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University of Chieti-Pescara, Italy

Maurizio Parton1

University of Chieti-Pescara, Italy
Francesco Morandin1

University of Parma, Italy

Abstract

We introduce a novel computational unit for neural net-
works that features multiple biases, challenging the tradi-
tional perceptron structure. This unit emphasizes the impor-
tance of preserving uncorrupted information as it is passed
from one unit to the next, applying activation functions
later in the process with specialized biases for each unit.
Through both empirical and theoretical analyses, we show
that by focusing on increasing biases rather than weights,
there is potential for significant enhancement in a neural
network model’s performance. This approach offers an al-
ternative perspective on optimizing information flow within
neural networks. See source code [5].

1. Introduction

Historically the structure of the perceptron, the arti-
ficial neural network’s fundamental computational unit,
has rarely been questioned. The biological inspiration is
straightforward: input signals from the dendrites are accu-
mulated at the soma (with a linear combination), and if the
result is above the activation threshold (that is, the opposite
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of some bias) there is a nonlinear reaction, as the neuron
fires along the axon (with the activation function).

In time, the early sigmoid activation function was re-
placed by ReLU and variants, and the biological analogy
became less stringent, shifting focus on the desirable math-
ematical properties of the class of functions computed by
the networks, like representation power and non-vanishing
gradients.

This has brought us to the current situation in which most
units output their signal through a nonlinear activation func-
tion which effectively destroys some information. In fact,
ReLU is not invertible, as it collapses to zero all negative
values. Though some of its variants may be formally invert-
ible (leaky ReLU [21] and ELU [4] for example), the fact
that they overall perform in a way very similar to ReLU,
suggests that their way of compressing negative values via
a small derivative bijection leads to the same general prop-
erties of the latter.

In this paper, we investigate a radical rethinking of the
standard computational unit, where the output brings its
full, uncorrupted information to the next units, and only at
this point is the activation function applied, with biases spe-
cialized for each unit. From the biological point of view,
this is like having the activation at the dendrites instead of
at the base of the axon, and correspondingly we call the new
unit ‘DAC’, for ‘Dendrite-Activated Connection’.

This kind of reversed view has already proved fruitful
in the evolution from ResNets v1 [11] to v2 [12] when a
comprehensive ablation study showed that for residual net-
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works it is better to keep the information backbone free of
activations for maximum information propagation, and pre-
activate the convolutional layers in the residual branch.

Here this view is taken forward: not only the units are
pre-activated, but the biases become specific to each input-
output pair, as the weights are. We refer to this as having
unshared biases.

The main result of this paper is evidence that sometimes
incorporating more biases can increase accuracy more than
adding weights, without altering model complexity (see
Section 5, SGEMM subsection). The fact that DAC con-
sistently outperforms the baseline models across diverse ar-
chitectures and datasets strengthens this finding, see the rest
of Section 5. Hence, DAC emerges as a viable strategy
for enhancing neural network performance when increasing
weights proves ineffective.

The proposed model is introduced in Section 2 with a
first theoretical discussion. Related works are listed in Sec-
tion 3. The main practical details for replacing shared with
unshared biases are discussed in Section 4, and the empiri-
cal experiments can be found in Section 5. Finally, further
theoretical questions can be found in Section 6 and in [23].

2. Model
In a standard neural network, units are often post-

activated: they compute a linear combination of their inputs
and then apply a nonlinear filter to the result.{

zi =
∑

j∈Ii
wi,j yj linear aggregation

yi = φ(bi + zi) nonlinear filter
(1)

where, for unit i, Ii denotes the set of input nodes, bi the
bias and φ the activation function.

We propose to consider units that are pre-activated with
unshared biases:{

yi,j = φ(bi,j + zj) nonlinear filter
zi =

∑
j∈Ii

wi,j yi,j linear aggregation
(2)

In (1) there is one weight wi,j for each connection be-
tween units and one bias bi for each unit. In (2) each con-
nection still has its own weight wi,j , but it also has its own
nonlinear filter with a specific bias bi,j . (Compare Figures 1
and 2.)

