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Abstract

Dynamic neural networks are a recent technique that
promises a remedy for the increasing size of modern deep
learning models by dynamically adapting their computa-
tional cost to the difficulty of the inputs. In this way, the
model can adjust to a limited computational budget. How-
ever, the poor quality of uncertainty estimates in deep learn-
ing models makes it difficult to distinguish between hard
and easy samples. To address this challenge, we present a
computationally efficient approach for post-hoc uncertainty
quantification in dynamic neural networks. We show that ad-
equately quantifying and accounting for both aleatoric and
epistemic uncertainty through a probabilistic treatment of
the last layers improves the predictive performance and aids
decision-making when determining the computational bud-
get. In the experiments, we show improvements on CIFAR-
100, ImageNet, and Caltech-256 in terms of accuracy, cap-
turing uncertainty, and calibration error.

1. Introduction

The ability to scale deep neural networks up to millions
of parameters (e.g., [29, 44, 50]) on massive data sets
(e.g., [8, 28]) has been a crucial part of achieving impressive
performance, sometimes exceeding human experts on
many natural-language processing and computer vision
tasks. However, learning and deploying such models
entails high computational costs and becomes increasingly
difficult [44, 50], especially as inference costs arise for every
deployed instance and can heavily add up [43].

Henceforth, there has been an increased interest in tech-
niques for energy-efficient inference in deep learning [2, 13].
A particularly promising direction is to dynamically select
the most cost-efficient sub-model based on the difficulty of
the test sample. Dynamic neural networks (DNNs, [15, 18])
leverage a multi-exit architecture and dynamically route test
samples based on their difficulty. For example, an image
of a sunflower might be easy to classify, requiring less
compute, while a tiger in a snowy environment might be
more ambiguous and can only be correctly identified after
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Figure 1. Increasing depth/scale of a dynamic neural network.
Our probabilistic decision-making captures a calibrated confidence
estimate, allowing better decisions from the intermediate classifiers
on when to stop the evaluation (decision on whether to output the
prediction is shown in red and green outline).

several stages (cf . Fig. 1). The adaptive early exiting is
typically based on the confidence scores at the individual
exits or learned gating functions [15]. Thus, it is crucial that
the predictive densities or gating functions are robust and
allow for trustworthy decision-making. However, current
approaches are problematic as typical neural architectures
are: (i) miscalibrated [14], (ii) overconfident [16],
and (iii) their predictions do not capture epistemic
uncertainties (uncertainty about the true model, see [22]).

Uncertainty quantification is the interest of probabilistic
(or Bayesian) methods in deep learning. Bayesian deep
learning [48] has recently gained increasing attention in
the machine learning community as a means for uncer-
tainty quantification (e.g., [22, 49]) and model selection
(e.g., [3, 19]), compromising, among others, advancements
on prior specification (e.g., [11, 34–36]) and efficient
approximate inference schemes (e.g., [7, 25, 30]). Even
though some of these advancements have recently found
application in computer vision (e.g., [41, 45, 47]), they have
not found adoption for decision-making in DNNs.

In this work, we propose a new probabilistic treatment of
the multiple exits of DNNs by applying a Bayesian formula-
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tion combined with efficient post-hoc approximate inference
using multiple last-layer Laplace approximations [24]. Our
probabilistic treatment reduces overconfidence, improves
calibration, and captures epistemic uncertainties arising
through the uncertainty about the true model without
increasing the computational burden significantly. Moreover,
we propose aggregating predictions across the exits to
utilise uncertainties arising at earlier stages and show that
accounting for uncertainties in decision-making (bottom in
Fig. 1) outperforms the standard dynamic neural network
(MSDNet [18]) on CIFAR-100, ImageNet, and Caltech-256.

Our contributions can be summarized as follows: (i) We
introduce a probabilistic treatment for early exit dynamic
neural networks (DNNs) utilising a Bayesian formulation.
(ii) We present a computationally efficient post-hoc approach
for uncertainty-aware decision-making by leveraging our
efficient last-layer Laplace approximation implementation
combined with model-internal ensembling, which works
out of the box without retraining. (iii) Finally, we show
on CIFAR-100, ImageNet, and Caltech-256 that our proba-
bilistic treatment improves over a conventional approach in
accuracy, capturing uncertainties, and calibration error.

