastrophic consequences. To
enable risk-averse predictions from a DG classifier, we pro-
pose a novel inference procedure, Test-Time Neural Style
Smoothing (TT-NSS), that uses a “style-smoothed” version
of the DG classifier for prediction at test time. Specifi-
cally, the style-smoothed classifier classifies a test image
as the most probable class predicted by the DG classifier
on random re-stylizations of the test image. TT-NSS uses
a neural style transfer module to stylize a test image on
the fly, requires only black-box access to the DG classifier,
and crucially, abstains when predictions of the DG classi-
fier on the stylized test images lack consensus. Additionally,
we propose a neural style smoothing (NSS) based training
procedure that can be seamlessly integrated with existing
DG methods. This procedure enhances the prediction con-
sistency of DG classifiers, improving the performance of
TT-NSS on non-abstained samples. Our empirical results
demonstrate the effectiveness of TT-NSS and NSS at pro-
ducing and improving risk-averse predictions on unseen do-
mains from DG classifiers trained with SOTA training meth-
ods on various benchmark datasets and their variations.

1. Introduction
The objective of Domain Generalization (DG) [74] is

to develop models that demonstrate remarkable resilience
to domain shifts during testing, even without prior knowl-
edge of the test domain during training This represents a
challenging problem, as it is impractical to train a model
to be robust to all potential variations that may arise at

test time. For example, previous works [2, 7, 11, 27, 30]
have demonstrated that variations in styles/textures, weather
changes, etc., unseen during training can drastically reduce
the classifier’s performance. Recent works [5, 27, 35, 55]
brought to light the fact that predictions from state-of-
the-art (SOTA) neural networks are biased towards the in-
formation unrelated to the content of the images but are
dependent on the image styles, a characteristic that can
vary across domains. Due to the vast practical implica-
tions of this problem many works have studied this prob-
lem both analytically [8–10, 41, 51, 52, 61, 83] and empiri-
cally [1,24,28,53,58,77,84]. However, in scenarios such as
in autonomous driving, medical diagnoses, or rescue oper-
ations involving drones, where misclassifications can have
severe consequences, it becomes essential to augment clas-
sifiers with abstaining mechanisms or involve humans in the
decision-making process [19, 60]. Thus, in this work, we
focus on the problem of image classification under distribu-
tion shifts which consider differences in image styles.

To safeguard the classifier against risky misclassification
(and enable risk-averse predictions) we augment the classi-
fier with a capability to defer making predictiions on sam-
ples when it lacks confidence. However, since the softmax
score of the classifier is known to be uncalibrated [29,32,34]
on data from unseen domains, we propose a novel test-
time method that uses neural style information to estimate
classifier’s confidence in its prediction under style changes.
Our inference procedure, Test-Time Neural Style Smooth-
ing (TT-NSS), depicted in Fig. 1, first transforms a clas-
sifier (base classifier) into a style-smoothed classifier and
then uses it to either predict the label of an incoming test
sample or abstain on it. Specifically, the prediction of the
style smoothed classifier, ψ, constructed from a base classi-
fier f , on a test input x is defined as the class that the base
classifier f predicts most frequently on stylized versions of
the input. TT-NSS uses a style transfer network based on
AdaIN [36] to produce stylized versions of the test input in
real time. While AdaIN can transform the style of x to any
arbitrary style, we specifically transform it into the style of
the data from the domains used for training. This choice is
based on the assumption that f can be made agnostic to the
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Figure 1. Overview of our Test-Time Neural Style Smoothing (TT-NSS) inference procedure for obtaining risk-averse predictions. TT-NSS
works by stylizing a test sample into source domain styles and classifies the sample as the most probable class assigned by the base DG
classifier to the stylized samples, if that class is much more likely than the other classes. Otherwise, it abstains from making a prediction
and refers the sample to an expert thereby avoiding a risky misclassification.

styles of the data from domains used for training. Moreover,
changing the styles of x to arbitrary styles, unknown to f ,
can worsen the classifier’s performance due to a widened
distribution shift.

TT-NSS can be used to evaluate any DG classifier with
only black-box access to it, i.e., it does not require the
knowledge of weights, architecture, or training procedure
used to train the classifier and only needs its predictions on
stylized test samples. However, computing the prediction of
a style-smoothed classifier requires computing the probabil-
ity with which the base classifier classifies the stylized im-
ages of x. Following works in Randomized Smoothing [18],
we propose a Monte Carlo algorithm to estimate this proba-
bility. When this estimated probability exceeds a set thresh-
old it implies that the predictions of the classifier f on styl-
ized images of x achieve a desired level of consensus and
the prediction is reliable. In other cases, TT-NSS abstains
due to a lack of consensus among the predictions of the base
DG classifier. Recently, test-time adaptation [39, 82] (TTA)
approaches have been shown to be effective in the DG setup
which adapts some or all parameters of the classifier using
multiple incoming data samples from the unseen domains.
However, our work differs significantly from these since we
consider a black-box setting where parameters of the classi-
fier are not accessible at test time. This makes our approach
much more practically useful compared to TTA approaches.