Connections between units correspond to synapses or
dendrites in biological neurons, and it is known that activa-
tion at the level of dendrites can actually occur in biological
neural networks [18, 22]. With this motivation we refer to
a connection as in (2) as a Dendrite-Activated Connection
(DAC). See [23, Section A] for additional details on the bi-
ological inspiration.

A DAC unit is more general than a standard unit, in fact
it can have almost twice as many parameters, and a cor-

Figure 1. Standard connection between two consecutive layers.
The output layer (pink) is fully connected and has two units la-
belled 4 and 5. The input layer has three units: I4 = I5 =
{1, 2, 3}. Bullets and rectangles represent linear aggregation and
nonlinear filters from (1), respectively. Units 4 and 5 must share
the same biases b1, b2, b3 in the activation of their inputs.

respondingly greater representation capacity, see [23, Sec-
tion C]. For this reason, in experiments, neural networks
with DACs should be compared to standard ones with simi-
lar number of parameters or computational complexity, and
not with the same number of units or channels. In this re-
gard it is important to note that, in convolutions larger than
1× 1, DAC biases can be partially shared, yielding a much
lesser increase in the number of parameters (see Section 4).

In this paper we investigate the properties of DAC units
and the behaviour of typical network structures when stan-
dard connections are replaced with DACs.

Remark 2.1. DAC and the standard post-activation may co-
exist in the same connection (in analogy with what happens
in the biological neuron, where the standard post-activation
of the axon is always present):

linear combination → shared bias post-activation
→ unshared biases pre-activation → linear combination

For ReLU activations, the composition of post-activation
and pre-activation is equivalent to a pre-activation with
modified coefficients, so we do not investigate further this
generalization.

3. Related work
The multi-bias activation (MBA) from [19] replicates K

times the input features zj , applies a different bias param-
eter b(k)j to each of them, filters them with ReLU, and then
computes a linear combination over j and k for every output
node i:

zi =
∑
j∈Ii

K∑
k=1

wi,j,k φ
(
b
(k)
j + zj

)
. (3)

Equation (3) resembles our equation (2) of pre-activated
units. However, in (3) the pre-activation biases do not de-
pend explicitly on the output i, so they are multiplied in
number, but still effectively shared from the point of view of
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Figure 2. Same structure as in Figure 1 with post-activation re-
placed by pre-activation with unshared biases. Rectangles and
bullets represent nonlinear filters and linear aggregations from (2),
respectively. The biases in the activation between the input and
the output layer depend both on the input node (1, 2 or 3) and the
output node (4 or 5), and so, from the point of view of the output
units, we refer to them as unshared.

the linear operator. Another consequence of this is that pa-
rameters and computations are increased K-fold. Squeeze
MBA [8] is a variation of MBA that still shares biases
among outputs but tweaks the network structure to partially
reduce the number of parameters.

Other approaches to mitigate the loss of information in-
trinsic in the ReLU activation, such as Maxout [10], adap-
tive piecewise linear activation functions [1], Concatenated
ReLU [31], and Activation ensembles [16], generalize the
activation function by using multiple biases (among other
parameters) but they all maintain a single nonlinear filtered
output per node, and hence shared biases.

There are also ways to design a network that inherently
mitigate or avoid the loss of information of activations with
shared biases. ResNet v2 architecture [12] keeps the in-
formation backbone free of nonlinearities that are only on
residual branches (with pre-activation). All the nonlinear
blocks take their inputs from the backbone, so each input is
the pure linear sum of all the previous nonlinear branches.
ConvNeXt [20] not only uses the same linear backbone as
above, but then applies depthwise convolutions, brought to
popularity by [3] and common to other recent successful ar-
chitectures. In depthwise convolutions, every input channel
is unique to one output kernel: this is a simple solution to
avoid sharing biases, though the consequent low capacity
requires that depthwise convolutions are used together with
other types of layers that will typically have shared biases.

4. Methods

To use DAC in a given neural network structure, one
replaces the usual post-activations of computational units
with pre-activations for the downstream units, using un-
shared biases. To this end one can design dense and con-
volutional units that include the required pre-activation.