1.1. Related work

Dynamic neural networks (DNNs, [15, 26, 42]) that utilise
intermediate classifiers, allow early exit of easy samples dur-
ing inference. This tailors the computation depth of each
input sample at runtime and offers complementary perfor-
mance gains to other efficiency optimisations. The early
works developing the chain-structured models show limited
performance due to the interference among different clas-
sifiers [21, 46], which is addressed by the proposed Multi-
Scale DenseNet (MSDNet, [18]) via dense connections and
a multi-scale structure. Moreover, the MSDNet is further im-
proved from the aspects of reducing resolution redundancy
[51] and training process [27, 39]. However, the confidence-
based early exiting criterion applied in these aforementioned
works can be problematic, and the generated confidence
does not necessarily reflect the complexity of the input. Fur-
thermore, the poor estimation of uncertainty in these models
makes it difficult to decide which samples are easy and which
are hard, and further vulnerable to the slow-down attacks
in [17]. Despite these shortcomings, multi-exit models have
been successfully applied for image segmentation [23], im-
age caption prediction [10], and to natural language process-
ing by implementing early exits into a BERT model [9, 43].

Bayesian deep learning [22, 37] allows including prior
knowledge and assumptions into deep learning models, and
formulates their predictions through a probabilistic treat-
ment. Calculating the posterior distribution of a Bayesian
neural network is usually intractable, and approximate
inference techniques need to be used, such as variational
inference [4], deep ensembles [25], MC dropout [12], or

Laplace approximation [20, 24, 40]—each having strengths
and weaknesses. A key guiding principle in this work is
constraining the computational budget, which leads us to
propose an approach that utilizes computationally light
Laplace approximations and re-uses predictions of DNN
intermediate classifiers in a model-internal ensemble. Prior
work does not consider the overconfidence or calibration
of confidence estimates that DNNs use to make decisions
on which samples require more computational budget.

2. Background
We are concerned with image classification under

computational budget restrictions subject to a labelled
training data set, Dtrain = {xi,yi}ntrain

i=1 , where xi is
d-dimensional input (e.g., RGB image with d = 3×Npixels).
Labels yi are c-dimensional one-hot encoded vectors
indicating the correct class label in the classification task.
The computational budget restrictions are applied in the
form of a budgeted batch classification setup, in which
a fixed computational budget B—measured in average
floating point operations per input sample (FLOPs)—must
be distributed across a batch of test samples to achieve the
highest possible accuracy. Here, a model is trained on the
training set Dtrain with an ‘unlimited’ computational budget
and tested on a set of test samples Dtest = {xj ,yj}ntest

j=1

using a limited average budget B per test sample.
For a DNN model having nblock intermediate clas-

sifiers (see Fig. 1 for a sketch), we refer to the
predictive distribution of each of these classifiers as
pk(ŷi |xi), k = 1, 2, . . . , nblock. The feature representation
before the last linear layer of each classifier is referred
to as ϕi,k = fk(xi), and the parameters of the last linear
layer are θk = {Wk,bk}. The prediction pk(ŷi |xi) is
obtained from the feature representation ϕi,k as follows:
pk(ŷi |xi) = softmax(ẑi,k), where ẑi,k = Wkϕi,k + bk.

Our focus is on fixing the overconfidence of DNN archi-
tectures that dynamically adapt the network depth utilising
early exiting by intermediate classifiers, each with increas-
ing computational requirements. Implementing classifiers as
early exits into a single network allows reusing computation
and reduces the overall inference cost compared to using
independent models of varying sizes. Early versions of such
DNNs suffer from interference between classifiers during
training [21, 46]. This problem can be alleviated by using
dense connectivity between intermediate classifiers, and by
utilising a multi-scale structure having fine and coarse-scale
features throughout the network. This architecture is referred
to as a Multi-Scale DenseNet (MSDNet, [18]), and we use
it as a backbone to demonstrate our methods of improving
uncertainty estimation, as at the time of writing it clearly out-
performs other image classification DNNs that use interme-
diate classifiers. However, our methods are applicable to any
DNN that utilises early exiting. Fig. 1 visualizes the structure
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Figure 2. Knowing what the model does not know. An uncertainty–error scatter plot showing CIFAR-100 test set predictions for the
last classifier of an MSDNet with Laplace and model-internal ensembling, and example images of three types corresponding to three areas
in the uncertainty–error scatter plot. The error is defined as 1− p(ŷ = y), where p(ŷ = y) is the predicted probability on the correct label.