To improve the consistency of the predictions of the DG
classifier on stylized images, we propose a novel training
procedure based on neural style smoothing (NSS). The im-
proved consistency leads to improved performance of the
DG classifier on non-abstained samples at lower abstaining
rates making them more reliable. Our training method cre-
ates a style-smoothed version of the soft base DG classifier
and uses stylized versions of the source domain data (gen-

erated by stylizing the source domain images into random
styles of other source domain images) to train the base DG
classifier. Similar to previous works [40, 64, 65], we incor-
porate consistency regularization during training to further
boost the performance of the classifier on non-abstained
samples at various abstaining rates. Similar to TT-NSS,
our NSS-based training losses can be combined with any
training method and can improve the reliability of the clas-
sifier’s predictions without significantly degrading their ac-
curacy or requiring access to auxiliary data from unseen do-
mains [16, 33]. We present results of using our inference
and training procedures on PACS [47], VLCS [22], Office-
Home [71] and their variations generated by applying style
changes and common corruptions, in both single and multi-
ple source domain settings. Our results show the effective-
ness of our proposed methods at enabling and improving
risk-averse predictions from classifiers trained with SOTA
DG methods on data from unseen domains. Our main con-
tributions are summarized below:

• We focus on the problem of obtaining risk-averse pre-
dictions in a DG setup with black-box access to the
classifier. We propose an efficient inference proce-
dure relying on AdaIN-based style transfer and a style-
smoothed classifier for classification and abstaining.

• To improve the quality of risk-averse predictions, we
propose losses that enforce prediction consistency on
the random stylization of the source data and can be
seamlessly combined with losses of any DG method.

• We demonstrate the effectiveness of our inference and
training methods on benchmark datasets and their vari-
ations generated by stylizing and using corruptions.
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2. Related work
Domain generalization: The goal of domain general-

ization (DG) is to produce classifiers whose accuracy re-
mains high when faced with data from domains unseen dur-
ing training. Many works have proposed to address this
problem by capturing invariances in the data by learning
a representation space that reduces the divergence between
multiple source domains thereby promoting the use of only
domain invariant features for prediction [1,24,28,58,77,84].
Another line of work learns to disentangle the style and
content information from the source domains and trains the
classifier to be agnostic to the styles of the source domains
[3,20,54,80]. Yet another line of research focuses on diver-
sifying the source domain data to encompass possible varia-
tions that may be encountered at test time [12,34,44,65,73].
Unlike previous works which focus on improving classifier
accuracy on unseen domains, we focus on making DG risk-
averse on data from unseen domains.

Certified robustness via randomized smoothing:
Many works have demonstrated the failure of SOTA ma-
chine learning classifiers on adversarial examples [14, 15,
38, 67, 76]. In response, many works proposed to provide
empirical [4] and provable [18, 45, 46, 59, 79] robustness
to these examples. Among them, Randomized Smooth-
ing (RS) [18, 45, 46] is a popular method which considers
a smoothed version of the original classifier and certifies
that no adversarial perturbation exists within a certified ra-
dius (in ℓ2 norm) around a test sample that can change the
prediction of the classifier. RS uses Gaussian noise to pro-
duce a smoothed version of the base classifier and classi-
fies a test sample to be the class most likely to be predicted
by the base classifier on Gaussian perturbations of the test
sample. While RS was proposed to certify the robustness to
additive noise, the idea has been extended to certify robust-
ness to parameterized transformations of the data such as
geometric transformation [23, 48] where the noise is added
to the parameters of the transformations. Our neural style
smoothing procedure is similar to RS with crucial differ-
ences. Firstly, we use neural styles for smoothing (which
cannot be parameterized) instead of adding Gaussian noise
to the input or parameters of specific transformations. Sec-
ondly, our goal is not to provide certified robustness guaran-
tees against style changes but to provide a practical method
to produce reliable predictions on test samples and an ab-
staining mechanism to curb incorrect predictions.

Neural style transfer: Following [25], which demon-
strated the effectiveness of using the convolutional layers
of a convolutional neural network for style transfer, sev-
eral ways have been proposed to improve style transfer
[21, 26, 42, 69, 70, 75]. AdaIN [36] is a popular approach
that allows style transfer by changing only the mean and
variance of the convolutional feature maps. Other ways of
generating stylized images include mixing [88] or exchang-

ing [68, 85] styles, or using adversarial learning [62, 87].
Test-time adaptation (TTA): Recent works have

demonstrated the effectiveness of using TTA for improv-
ing generalization to unseen domains, where the classifier
is updated partially or fully using incoming batches of test
samples [66, 72, 82]. This approach has also been shown to
be effective in the DG setup [39]. Our approach is different
from these methods since we do not assume access to the
parameters of the DG classifier or assume that data from
unseen domains arrive in batches.

Classification with abstaining: A learning framework
allowing a classifier to abstain on samples has been studied
extensively [6,13,17,19,56]. Two main approaches in these
works include a confidence-based rejection where the clas-
sifier’s confidence is used to abstain based on a predefined
threshold and a classifier-rejector approach where the clas-
sifier and rejector are trained together. Our work is closer to
the former since we do not train a rejector and abstain when
the top class is not much more likely than other classes.

3. Neural style smoothing
3.1. Background

Domain Generalization (DG) setup: Given data sam-
ples Di

source = {(xij , yij)}N
i

j=1, with N i samples, from NS

source domains each following a distribution P i
S(X,Y ),

the goal of DG is to learn a classifier f(X) whose per-
formance does not degrade on a sample from an unseen
test domain with distribution PT (X,Y ) ̸= P i

S(X,Y ), for
all i ∈ {1, · · · , NS}. Depending on the number of source
domains available during training the setup can be termed
as single or multi-domain. The lack of information about
the target domain makes the problem setup challenging
and many previous works have proposed training methods
focusing on capturing domain invariant information from
source domain data to improve performance on unseen do-
mains at test time. In the multi-domain setup, learning a
classifier by minimizing its empirical risk on all available
source domains achieves competitive performance on vari-
ous benchmark datasets [28].