For a dense layer with n units and m inputs, (2) becomes:

fi(z) =

m∑
j=1

wi,j φ(bi,j + zj), i = 1, 2, . . . , n (4)

In the case of a 2d convolutional layer with n units/kernels
and m input channels, we get instead:

fh,k,i(z) =

l∑
a,b=−l

m∑
j=1

wa,b,i,j φ(bi,j + zh+a,k+b,j),

i = 1, 2, . . . , n, (h, k) ∈ grid (5)

where L = 2l + 1 and L× L is the kernels size.
In the latter equation, if one were to follow the principle

in (2), for which there should be one pre-activation bias for
every weight, then these totally unshared biases would take
the more general form ba,b,i,j depending on channel, kernel
and position in the kernel. There is however the possibility,
in this case, to partially share biases and have bi,j depend on
input channel and output kernel only, to get a better trade-
off between flexibility and number of parameters.

In most cases, pre-activated layers (4) and (5) can replace
the usual ones (by removing the post-activation of the layer
before the one considered, but see Remark 2.1). In a few
cases this change could have no real effect: in fact there are
situations in which the standard shared biases are effectively
unshared, notably when the subsequent layer has only n =
1 unit/kernel, or if it is a depthwise convolution [3]. In these
cases DAC reduces to a standard connection. In all other
situations, DAC will use more parameters and require more
computations than a standard connection.

Parameters and number of operations. A dense layer
with n units and m inputs, has mn weights. When it is
pre-activated with unshared biases as in (4), a total of mn
DAC biases are used, in place of the m shared biases in the
post-activation of the layer before that one, for a relative
increase factor 2− 1/n, that is, almost 2 when n is not very
small. For a convolutional layer as in (5), the number of
biases involved is the same, but the weights are mnL2, so
the relative increase factor is 1 + 1/L2 − 1/nL2. In the
case of a 3 × 3 kernel, this leads to a modest increase of
approximately +11% in the number of parameters.

In calculating FLOPs, we adopt the usual convention
to ignore activation function costs. Though pre-activation
involves significantly more calls to the activation function
than post-activation, for simple functions like ReLU, the
computation cost is very small and can be neglected. This
assumption may not hold for other, more computationally
expensive, activation functions.

Considering again a dense layer with n units and m
inputs, FLOPs are mn multiplications and mn additions.
When using pre-activation, another mn additions are re-
quired, that replace the m additions in the post-activation
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of the layer before that one. The relative increase factor
is 1.5 − 1/2n, that is, almost +50% when n is not very
small. In the case of a convolutional layer, FLOPs per
unit/kernel are mL2 multiplications and mL2 additions, to-
taling 2mnL2st operations for an output shape of s × t.
When using pre-activation as in (5), since DAC biases bi,j
do not depend on the particular kernel position, initial ac-
tivation results φ(bi,j + z·,·,j) can be cached, requiring
mnst additions, in place of the mst additions in the post-
activation of the layer before that one. This results in a rela-
tive increase factor of 1+0.5L−2(1−1/n), or about +5.5%
for 3× 3 convolutions and +50% for 1× 1 convolutions.

More complex structures. While the above discussion
explains how to use DACs in the case of a plain network,
i.e. a regular sequence of basic layers, it is not always clear
what to do in more realistic situations, that include, for
example, normalization layers and skip connections. The
guiding principle then, is to identify activations followed by
linear operators, and check whether, from the point of view
of the linear operators, those activations are using shared bi-
ases. If this is the case, using DAC means to remove said
activations and add pre-activations with unshared biases to
the linear operators.

Hence for example, in a periodic sequence like

. . . → ReLU → linear → BN → ReLU → linear → . . .

where BN stands for batch normalization and “linear” might
be either fully connected or convolutional layers, a DAC
version would be something like

. . . → DAC → BN′ → DAC → . . .

where BN′ is batch normalization without the trainable shift
parameter β and DAC might be either (4) or (5).

5. Experiments
We tested empirically the effect of using pre-activations

with unshared biases, on several common tasks. All the ex-
periments can be reproduced using the source code [5], that
includes a test implementation of the pre-activated layers
in (4) and (5). For the training we used L2 regularization
instead of weight decay, applying it only to weights and not
to biases. DAC biases were initialized to zero. For full de-
tails on training hyperparameters see [23, Section 5].