of the DNN backbone and the applied uncertainty quantifi-
cation methods. The visualized FLOPs numbers are for the
‘small’ MSDNet model used for CIFAR-100 (see Sec. 4)

The challenge of efficiently using a DNN backbone with
intermediate classifiers is the decision-making problem of
when to exit the model. The goal is to use less capacity
for clear ‘easy’ samples while unleashing more capacity
for more difficult or tricky cases. To achieve this goal, the
model must be well-calibrated and know when it is uncertain
about its predictions. Many DNN models (e.g. [18, 46])
use predicted confidences from intermediate classifiers to
make decisions on early exiting, but the calibration of these
predictions is not controlled.

Uncertainty estimation in deep learning is often divided
into estimating two different types of uncertainty [22]:
aleatoric and epistemic. Aleatoric uncertainty is related
to randomness intrinsic to the task at hand and cannot be
reduced. Epistemic uncertainty is related to our knowledge
of the task and can be reduced by learning more about the
task, e.g., by obtaining more data. In our problem setting of
image classification, epistemic uncertainty is related to the
model parameters. In Fig. 2, epistemic uncertainty is present
in the predictions for images of type (b): the model has not
learned the task well enough to classify these difficult sample
images correctly. On the other hand, an example of aleatoric
uncertainty is seen in some of the sample images of type (c):
an image may contain objects from multiple classes, and the
most prominent object is not necessarily labelled as the cor-
rect class (‘ambiguous’), or some images may be completely
mislabelled. We refer to this kind of samples as ‘tricky’.

A Bayesian treatment to uncertainty estimation means

that instead of obtaining a single point estimate of the
model parameters θ as the result of neural network training,
Bayesian inference is used to obtain a posterior distribution
over the model parameters given the training data Dtrain:

p(θ | Dtrain) =
p(Dtrain |θ) p(θ)∫
θ
p(Dtrain,θ) dθ

=
[likelihood]×[prior]

[model evidence]
.

(1)
Usually, calculating the exact posterior for a deep learning
model is intractable. This means that the posterior of the
model parameters must be approximated. One approach is
to consider the L − 1 first layers of a deep neural network
with L layers as a fixed feature extractor and limit the
Bayesian treatment to the last (Lth) layer. This drastically
decreases the number of parameters for which the posterior
distribution needs to be estimated. However, computations
are usually still infeasible as no analytic solution exists, and
further approximations are needed.

An efficient approximation to the posterior of the model
parameters is the Laplace approximation, which performs
a second-order Taylor expansion of Eq. (1) around the
maximum a posteriori (MAP) estimate of the target dis-
tribution, resulting in a Gaussian distribution. The model
parameters representing the MAP estimate can be found
by maximising the unnormalised posterior: p(θ | D) ∝
p(Dtrain |θ) p(θ) = p(θ,D), which is commonly assumed
in log-space for numerical stability: log p(θ,Dtrain) =
log p(Dtrain |θ) + log p(θ). In classification tasks, we typi-
cally minimise the cross-entropy loss, which is equivalent
to maximising the log-likelihood. Moreover, commonly
used regularisation methods such as weight decay can be
interpreted as a log-prior. Hence, deep learning models
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Figure 3. Test time computational cost of naïve and efficient
methods of sampling the Laplace predictive distribution (50 MC
samples) compared against the vanilla MSDNet, on ImageNet
data. Results shown for each intermediate exit. Details in App. C.

learned with conventional training methods for classifica-
tion tasks can be seen as maximising the unnormalised log-
posterior and we, therefore, directly obtain the MAP esti-
mate (θMAP) required for Laplace approximations through
standard training. The Laplace approximation of the poste-
rior is then formed using a multivariate Gaussian centred at
the MAP estimate with covariance given by the inverse of the
Hessian H of the negative log-posterior, i.e., N(θMAP |H−1)
and H := −∇2

θ log p(θ | D) | θMAP . The Hessian can be effi-
ciently approximated using the generalised Gauss-Newton
algorithm [5] or by Kronecker factorisation [33, 40].