Neural style transfer with AdaIN [36]: Given a con-
tent image, xc and a style image xs, AdaIN generates an
image having the content of xc and style of xs. AdaIN
works by first extracting the intermediate features (output of
block4 conv1) of the style and content image by pass-
ing them through a VGG-19 [63] encoder, g, pretrained on
Imagenet. Using these features AdaIN aligns the mean (µ)
and variance (σ) of the two feature maps using

t = AdaIN(g(xc), g(xs))

= σ(g(xs))

(
g(xc)− µ(g(xc))

σ(g(xc))

)
+ µ(g(xs)).

(1)

A decoder, h, is then used to map the AdaIN-generated
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feature back to the input space to produce a stylized im-
age xstylized = h(t). We follow the design of the de-
coder as proposed in [36] and train the decoder to minimize
the content loss between the features of the stylized image,
g(xstylized) and the AdaIN transformed features of the con-
tent image, i.e.

Lcontent = ∥g(xstylized)− t∥22, (2)

along with a style loss that measures the distance between
the feature statistics of the style and the stylized image using
L layers of the pretrained VGG-19 network, ϕ. In particu-
lar, the style loss is computed as

Lstyle =

L∑
i=1

∥µ(ϕi(xs))− µ(ϕi(xstylized)∥22

+

L∑
i=1

∥σ(ϕi(xs))− σ(ϕi(xstylized)∥22.

(3)

We measure the style loss, using block1 conv1,
block2 conv1, block3 conv1, and
block5 conv1 layers of the VGG-19 network. We
pre-train the decoder with MS-COCO [49] images as
content and Wikiart [57] images as style.

3.2. Neural style smoothing-based inference

Consider a classification problem from Rd to the label
space Y . Neural style smoothing produces an output, for a
test image x, that a base DG classifier, f : Rd → Y is most
likely to return when x is stylized into the style of the source
domain data, i.e., the data used for training f . Formally,
given a base DG classifier f , we construct a style-smoothed
classifier ψ : Rd → Y , whose prediction on a test image
x is the most probable output of f on x converted into the
style of the source domain data, i.e.,

ψ(x) := argmax
y∈Y

P(f(h(t)) = y), (4)

where t = AdaIN(g(x), g(xs)), xs ∼ PS , and PS is the
distribution of the source domain. When data from multiple
source domains are available we combine the data from all
the domains and use the combined data as source domain
data. If the base DG classifier, f , correctly classifies the
test image x when stylized into the styles of the source do-
main, then the style-smoothed classifier also correctly clas-
sifies that sample. However, computing the actual predic-
tion of the style-smoothed classifier requires computing the
exact probabilities with which the base DG classifier classi-
fies the stylized test samples into each class. Thus, follow-
ing [18], we propose a Monte Carlo algorithm to estimate
these probabilities and the prediction of the style-smoothed
classifier. The first step in estimating the prediction of the
style-smoothed classifier on a test image x is to generate

Algorithm 1 Test-Time Neural Style Smoothing (TT-NSS)
Input: Test image x, base DG classifier f , VGG-19 en-
coder g, AdaIN decoder h, number of source style images
n, Dstyles = {xis}ni=1, threshold α.
Output: Prediction for x or ABSTAIN.

Initialize class-wise counts class counts to zeros

# Generate n stylized images from x using Dstyles

for i = 1, · · · , n do
t = AdaIN(g(x), g(xis))
xstylized = h(t)
prediction = f(xstylized)
class counts[prediction]+ = 1

end for

# Get the top predicted class on stylized images
cmax = index of class counts with highest count
nmax = class counts[cmax]

# Predict or ABSTAIN
if nmax

n < α then
return ABSTAIN

else
return cmax

end if

stylized versions of the image using the styles from the
source domain. To achieve the style conversion in real-time,
we use the AdaIN framework described previously with the
content image as the test image x and n randomly chosen
images from the dataset used for training the DG classifier
as style images. The style transfer network then transforms
x into n stylized images, each having the style of the source
domain data, as illustrated in Fig. 1. The stylized images
are then passed through the f and the class that is predicted
the most often (majority class) is returned as the prediction
of the test image. This procedure of Test-Time Neural Style
Smoothing (TT-NSS) is detailed in Alg. 1.

To ascertain that the prediction returned by TT-NSS is
reliable, we estimate the confidence of the style-smoothed
classifier in its prediction. In particular, we compute the
proportion of the re-stylized test images that are classified
as a particular class by the base DG classifier and obtain
the counts of how often each class is predicted. Based on
these counts, we compute the class that has the highest oc-
currence and if the proportion of the highest class exceeds a
threshold α, TT-NSS classifies the test image as this class.
However, if the proportion remains less than the threshold,
then TT-NSS abstains due to a lack of consensus among the
predictions. The abstained samples can then be sent for fur-
ther processing to experts and save the system from return-
ing a potentially incorrect prediction. A high value of α in
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TT-NSS improves the accuracy on non-abstained samples
but it also increases the number of abstained samples. On
the other hand, a low value of α leads to decreased abstain-
ing with an increased chance that the DG classifier may not
be confident in its prediction, leading to a risky misclassifi-
cation. In our empirical analysis in Sec. 4, we use various
values of α ranging from 0 to 1 and show how the accuracy
on non-abstained samples and the proportion of abstained
samples change as the value of α is varied.