SGEMM performance regression. We experimented
with a regression task from the UCI repository [2, 30]. The
task is to predict the execution time of a matrix multi-
plication on a highly-tuneable SGEMM kernel for GPU.
The input variables are 14 kernel parameters that are ei-
ther binary or take values that are powers of 2, and the
response variable ranges between 13.25 and 3397.08 mil-
liseconds. Non-binary variables, including the response,
were log2-transformed. Input variables were normalized

and the dataset, consisting of all the 241600 combinations,
one replica each, was split with a 70%, 15% and 15% pro-
portion between training, validation and test. We assessed
performances as mean squared error (MSE) between pre-
dicted and real response (in log2 scale).

The nature of the task suggests to use fully connected
neural networks. We tested several hundreds architectures,
all with the same basic structure but variable size. The struc-
ture is a simple sequence of fully connected layers, each
followed by batch normalization and ReLU. The output is a
fully connected layer with 1 unit and no activation. The
size ranges in depth (from 5 to 16 layers before the last
one), in width (from 16 to 250 units) and in the progres-
sion of widths with layers, that was either rectangular (con-
stant width) or pyramidal (decreasing width). The number
of trainable parameters ranged between 1700 and 1.4M.

Network structures were defined in pairs, consisting of
one network with post-activations and shared biases (base-
line), and one network with pre-activations and unshared
biases (DAC) with similar number of trainable parameters.
To this end, in the DAC version, the number of units in each
layer was reduced by roughly a factor

√
2, in such a way

that the number of weights was halved, and adding the un-
shared biases, the total number of trainable parameters was
almost exactly the same as for the baseline network.

Training failed to reach a suitable error level in 15/576
cases for the baseline and 2/449 cases for DAC. The occur-
rence of this problem is significantly lower for DAC (bilat-
eral p-value 0.0063). Failed training experiments were ex-
cluded from further analysis as outliers. See [23, Figure 8]
for the results of all the other experiments.

We found that there is weak dependence on depth for
this task, and hence we aggregated experiments by width,
see Figure 3. Since DAC networks with the same number
of parameters have reduced number of units, we computed
their “equivalent width”, i.e.

√
2 times the actual width:

for example rectangular DAC networks with 141 units per
layer have as many parameters as base networks with the
same depth and 200 units per layers, and so we say they
have equivalent width 200. For rectangular networks, there
are four groups with widths (or equivalent widths) 25, 50,
100 and 200 for base (or DAC). For pyramidal networks,
the width of layers is not uniform, so we estimated an av-
erage width (or equivalent width) as

√
parameters/depth.

Obtained values formed six natural clusters that were used
as groups.

From these initial analyses we observed that passing
from shared to unshared biases can be inefficient if the net-
work is too small and hence has insufficient capacity. To
better explore the matter of efficiency of biases with re-
spect to weights, we considered a situation in which one
wants to enlarge a standard (shared-biases) model that has
N weights, either by adding weights or by adding biases.
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Figure 3. Aggregated and averaged results for the SGEMM regres-
sion task. Experiments are grouped by network shape (pyramidal
or rectangular, see text) and width. Error bars represent the sample
standard deviation of the values concurring to the average. Fully
connected networks with DACs perform better than the baseline
for larger widths, and similarly or worse for smaller widths, when
the general performance of the network is far from optimal.
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Figure 4. Efficiency analysis of unshared biases for the SGEMM
regression task. Rectangular baseline networks were compared
with models with double the parameters: either by adding weights
(orange) or by making biases unshared (blue). The resulting varia-
tions of the MSE are shown (negative means improvement). Error
bars represent the sample standard deviation of the values concur-
ring to the average (see text).

We measured the error reduction obtained when the num-
ber of parameters doubles in these two ways: by increasing
the number of units by a factor

√
2 (adds about N weights),

or by making the biases unshared (adds about N biases).
To estimate this reduction, first we obtained for each ex-

periment the averages of log-MSE across replicates; then
we computed the differences between models of size nor-
mal and double, for all widths and depths; then, since these
differences did not show dependence on the depth, see [23,
Figure 9], for each width we collected the different depths
and computed the average of the values.