3. Methods
Our aim is to couple an early exit DNN backbone with an

uncertainty-aware decision-making process. For uncertainty
quantification, we leverage the early exit structure of
the DNN architecture and propose an approach that uses
Laplace approximations and model-internal ensembling.
The motivation for improving uncertainty estimation is
that if the intermediate classifiers in the DNN can more
accurately estimate the uncertainty in their predictions, they
can better recognise which samples are hard and require
further computation, and for which samples the prediction
is already confident enough to be exited early.

3.1. Laplace approximation of a dynamic NN

To approximate the predictive posterior we propose an
efficient implementation of a last-layer Laplace approxi-
mation for each intermediate classifier of the DNN. Using
our computationally cheap last-layer approach enables us to
stay resource-efficient while at the same time improving the
decision-making within DNNs. Note that in this section we
have dropped the index k for the intermediate exit for sim-
plicity, as all operations are done independently for each exit.

To save on computational costs of sampling from a
larger dimensional Gaussian on the last-layer parameters
N(θMAP,H

−1), where θMAP = {WMAP,bMAP} are the
last-layer MAP parameters of one exit, we linearly project
the Gaussian to a predictive distribution p(ẑi |xi). This
directly allows us to sample pre-softmax outputs ẑi

and reduces the dimensionality of the Gaussian to the
number of classes c. The final prediction ŷi is then
calculated by sampling nMC samples from the predictive
Gaussian: ŷi = 1

nMC

∑nMC
l=1 softmax(ẑ(l)i ). If performed

naïvely [24], this forces performing all sampling-related
computation at test time, resulting in a per sample cost of
FLOPsnaïve = 2c2(nMC + 1) + 1

3c
3 + 2p2 + p − 1 which

grows cubically with the number of classes c (p is the feature
space dimensionality: ϕi ∈ Rp). Absorbing the last layer
biases into the weight matrix allows us to shift most of the
computation required for sampling to be performed before
test time. The resulting efficient Laplace implementation for
DNNs has a cost of FLOPsefficient = 2cnMC + 2p2 + 5p+ 2,
making Laplace approximation computationally viable in
the budget restricted regime. Fig. 3 shows a computational
cost comparison for the naïve and efficient Laplace approx-
imations. More detailed analysis is presented in App. C.

Applying a Laplace approximation only to the last linear
layer at each intermediate exit now provides us with a Gaus-
sian distribution p(ẑi |xi) = N(Ŵ⊤

MAPϕ̂i, (ϕ̂
⊤
i Vϕ̂i)U)

for each classifier. Here V−1 ⊗ U−1 = H−1 is an
approximate inverse Hessian, being a Kronecker fac-
torisation of the generalised Gauss–Newton matrix and
ϕ̂i = (ϕ⊤i , 1)

⊤ are the features after augmenting the
biases into the weights. Samples from this distributions are
calculated as ẑ(l)i = Ŵ⊤

MAPϕ̂i + (ϕ̂⊤i Vϕ̂i)
1
2 (Lg(l)), where

g(l) ∼ N(0, I) and L is the Cholesky factor of U.
To ensure well calibrated predictions from the Laplace

approximation, it is useful to utilise temperature scaling [14]
on the sampled predictions ŷi. In practice, this means divid-
ing each sampled pre-softmax output ẑ(l)i with a temperature
scaling parameter T before taking the softmax. Also the
Laplace prior variance σ is a hyperparameter affecting the
results. We use a different value of T and σ for each clas-
sifier in the network. To choose appropriate values for the
temperature scaling and prior variance parameters, we per-
form a grid search over possible pairs of values of T and σ,
selecting the pair of values that minimises the negative log-
predictive density score on the validation set for the classifier
in question. Details on this grid search are in App. A.

3.2. Model-internal ensembling

To improve the predictive uncertainty and robustness
of the DNN predictions, we utilise the idea of ensembling
multiple predictions together [25]. However, using deep
ensembles, where M independent networks are trained, is
not feasible in the budget-restricted scenario. Instead, we
utilise the predictions of intermediate classifiers in the dy-
namic neural network to form the ensemble and refer to this
as a model-internal ensemble (MIE). The predictions from
different intermediate classifiers are neither independent nor
equal, as they are predictions from different stages of the
same computational pipeline, and later classifiers have more
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Figure 4. Comparison of uncertainty–error scatter plots from the
second to last classifier of a vanilla MSDNet and our model with
Laplace and model-internal ensembling. The uncertainty histogram
on the top shows points with error > 0.5: the uncertainty should be
high for the model to be able to recognize these samples as ‘hard’,
and continue their evaluation to the next block. For our model
these samples have a high uncertainty, while the vanilla MSDNet
is overconfident. See Sec. 3.3 for definition of error.