3.3. Neural style smoothing-based training

The performance of our inference procedure, TT-NSS,
relies on the assumption that the base classifier, f , can clas-
sify the test image stylized into the source domain styles
correctly and consistently. This requires that the base classi-
fier be accurate on the images generated by the decoder used
in the AdaIN-based neural style transfer network. How-
ever, our empirical evaluation of using TT-NSS on clas-
sifiers trained with existing DG methods on benchmark
datasets shows a relatively low accuracy on non-abstained
samples at smaller abstaining rates. This suggests that the
base classifier cannot accurately classify the stylized images
generated through the AdaIN decoder. Thus, we propose
a new training procedure based on neural style smoothing
(NSS) that enables consistent and accurate predictions from
the classifiers when evaluated using TT-NSS. The proposed
loss functions can be combined with any DG training al-
gorithm and can be used to improve the reliability of the
predictions from classifiers when evaluated with TT-NSS.
To achieve this, we propose to augment the losses of an ex-
isting DG method with two additional loss functions. The
first loss penalizes misclassification of the stylized images
w.r.t. the label of the content image i.e., given a sample
(x, y) ∼ Dsource, the stylized misclassification loss is

Lstylized aug = Exs∼PS
[ℓ(f(h(t)), y)], (5)

where t = AdaIN(g(x), g(xs)) and ℓ is the cross entropy
loss. Specifically, we first stylize a sample x from the source
domain using multiple randomly sampled style images from
the source domain and then penalize the misclassification
loss of the classifier f on these stylized images. For a sin-
gle source domain problem, even though all images from
a domain may be considered as being in the same broad
set of styles such as Art or Photos, individually the images
have different non-semantic information such as textures,
colors, patterns, etc., and thus stylizing an image into the
styles of other source domain images is still effective and
meaningful. The second loss which helps improve the trust-
worthiness of the predictions enforces consistency among
the predictions of the stylized versions of the content im-
age, generated using AdaIN. Previous works [40,64,65,86],
have also demonstrated the effectiveness of enforcing con-
sistency among the predictions of the classifier to be helpful

in various setups such as semi-supervised learning and ran-
domized smoothing. To define the style consistency loss,
let (x, y) ∼ Dsource, F : Rd → ∆K−1 be the softmax
output of the classifier such that the prediction of the base
classifier f(x) = argmaxk∈Y F (x), ∆K−1 be the prob-
ability simplex in RK , F (x) = Exs∼PS

[F (h(t))] with
t = AdaIN(g(x), g(xs)) be the average softmax output
of the classifier on stylized images, KL(·∥·) be the Kull-
back–Leibler divergence (KLD) [43] and H(·) be the en-
tropy. Then the style consistency loss is given by

Lconsistency = Exs∼PS
[KL(F (x)∥F (h(t)))]

+ H(F (x), y).
(6)

In practice, we minimize the empirical version of the two
losses using multiple-style images sampled randomly from
the available source domain data. The trained classifier can
then be evaluated using TT-NSS as in Alg. 1 to gauge the
reliability of their predictions on unseen domains.

4. Experiments
In this section, we present the evaluation results of using

our inference and training procedures for obtaining and
improving the risk-averse predictions from DG classifiers.
We present evaluations and comparisons with three popular
DG methods, namely Empirical Risk Minimization (ERM),
Style Agnostic Networks (SagNet), [55] and networks
trained with Representation Self-Challenging (RSC) [37].
Our evaluation includes three popular benchmark datasets,
namely PACS [47], VLCS [22] and OfficeHome [71],
all of which contain four domains (see Appendix B). We
also create and present evaluations on variations of these
datasets generated by stylizing the images into the styles
of Wikiart [57] and changing styles based on changes
in weather, lighting, blurring, and addition of noise by
using common corruptions [31] including {frost,
fog, brightness, contrast, gaussian
blur, defocus blur, zoom blur, gaussian
noise, shot noise, impulse noise}. These
variations allow us to evaluate the performance of DG clas-
sifiers on realistic changes that do not affect the semantic
content of the images. To generate images from benchmark
datasets stylized into the style of Wikiart, we use an AdaIN
decoder pre-trained using images from MS-COCO [49]
as content images and images from Wikiart [57] as style
images. To create corrupted versions, we follow [31] and
use corruption with severity levels 3 and 5. For reporting
results over corrupted versions we use a subsample of the
test set described in App. B.2 whereas for original and
wikiart styles we report results on the entire test set.

Following previous works [28], we used ResNet50 pre-
trained on the ImageNet dataset as our backbone network
augmented with a fully connected layer with softmax acti-
vation. We use this network for training ERM and neural
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(a) Original style
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(b) Wikiart style
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(c) Severity 5 corruptions

Figure 2. Comparison of TT-NSS (solid lines) and confidence-based abstaining method (dashed lines) at producing risk-averse predictions
in a single source domain setup on classifiers trained with SOTA DG methods. The graphs show accuracy vs. abstained points on
different variants of the PACS dataset ((a) original, (b) wikiart, (c) corrupted). In most domains, the accuracy of TT-NSS is higher than the
corresponding accuracy of the confidence-based method for most of the range of the percentage of abstained samples demonstrating the
superiority of TT-NSS at producing risk-averse predictions. (Note: The source domain from PACS used for training is denoted in the title.)

style smoothing (combined with ERM as the DG method).
For other baselines, we train the classifiers using the source
codes from the official repositories of RSC [37] and Sag-
Net [55]. For all experiments in the single source domain
setup, we train the classifiers with a single source domain
and evaluate the performance of the remaining three do-
mains. For multi-domain setup, we train the classifiers with
three domains and test on the fourth unseen domain.