The results are shown in Figure 4. Increasing the number
of weights (orange) has diminishing returns when the width
increases, with large benefits for small sizes and almost no
improvement passing from 141 to 200 units per layer. Pass-
ing from shared to unshared biases instead (blue), gives a
uniform improvement of about 0.25 nats in the test error.
This confirms that small networks, with error levels that are
far from optimal, benefit more from increased width than
from unshared biases, but when further width increase is
no more beneficial, then using unshared biases gives an ad-
ditional boost of performances and leads to otherwise un-
reacheable error levels.

Image classification tasks. We further experimented
with convolutional architectures for image classification
tasks, like VGG and ResNet. In all experiments we trained
a standard structure with post-activations and shared biases
(baseline) and a similar network with pre-activations and
unshared biases (DAC). In the case of convolutional layers,
using unshared biases only increases marginally the number
of parameters and the number of operations (see Section 4),
so we did not reduce the number of units in the DAC ver-
sion.

We chose three classification tasks with datasets of di-
verse nature: CIFAR-10 and CIFAR-100 [17]; two subsets
of ImageNet called Imagenette and Imagewoof [14]; and
ISIC 2019, a medical images dataset, consisting of skin le-
sion images [13]. Below we give further details and results
of the various experiments.

0.05 0.10 0.15 0.20 0.25
GFLOPs

7%

8%

9%

10%

11%
20/16

14/32

CIFAR-10, VGG

base
DAC

0.05 0.10 0.15 0.20 0.25
GFLOPs

30%

32%

34%

36%

38%
20/16

14/32

CIFAR-100, VGG

base
DAC

Figure 5. VGG, average test error. Compared performances of
VGG 20 layers, 16 channels, and VGG 14 layers, 32 channels
with shared biases (baseline, orange) and unshared biases (DAC,
blue) on CIFAR-10 and CIFAR-100. Test error (vertical axis) is
averaged over 5 replicates and over 5 epochs (see text). Error bars
are 95% confidence intervals for the true mean value. Complexity
(horizontal axis) is measured in GFLOPs per forward pass.

2814



Plain convolutional networks on CIFAR. We designed
two VGG-like architectures for CIFAR-10 and CIFAR-100,
in line with modern revisitations like [6]. The structure is
a simple sequence of 3 × 3 convolutional layers, each fol-
lowed by batch normalization and ReLU. The output is a
global average pooling (GAP) layer, followed by a fully
connected layer with 10 or 100 units and softmax activa-
tion. The first structure (referred as 20/16) has 20 layers
including the output, and the 19 convolutional layers start
with 16 kernels that become 32 and 64, after 7 and 13 lay-
ers. The second structure (14/32) has 14 layers, starts with
32 kernels and doubles after 5 and 9.

Each experiment was replicated 5 times with a 5-fold
cross-validation scheme. The best test accuracy was esti-
mated by averaging over the 5 replicates and over 5 epochs
centered on the best epoch on the validation dataset, see [23,
Section B] for details on this robust statistical estimator.

The networks with pre-activations and unshared biases
obtained a systematic improvement in the test accuracy
with respect to the baselines. The improvement is statis-
tically significant in all cases. For the two architectures
20/16 and 14/32, the improvement was 0.65%± 0.17% and
0.43% ± 0.09% on CIFAR-10, and it was 1.16% ± 0.22%
and 1.81%±0.19% on CIFAR-100, see Figure 5. The mod-
els with unshared biases require only a marginal increase
in complexity, with 11% more parameters and 5.5% more
FLOPs than the baseline, so these improvements cannot be
explained just by the larger size of the models.

Remark 5.1. To measure the size of the models, in this and
other plots, we favor floating point operations (FLOP) over
the number of parameters, as was advocated among other
sources in [29]. We provide plots with the number of pa-
rameters in [23].