capacity compared to earlier classifiers. To account for the
difference in capacity in the MIE members, we can scale
their influence to the final prediction in proportion to their
computational complexity. Predictions from intermediate
classifiers for forming an MIE are readily available and
require no additional computation, as they need to be
calculated to make the decision whether to continue compu-
tation further in the network. The model-internal ensemble
prediction for the kth classifier in an early exit DNN is:

pens
k (ŷi |xi) =

1∑k
l=1 wl

∑k
m=1 wm pm(ŷi |xi). (2)

This is a weighted average of intermediate classifiers up to
classifier k, for which we are calculating the MIE prediction.
Later classifiers have more predictions in the average to ag-
gregate, as more already calculated intermediate predictions
are available. The weights wm are the computational costs
of the DNN in FLOPs up to classifier m. The added com-
putational cost of MIE is marginal (see App. C for details).

3.3. Illustrating the intuition

Our model hinges on the realization that properly
capturing epistemic uncertainty is key to making informed
decisions. This is visible in Figs. 2 and 4 that demonstrate
how better uncertainty quantification can improve the
decision-making in a DNN. In Fig. 2, samples of type (c)

are ones that the model has predicted with high confidence,
but the predicted label is incorrect. These can be mislabelled
samples or samples that are very ambiguous. However, for
a poorly calibrated model, the type (c) samples may also
include a large number of samples that the model predicted
overconfidently for no intuitive reason, and that should
instead be of type (b): hard samples that the current stage
of the model can’t accurately classify. This can be seen in
Fig. 4 where the standard DNN model has a large number of
overconfidently predicted samples in the upper left corner of
the scatter plot. In this figure, we can see that the improved
calibration of our model allows these samples to move to the
upper right corner of the scatter plot. This change prevents
these predictions from exiting at the current intermediate
classifier and instead allows for potentially improving the
prediction in the later steps of the DNN. In figures, the error
is defined as 1− p(ŷ = y), where p(ŷ = y) is the predicted
probability on the correct label.

For the decision-making to be efficient in a DNN, each
intermediate classifier should have calibrated uncertainties
and not show too many samples in the upper left area of
the uncertainty–error scatter plots. Fig. 5 shows that this
is true for our model, and the picture samples in Fig. 2
under the label (c) show that the samples remaining in the
upper-left corner are mostly ambiguous samples, which even
a calibrated model would predict incorrectly but confidently.

4. Experiments
We performed a series of experiments on benchmark im-

age classification tasks to assess the improvements obtained
through our probabilistic treatment applied to an early-exit
DNN. For each model size for all data sets, a common back-
bone DNN (MSDNet [18]) was trained minimising the L2
regularised sum of cross-entropy losses computed for all
exits on the training set. We trained three different-sized
DNN backbone models on each data set to cover a larger
range of budgets. Depending on the desired budget, only one
of these models would be used at a time. We refer to these
models as ‘small’, ‘medium’, and ‘large’.

After training, we evaluated each model on the test set
in a budgeted batch classification setup. Early exiting deci-
sions were based on model predicted confidence, for which
thresholds tk, k = 1, 2, . . . , nblock were calculated on the
validation set. We refer to [18] for details on the calculation
of the thresholds. We report the Top-1 and Top-5 accura-
cies of each model over a range of computational budgets
measured in average floating point operations (FLOPs) per
test sample. In addition, following the recommendations for
better validation metrics in image analysis [31], we compare
the negative log-predictive density (NLPD) and the expected
calibration error (ECE). Note that NLPD captures both ac-
curacy and uncertainty quantification quality while ECE
assesses only calibration, i.e., how consistent the confidence
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Table 1. Table of Top-1/Top-5 accuracy, negative log-predictive density (NLPD), and expected calibration error (ECE) for different models
on CIFAR-100 and ImageNet data. All numbers are averages over a range of computational budgets in the budgeted batch classification setup.
‘MIE Laplace Topt σopt’-model corresponds to ‘Our model’ that is referred to in other figures. MIE stands for model-internal ensembling.