We compare the performance of TT-NSS1 (Alg. 1) with
an abstaining mechanism that uses the classifier’s max con-
fidence on the original test sample for abstaining. In this
method, we abstain if the highest softmax score for a sam-
ple is below a set threshold. We note that, compared to
TT-NSS, which only requires prediction of the classifier on
a sample the confidence-based mechanism additionally re-
quires the classifier’s confidence in the prediction and hence
has access to more information than that available to TT-
NSS, making TT-NSS more practically viable. For TT-NSS
we use 10 randomly sampled style images (n = 10) for the
single source domain setup and 15 for the multiple source
domain setup (see App. A.3). We present the accuracy of
the DG classifier on non-abstained samples as a function of
the proportion of abstained samples and the area under this
curve (AUC) to demonstrate the effectiveness of TT-NSS
(Alg. 1) and the confidence-based abstaining mechanism for
producing risk-averse predictions. Higher AUC indicates
that the accuracy of the DG classifier at different abstain-
ing rates remains high. This suggests that if the inference
procedure does not abstain, the prediction is more likely to

1The code is available at https : / / github . com /
akshaymehra24/RiskAverseDG

be correct. We present additional experimental results in
App. A and dataset/implementation details in App. B.

4.1. TT-NSS improves the reliability of the predic-
tions from existing DG classifiers

In this section, we demonstrate the effectiveness of
TT-NSS at producing reliable predictions from classifiers
trained with ERM, RSC, and SagNet when evaluated on
domains unseen during training. The results in Fig. 2 and
Figs. 6, 7 (in the Appendix) show the advantage of using the
style-smoothed classifier over the confidence of the origi-
nal classifier for producing risk-averse predictions on test
samples from PACS and VLCS datasets in both single and
multiple source domain setting. This superiority of TT-NSS
is also evident from the results in Tables 3, 4, 5, and 6 (in
the Appendix) which show the area under the curve for ac-
curacy versus percentage of abstained samples for different
settings. The high accuracy of the classifiers with TT-NSS
at the same abstaining rates compared to the confidence-
based strategy shows the advantage of TT-NSS in produc-
ing better risk-averse predictions. This advantage of TT-
NSS becomes more apparent on stylized and corrupted vari-
ants of the PACS dataset where the standard accuracy of
the classifier drops significantly and necessitates abstaining,
for safeguarding against risky misclassifications. The clas-
sifier’s high confidence incorrect predictions on unseen do-
mains is the primary reason the confidence-based strategy is
inferior at producing risk-averse predictions. This is in line
with the findings from previous works which have shown
that a classifier can produce high-confidence misclassifica-
tion on samples from unseen domains [29,32,50,78,81]. On
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Table 1. Effectiveness of NSS at producing a better AUC score compared to classifiers trained with ERM in a single source domain setting
on PACS, VLCS, and OfficeHome datasets and their variations when evaluated with TT-NSS. The source domain used for training is
denoted in the columns. (In all tables, the best result is marked in bold if the difference compared to the second best is at least 0.01.)

PACS VLCS OfficeHome
Dataset Variation Alg. A C P S C L S V A C P R

Original Style ERM 0.875 0.878 0.662 0.702 0.567 0.724 0.851 0.751 0.689 0.553 0.549 0.685
NSS 0.884 0.911 0.694 0.745 0.619 0.685 0.853 0.796 0.727 0.683 0.675 0.767

Wikiart Style ERM 0.854 0.816 0.643 0.626 0.477 0.682 0.785 0.704 0.552 0.344 0.321 0.5
NSS 0.855 0.888 0.71 0.706 0.528 0.673 0.845 0.788 0.696 0.643 0.625 0.725

Corrupted with severity 3 ERM 0.886 0.812 0.622 0.545 0.468 0.551 0.689 0.471 0.573 0.358 0.312 0.54
NSS 0.901 0.853 0.717 0.683 0.573 0.686 0.775 0.608 0.625 0.576 0.56 0.67

Corrupted with severity 5 ERM 0.834 0.708 0.519 0.468 0.411 0.439 0.567 0.415 0.445 0.235 0.196 0.383
NSS 0.871 0.792 0.682 0.606 0.512 0.61 0.722 0.537 0.545 0.478 0.466 0.565

the other hand, using the confidence of the style-smoothed
classifier, by stylizing the test sample into source domain
styles, can mitigate the classifier’s bias to non-semantic in-
formation in the test samples and produce better quality pre-
dictions even without abstaining. This is evident from Fig. 2
and Figs. 6, 7 (in the Appendix) where TT-NSS (solid lines)
achieve higher accuracy even at an abstaining rate of 0%.

Another crucial insight obtained from our evaluation on
variations of benchmark datasets created by style changes is
the significant decrease in the performance of the DG clas-
sifiers compared to the evaluation on original styles of the
benchmark datasets both with confidence-based abstaining
and TT-NSS. This suggests that classifiers trained with ex-
isting DG methods are susceptible to non-semantic varia-
tions in the data and improving the performance on these
benchmark datasets while important may not be enough to
achieve the goal of DG. However, while data augmentation
and style diversification methods have been shown to be ef-
fective at improving the performance of DG methods on po-
tential variations, it is not practical to train classifiers to be
robust to all possible variations. Due to this limitation, im-
proving the test time methods which either adapt the classi-
fier to unseen domains or abstain from making predictions
such as TT-NSS by explicitly transforming the test sample
into known styles is essential for DG.

4.2. Effectiveness of NSS at improving risk-averse
predictions from DG classifiers

Here we demonstrate the advantage of using the NSS
training procedure for improving the reliability of the clas-
sifier’s predictions. Specifically, we use the NSS losses
with that of the ERM-based DG method and minimize the
misclassification loss on source domain samples along with
minimizing the style misclassification and style consistency
losses. For training, NSS with ERM we used four randomly
sampled style images to compute the style smoothed losses
in our experiments since we did not observe any significant
performance difference with using more images. The use
of a small number of style-transformed images during NSS

training allows us to train DG classifiers without signifi-
cantly increasing the computational cost compared to that
of training with ERM. The stylized images were generated
by using the AdaIN-based decoder pre-trained using data
from MS-COCO [49] as content and Wikiart as style. Our
results in Table 1 and Table 7 (in the Appendix) show that
classifiers trained with NSS achieve a significantly better
area under the curve compared to classifiers trained with
ERM on PACS, VLCS and OfficeHome datasets in both
single and multiple source domain settings. The improve-
ments in AUC become more evident on variations of these
datasets generated by changing to Wikiart style or using
common corruptions. This boost in the AUC is attributed to
the style randomization and consistency losses used during
NSS training that act as regularizers and prevent the classi-
fiers from overfitting to specific image styles.

Results in Fig. 3 and Figs. 8, 9, 10 (in the Appendix)
show that classifiers trained with NSS, when evaluated with
TT-NSS, achieve better accuracy on non-abstained samples
for different abstaining rates and in most cases achieve com-
petitive performance with classifiers trained with RSC and
SagNet. While in our work we used NSS with ERM, it can
be combined with any other DG method such as RSC or
SagNet to improve their accuracy on non-abstained samples
at different abstaining rates. Moreover, training the classi-
fiers with NSS improves the performance of the confidence-
based abstaining mechanism as shown in Tables 8 and 9 (in
the Appendix) but even then TT-NSS remains superior in
case of severe shifts (such as severity 5 corruptions).

4.3. Predictions on abstained samples

Here we evaluate the effectiveness of TT-NSS in cor-
rectly abstaining on samples that could lead to misclassi-
fications. We show this by showing the accuracy of the DG
classifier on the test samples that were abstained. Results
in Fig. 4 show that using a small value of the threshold α
where TT-NSS abstains on few samples, the accuracy on ab-
stained samples is significantly lower for classifiers trained
with ERM and NSS in both single and multiple source do-
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(b) Wikiart style
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(c) Severity 5 corruptions

Figure 3. Effectiveness of using NSS (with ERM) (solid lines) at producing better risk-averse predictions when evaluated with TT-NSS
in comparison to that of other DG methods (dashed lines) in a single domain setup. NSS-trained classifiers achieve significantly better
accuracy on non-abstained samples compared to classifiers trained with ERM and achieve competitive performance to classifiers trained
with RSC and SagNet at different abstaining rates on variants of the PACS dataset. (See Fig. 2 for the explanation of the setting.)

0 20 40 60 80 1000

20

40

60

80

100

Percentage of abstained samples (%)

Ac
cu

ra
cy

 (
%

)

(a) ERM (SD)

0 20 40 60 80 1000

20

40

60

80

100

Percentage of abstained samples (%)

Ac
cu

ra
cy

 (
%

)

(b) NSS (SD)

0 20 40 60 80 1000

20

40

60

80

100

Percentage of abstained samples (%)

Ac
cu

ra
cy

 (
%

)

(c) ERM (MD)

0 20 40 60 80 1000

20

40

60

80

100

Percentage of abstained samples (%)

Ac
cu

ra
cy

 (
%

)

(d) NSS (MD)

Figure 4. Accuracy on samples abstained from a prediction by TT-
NSS in single (SD) (a, b) and multiple (MD) (c,d) domain settings
on the PACS dataset. (Test domains are denoted in the legend.)

main settings on the PACS dataset (original style). This
is in comparison to the standard accuracy of the classifier
(recovered at 100% abstaining rate). The low accuracy on
abstained samples suggests that TT-NSS correctly refrains
from making predictions on ambiguous samples. Moreover,
the accuracy on abstained samples decreases for most test

domains for classifiers trained with NSS compared to clas-
sifiers trained with ERM, suggesting that NSS improves the
ability of TT-NSS to identify risky samples.