CIFAR-100 IMAGENET
(ntrain, d, c, nbatch) (50000, 3072, 100, 64) (1281167, 150528, 1000, 256)

Top-1 ACC ↑ Top-5 ACC ↑ NLPD ↓ ECE ↓ Top-1 ACC ↑ Top-5 ACC ↑ NLPD ↓ ECE ↓

Sm
al

l MSDNet (vanilla) 69.25 90.48 1.498 0.182 68.15 88.22 1.338 0.019
+ Laplace Topt σopt 69.06 −0.19 90.58 +0.10 1.208 −0.289 0.073 −0.109 68.10 −0.05 88.18 −0.04 1.337 −0.001 0.015 −0.005

+ MIE 69.97 +0.72 90.88 +0.40 1.218 −0.280 0.080 −0.102 68.27 +0.12 88.13 −0.10 1.355 +0.017 0.055 +0.036

+ MIE Laplace Topt σopt 69.84 +0.59 91.09 +0.61 1.133 −0.364 0.017 −0.165 68.31 +0.16 88.11 −0.11 1.356 +0.018 0.052 +0.032

M
ed

iu
m MSDNet (vanilla) 74.12 91.94 1.549 0.190 72.78 91.01 1.123 0.033

+ Laplace Topt σopt 73.92 −0.20 92.01 +0.06 1.070 −0.479 0.083 −0.107 72.72 −0.07 91.03 +0.03 1.118 −0.005 0.018 −0.015

+ MIE 75.03 +0.91 92.97 +1.03 1.011 −0.538 0.050 −0.140 72.98 +0.20 91.12 +0.11 1.119 −0.004 0.042 +0.009

+ MIE Laplace Topt σopt 74.99 +0.86 93.23 +1.29 0.944 −0.605 0.026 −0.164 73.04 +0.26 90.96 −0.05 1.121 −0.002 0.031 −0.003

L
ar

ge

MSDNet (vanilla) 75.36 92.78 1.475 0.178 74.33 91.57 1.066 0.050
+ Laplace Topt σopt 75.32 −0.05 92.83 +0.05 0.996 −0.479 0.075 −0.103 74.29 −0.04 91.53 −0.04 1.053 −0.013 0.020 −0.030

+ MIE 76.32 +0.95 93.50 +0.72 0.949 −0.525 0.061 −0.117 74.82 +0.49 91.88 +0.30 1.029 −0.037 0.028 −0.022

+ MIE Laplace Topt σopt 76.34 +0.98 93.84 +1.05 0.885 −0.590 0.025 −0.152 74.80 +0.47 91.81 +0.24 1.032 −0.034 0.032 −0.019

scores are with the posterior probabilities. See App. A.5 for
more details on the metrics. In figures, ‘Our model’ refers
to an MSDNet backbone using Laplace approximation and
MIE, while optimizing temperature scales and Laplace prior
variances in a grid search. We additionally trained DenseNet
and ResNet models as baselines, see App. A.4 for details on
them. For more baseline results we refer to [18, Sec. 5.2].

Ablation studies were performed to investigate the individ-
ual contribution of the Laplace approximation and model-
internal ensembling (MIE) to the model performance, testing
models that use either only Laplace or only MIE. The results
of this ablation study are included in Tab. 1 and Tab. 2. Re-

sults of a more comprehensive ablation study are in Tabs. 6
and 7 in App. B. Note that as Laplace and MIE are applied
on the same trained vanilla MSDNet model that is used on its
own, the differences in the results are not from randomness
between different training runs. Laplace approximation im-
proves the uncertainty quantification properties of the model
by lowering NLPD and ECE values, whereas MIE usually
improves both accuracy and uncertainty quantification prop-
erties. Considering overall performance over all four metrics
(Top-1 and Top-5 accuracy, NLPD, and ECE), we can see
that Laplace and MIE together give the best performance
on CIFAR-100, whereas on ImageNet and Caltech-256 us-
ing MIE alone or together with Laplace both give roughly
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Table 2. Table of Top-1/Top-5 accuracy, NLPD, and ECE for differ-
ent models on Caltech-256 data. All numbers are averages over a
range of computational budgets in the budgeted batch classification
setup. ‘MIE Laplace Topt σopt’-model corresponds to ‘Our model’
that is referred to in other figures.

CALTECH-256
(ntrain, d, c, nbatch) (25607, 150528, 257, 128)

Top-1 ACC ↑ Top-5 ACC ↑ NLPD ↓ ECE ↓

Sm
al

l MSDNet (vanilla) 61.0 78.2 2.16 0.18
+ Lap Topt σopt 60.5 −0.5 78.1 −0.1 1.86 −0.29 0.05 −0.13

+ MIE 61.9 +0.9 78.8 +0.6 1.94 −0.21 0.08 −0.10

+ MIE Lap Topt σopt 61.7 +0.6 79.0 +0.8 1.81 −0.34 0.09 −0.09

M
ed

iu
m MSDNet (vanilla) 63.8 80.2 1.98 0.17

+ Lap Topt σopt 63.4 −0.4 79.9 −0.3 1.74 −0.24 0.07 −0.10

+ MIE 65.1 +1.3 81.4 +1.2 1.72 −0.26 0.08 −0.09

+ MIE Lap Topt σopt 64.3 +0.5 81.3 +1.1 1.65 −0.33 0.08 −0.09

L
ar

ge

MSDNet (vanilla) 64.9 80.7 1.90 0.16
+ Lap Topt σopt 64.7 −0.2 80.7 +0.0 1.65 −0.25 0.04 −0.12

+ MIE 65.9 +0.9 82.4 +1.8 1.62 −0.28 0.06 −0.10

+ MIE Lap Topt σopt 65.6 +0.7 82.5 +1.8 1.58 −0.32 0.09 −0.07
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Figure 6. A decision-making experiment, where vanilla MSDNet
and ‘Our model’ are compared to results obtained using our model
for decision-making, and taking predictions from vanilla MSDNet
(labelled ‘Vanilla predictions’). Full results in Fig. 9 in App. B.

equally good results. Despite some inconsistency in the com-
bination of uncertainty quantification methods giving best
performance, it is clear that improving uncertainty estimation
improves the DNN performance over the vanilla model. The
range of budgets over which results were averaged to obtain
the numbers in Tabs. 1 and 2 are listed in Tab. 3 in App. A.
CIFAR-100 experiment results are visualized in Fig. 7 and
numerical results are presented in Tab. 1. The three model
sizes, small, medium, and large, are plotted as separate
curves in Fig. 7. From the results in Fig. 7 we see that
our model improves Top-1 and Top-5 accuracies over all
tested computational budget levels, compared to the vanilla
MSDNet model (in-line with results in [18]), and improves
uncertainty quantification and calibration properties, which
is seen in the decrease of negative log-predictive density
(NLPD) and expected calibration error (ECE). From the
curves, we can pinpoint at 108 FLOPs an improvement of
1.2 %-points in Top-1 accuracy and 1.1 %-points in Top-5
accuracy. We also note that although the vanilla MSDNet
has clearly superior Top-1 accuracy compared to baseline
ResNet and DenseNet models, it has poor performance in
terms of NLPD and ECE in comparison to the baselines.
CIFAR-100 experiment details are in App. A.1.

To investigate the contribution of better decision-making

on the improved predictive performance, we performed
an experiment separating the improvement due to better
decision-making from the improvement due to better pre-
dictions at individual intermediate exits. In this experiment,
we replaced the vanilla model decision-making with the
decision-making of our model, while using the vanilla model
predictions for calculating the results. Results on CIFAR-
100 are in Fig. 6 showing that our approach improves both
decision-making (orange vs. light blue) and prediction qual-
ity (light blue vs. black). Interestingly, apart from improving
accuracy, better decision-making also improves calibration,
as seen from the improved ECE (details in App. B).

ImageNet experiment results are visualized in Fig. 7, and nu-
merical results are presented in Tab. 1. Fig. 7 shows that on
larger computational budgets, our model achieves improve-
ments over the vanilla MSDNet model on all metrics. We
note that the ECE numbers achieved by the vanilla MSDNet
on ImageNet data are much better than those achieved by the
vanilla MSDNet on CIFAR-100 data, suggesting relatively
good calibration especially on lower budgets, and resulting
in limited usefulness of uncertainty quantification methods.
As the computational budget increases, vanilla MSDNet
becomes less calibrated, negatively affecting the decision-
making at the intermediate classifiers, which is seen in worse
accuracy compared to our model. The good calibration of the
vanilla MSDNet on ImageNet can be explained by the rel-
atively small model size preventing overfitting the data. The
largest MSDNet model used for ImageNet here has 62 mil-
lion parameters, while the current state-of-the-art model [6]
has 2440 million parameters. From the accuracy curves in
Fig. 7 we can pinpoint at 2.5 ·109 FLOPs an improvement of
0.63 %-points in Top-1 accuracy and 0.34 %-points in Top-5
accuracy. ImageNet experiment details are in App. A.2.