5. Discussion and conclusion

In this work, we proposed to incorporate an abstaining
mechanism for DG classifiers based on NSS, for obtaining
risk-averse predictions on unseen domains with only access
to the classifier’s prediction. Using advances in neural style
transfer, our inference procedure computes the prediction
consistency of the DG classifier on stylized test images and
decides whether to predict or abstain on the test sample. To
improve the reliability of a classifier’s prediction at different
abstaining rates we further proposed a training procedure
based on NSS and demonstrated its effectiveness on vari-
ous benchmark datasets and their variations. We note that
while NSS is effective at gauging the reliability of a classi-
fier’s prediction on test samples, ascertaining the robustness
of this prediction to arbitrary style changes is an important
open problem and is left for future work.
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Manuel Wüthrich, Vaibhav Agrawal, Ole Winther, Stefan
Bauer, and Bernhard Schölkopf. On the transfer of disen-
tangled representations in realistic settings. arXiv preprint
arXiv:2010.14407, 2020. 3

[21] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kud-
lur. A learned representation for artistic style. arXiv preprint
arXiv:1610.07629, 2016. 3

[22] Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased met-
ric learning: On the utilization of multiple datasets and web
images for softening bias. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1657–1664,
2013. 2, 5, 14

[23] Marc Fischer, Maximilian Baader, and Martin Vechev. Cer-
tified defense to image transformations via randomized
smoothing. Advances in Neural Information Processing Sys-
tems, 33:8404–8417, 2020. 3

[24] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The journal of machine learning
research, 17(1):2096–2030, 2016. 1, 3

[25] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2414–2423, 2016. 3

[26] Leon A Gatys, Alexander S Ecker, Matthias Bethge, Aaron
Hertzmann, and Eli Shechtman. Controlling perceptual fac-
tors in neural style transfer. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
3985–3993, 2017. 3

[27] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. arXiv preprint
arXiv:1811.12231, 2018. 1

[28] Ishaan Gulrajani and David Lopez-Paz. In search of lost
domain generalization. arXiv preprint arXiv:2007.01434,
2020. 1, 3, 5

3808



[29] Matthias Hein, Maksym Andriushchenko, and Julian Bitter-
wolf. Why relu networks yield high-confidence predictions
far away from the training data and how to mitigate the prob-
lem. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 41–50, 2019. 1,
6

[30] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. arXiv preprint arXiv:1903.12261, 2019. 1

[31] Dan Hendrycks and Thomas G Dietterich. Benchmarking
neural network robustness to common corruptions and sur-
face variations. arXiv preprint arXiv:1807.01697, 2018. 5

[32] Dan Hendrycks and Kevin Gimpel. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. arXiv preprint arXiv:1610.02136, 2016. 1, 6

[33] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich.
Deep anomaly detection with outlier exposure. arXiv
preprint arXiv:1812.04606, 2018. 2

[34] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph,
Justin Gilmer, and Balaji Lakshminarayanan. Augmix: A
simple data processing method to improve robustness and
uncertainty. arXiv preprint arXiv:1912.02781, 2019. 1, 3

[35] Katherine Hermann, Ting Chen, and Simon Kornblith. The
origins and prevalence of texture bias in convolutional neu-
ral networks. Advances in Neural Information Processing
Systems, 33:19000–19015, 2020. 1

[36] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE international conference on computer vi-
sion, pages 1501–1510, 2017. 1, 3, 4

[37] Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang.
Self-challenging improves cross-domain generalization. In
European Conference on Computer Vision, pages 124–140.
Springer, 2020. 5, 6, 14

[38] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy
Lin. Black-box adversarial attacks with limited queries and
information. In International Conference on Machine Learn-
ing, pages 2137–2146. PMLR, 2018. 3

[39] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier
adjustment module for model-agnostic domain generaliza-
tion. Advances in Neural Information Processing Systems,
34:2427–2440, 2021. 2, 3

[40] Jongheon Jeong and Jinwoo Shin. Consistency reg-
ularization for certified robustness of smoothed classi-
fiers. Advances in Neural Information Processing Systems,
33:10558–10570, 2020. 2, 5

[41] Fredrik D Johansson, David Sontag, and Rajesh Ranganath.
Support and invertibility in domain-invariant representa-
tions. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 527–536. PMLR, 2019. 1

[42] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016. 3

[43] James M Joyce. Kullback-leibler divergence. In Interna-
tional encyclopedia of statistical science, pages 720–722.
Springer, 2011. 5

[44] Klim Kireev, Maksym Andriushchenko, and Nicolas Flam-
marion. On the effectiveness of adversarial training against
common corruptions. arXiv preprint arXiv:2103.02325,
2021. 3

[45] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu,
Daniel Hsu, and Suman Jana. Certified robustness to ad-
versarial examples with differential privacy. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 656–672.
IEEE, 2019. 3

[46] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin.
Second-order adversarial attack and certifiable robustness. .,
2018. 3

[47] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In Proceedings of the IEEE international conference on
computer vision, pages 5542–5550, 2017. 2, 5, 14

[48] Linyi Li, Maurice Weber, Xiaojun Xu, Luka Rimanic,
Bhavya Kailkhura, Tao Xie, Ce Zhang, and Bo Li. Tss:
Transformation-specific smoothing for robustness certifica-
tion. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, pages 535–557,
2021. 3

[49] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 4, 5, 7

[50] Ankur Mallick, Chaitanya Dwivedi, Bhavya Kailkhura,
Gauri Joshi, and T Han. Probabilistic neighbourhood com-
ponent analysis: sample efficient uncertainty estimation in
deep learning. arXiv preprint arXiv:2007.10800, 2020. 6

[51] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh.
Domain adaptation: Learning bounds and algorithms. arXiv
preprint arXiv:0902.3430, 2009. 1