Caltech-256 is an image classification data set with similar
resolution images as ImageNet, but with a small number of
training samples. For Caltech-256 the same backbone DNN
models were used as for ImageNet. Results are visualized
in Fig. 7 where we see similar trends as for CIFAR-100,
with uncertainty quantification techniques improving
performance on all metrics. Numerical results are presented
in Tab. 2, where different uncertainty quantification methods
excel at different metrics, but improve consistently over
the vanilla MSDNet. We note that the same backbone
DNNs that were used for ImageNet, benefit more from
our uncertainty quantification methods when used on
Caltech-256, possibly due to the smaller training set size
that allows overfitting with these model sizes. We can
deduce that uncertainty quantification in DNNs is beneficial
especially when the standard model is overfitting the data,
which is usually the case. From the accuracy curves in Fig. 7
we can pinpoint at 2.5 · 109 FLOPs an improvement of
1.4 %-points in Top-1 accuracy and 1.8 %-points in Top-5
accuracy. Caltech-256 experiment details are in App. A.3.
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Figure 7. Accuracy (Top-1 & Top-5) and uncertainty metrics (NLPD and ECE) on a budgeted batch classification task as a function of
average computational budget per image (FLOPs) on different data sets with a small/medium/large model, and ResNet/DenseNet baselines.

5. Conclusion and Discussion
We have demonstrated the importance of uncertainty

quantification in dynamic neural networks (DNNs). For this
purpose, we employed a probabilistic treatment of DNNs
and leveraged a computationally efficient post-hoc posterior
approximation through multiple last-layer Laplace approx-
imations together with model-internal ensembling (MIE).
Our approach substantially improves the internal decision-
making process fundamental to DNNs, as evidenced by
improved Top-1 and Top-5 accuracy, NLPD, and ECE on
CIFAR-100, ImageNet, and Caltech-256. We found that un-
certainty quantification and calibration are especially crucial
for large-scale models that overfit training data—stressing
their importance in DNNs applied to real-world scenarios.

Why Laplace and MIE? Uncertainty quantification comes
in many facets and, if done in DNNs, has to be computation-
ally efficient to be viable for budget-constrained applications.
In this work, we proposed to employ last-layer Laplace ap-
proximations at each exit of the DNN. Although the Laplace
approximation is a more crude approximation to the poste-
rior in comparison to techniques such as deep ensembles, it
provides a good trade-off between accuracy of the approxi-
mation and computational costs, which is essential to DNNs.
In the experiments, we showed that our efficient Laplace
approach adds little computational overhead and provides

overall NLPD and ECE improvements in most experiments.
In addition, we showed that MIE can further boost perfor-
mance with little additional costs by informing consecutive
blocks in the DNN about the predictive uncertainties of
previous exits. As a conclusion, the Laplace approximations
account for epistemic uncertainties of each exit indepen-
dently while MIE allows us to incorporate dependence
between the exits—hence, complementary to each other.

Broader Impact. This work contributes towards improv-
ing the resource and energy efficiency of often prohibitively
expensive deep learning models. For example, Microsoft
reported [1] that answering Bing queries using BERT re-
quires 2000 Azure GPU virtual machines to run in parallel.
Uncertainty quantification is typically seen as a means of
improving robustness and even safety of deep learning mod-
els, generally adding to the compute. This work takes the
opposite direction leveraging uncertainty to reduce the over-
all number of floating point operations required for making
predictions—while also providing more reliable uncertainty
estimates for downstream applications. Improvements in
DNNs allow using more powerful models in edge computing
and on mobile hardware, and decreases the total energy usage
of a heavy deep-learning task on non-constrained hardware.

The codes to replicate the results are available at https:
//github.com/AaltoML/calibrated-dnn.
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