[52] Akshay Mehra, Bhavya Kailkhura, Pin-Yu Chen, and Jihun
Hamm. Understanding the limits of unsupervised domain
adaptation via data poisoning. In Thirty-Fifth Conference on
Neural Information Processing Systems, 2021. 1

[53] Akshay Mehra, Bhavya Kailkhura, Pin-Yu Chen, and Jihun
Hamm. Do domain generalization methods generalize well?
In NeurIPS ML Safety Workshop, 2022. 1

[54] Milton Llera Montero, Casimir JH Ludwig, Rui Ponte Costa,
Gaurav Malhotra, and Jeffrey Bowers. The role of disentan-
glement in generalisation. In International Conference on
Learning Representations, 2020. 3

[55] Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun
Yoon, and Donggeun Yoo. Reducing domain gap by reduc-
ing style bias. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8690–
8699, 2021. 1, 5, 6, 14

[56] Chenri Ni, Nontawat Charoenphakdee, Junya Honda, and
Masashi Sugiyama. On the calibration of multiclass clas-
sification with rejection. Advances in Neural Information
Processing Systems, 32, 2019. 3

[57] K. Nichol. Painter by numbers. https://www.kaggle.
com/competitions/painter-by-numbers, 2016.
4, 5

3809



[58] Fengchun Qiao, Long Zhao, and Xi Peng. Learning to
learn single domain generalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12556–12565, 2020. 1, 3

[59] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Cer-
tified defenses against adversarial examples. arXiv preprint
arXiv:1801.09344, 2018. 3

[60] Burr Settles. Active learning literature survey. ., 2009. 1
[61] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasser-

stein distance guided representation learning for domain
adaptation. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018. 1

[62] Manli Shu, Zuxuan Wu, Micah Goldblum, and Tom Gold-
stein. Encoding robustness to image style via adversarial
feature perturbations. Advances in Neural Information Pro-
cessing Systems, 34:28042–28053, 2021. 3

[63] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 3

[64] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence.
Advances in neural information processing systems, 33:596–
608, 2020. 2, 5

[65] Jiachen Sun, Akshay Mehra, Bhavya Kailkhura, Pin-Yu
Chen, Dan Hendrycks, Jihun Hamm, and Z Morley Mao.
Certified adversarial defenses meet out-of-distribution cor-
ruptions: Benchmarking robustness and simple baselines.
arXiv preprint arXiv:2112.00659, 2021. 2, 3, 5

[66] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In
International conference on machine learning, pages 9229–
9248. PMLR, 2020. 3

[67] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 3

[68] Zhiqiang Tang, Yunhe Gao, Yi Zhu, Zhi Zhang, Mu Li, and
Dimitris N Metaxas. Selfnorm and crossnorm for out-of-
distribution robustness. ., 2020. 3

[69] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and
Victor Lempitsky. Texture networks: Feed-forward syn-
thesis of textures and stylized images. arXiv preprint
arXiv:1603.03417, 2016. 3

[70] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Im-
proved texture networks: Maximizing quality and diversity
in feed-forward stylization and texture synthesis. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 6924–6932, 2017. 3

[71] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5018–5027, 2017. 2, 5, 14

[72] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation

by entropy minimization. arXiv preprint arXiv:2006.10726,
2020. 3

[73] Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, An-
ima Anandkumar, and Zhangyang Wang. Augmax: Adver-
sarial composition of random augmentations for robust train-
ing. Advances in Neural Information Processing Systems, 34,
2021. 3

[74] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang,
Wenjun Zeng, and Tao Qin. Generalizing to unseen do-
mains: A survey on domain generalization. arXiv preprint
arXiv:2103.03097, 2021. 1

[75] Xin Wang, Geoffrey Oxholm, Da Zhang, and Yuan-Fang
Wang. Multimodal transfer: A hierarchical deep convolu-
tional neural network for fast artistic style transfer. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 5239–5247, 2017. 3

[76] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan
Liu, and Dawn Song. Generating adversarial examples
with adversarial networks. arXiv preprint arXiv:1801.02610,
2018. 3

[77] Guojun Zhang, Han Zhao, Yaoliang Yu, and Pascal Poupart.
Quantifying and improving transferability in domain gener-
alization. arXiv preprint arXiv:2106.03632, 2021. 1, 3

[78] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 6

[79] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh,
and Luca Daniel. Efficient neural network robustness cer-
tification with general activation functions. In Advances in
Neural Information Processing Systems, pages 4944–4953,
2018. 3

[80] Hanlin Zhang, Yi-Fan Zhang, Weiyang Liu, Adrian Weller,
Bernhard Schölkopf, and Eric P Xing. Towards principled
disentanglement for domain generalization. arXiv preprint
arXiv:2111.13839, 2021. 3

[81] Jize Zhang, Bhavya Kailkhura, and T Han. Leveraging un-
certainty from deep learning for trustworthy materials dis-
covery workflows. arXiv preprint arXiv:2012.01478, 2020.
6

[82] Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo:
Test time robustness via adaptation and augmentation.
Advances in Neural Information Processing Systems,
35:38629–38642, 2022. 2, 3

[83] Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Ge-
offrey Gordon. On learning invariant representations for do-
main adaptation. In International Conference on Machine
Learning, pages 7523–7532. PMLR, 2019. 1

[84] Han Zhao, Shanghang Zhang, Guanhang Wu, José MF
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