ResNet networks on CIFAR. We used as baseline the
architecture proposed for CIFAR in the original ResNet pa-
pers [11, 12], with 20, 32, 44, and 56 layers (n = 3, 5, 7, 9)
both with the v1 post-activated [11] architecture and the v2
pre-activated [12] architecture. The structure is similar to
the VGG of the previous section, but with skip connections
every two layers. More explicitly, it starts with a convolu-
tion with 16 kernels, followed by three stages of n residual
blocks each, with 16, 32 and 64 kernels respectively. The
output is GAP plus fully connected, as before.

The residual blocks come in two versions, referred as v1
and v2. For v1 there is a classical post-activation sequence:

conv → BN → ReLU → conv → BN → +input → ReLU

For v2, instead, the authors found that ResNet performs bet-
ter with a pre-activations sequence:

BN → ReLU → conv → BN → ReLU → conv → +input

The conversion to pre-activation with unshared biases

7.0%

7.5%

8.0%

8.5%

9.0%

20

32
44

56

CIFAR-10, v1 20

32

44 56

CIFAR-10, v2

0.10 0.15 0.20 0.25
GFLOPs

29%

30%

31%

32%

33%

34%
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32

44 56

CIFAR-100, v1

base
DAC

0.10 0.15 0.20 0.25
GFLOPs

20

32

44
56

CIFAR-100, v2

Figure 6. ResNet, average test error. Compared performances of
ResNet networks with shared biases (baseline, orange) and un-
shared biases (DAC, blue), on CIFAR-10 (top) and CIFAR-100
(bottom), with architectures v1 (left) and v2 (right). Floating num-
bers are the layers count. Test error (vertical axis) is averaged over
5 replicates and over 5 epochs (see text). Error bars are 95% con-
fidence intervals for the true mean value. Complexity (horizontal
axis) is measured in GFLOPs per forward pass.

(DAC) was done as follows:

DAC → BN → DAC → BN → +input (v1)
BN → DAC → BN → DAC → +input (v2)

The training hyperparameters were the same as in the
plain convolutional networks experiments.

Figure 6 summarizes the results in terms of best test
accuracy, estimated robustly as for the VGG experiments,
see [23, Section B]. Among the 16 comparisons, 15 are in
favor of DAC models, with 9 of them statistically signifi-
cant (p-value below 5%). This confirms that using unshared
biases improves the performances of residual convolutional
networks on CIFAR, with only a marginal increase in the
model complexity. In fact, one could argue that, if the im-
provement of the test error between baseline and DAC was
due only to the larger sizes of the latter, then in the figure,
the decreasing blue and orange lines connecting models of
growing depth, would be superimposed. They are partially
superimposed for CIFAR-10, v2 and CIFAR-100, v1, but
well separated in the other two cases.

Table 1 presents a simpler metric: the lowest test error
rate (calculated as the minimum over the epochs of the av-
erage of the 5 replicates). The performance of the baselines
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Table 1. Comparison of minimum test errors in percent points on
CIFAR-10 and CIFAR-100 (± one standard error).

CIFAR-10, v1 CIFAR-10, v2

Layers Base DAC Base DAC
20 8.64±0.12 8.28±0.19 8.73±0.10 8.33±0.07
32 7.90±0.04 7.57±0.11 7.85±0.09 7.56±0.15
44 7.69±0.09 7.27±0.06 7.14±0.09 7.10±0.05
56 7.34±0.17 7.13±0.11 7.02±0.09 6.89±0.05

CIFAR-100, v1 CIFAR-100, v2

Layers Base DAC Base DAC
20 33.50±0.16 32.54±0.04 33.50±0.11 32.62±0.10
32 31.66±0.12 31.09±0.09 31.79±0.12 31.05±0.12
44 30.40±0.11 30.42±0.19 30.50±0.07 29.93±0.20
56 30.53±0.23 30.32±0.19 29.89±0.22 29.32±0.17

Table 2. Comparison of minimum test errors in percent points on
Imagenette and Imagewoof (± one standard error).

Imagenette, v1 Imagenette, v2

Layers Base DAC Base DAC
20 13.42±0.26 11.69±0.11 11.98±0.17 11.79±0.13
32 13.14±0.45 11.75±0.08 11.40±0.09 11.28±0.11

Imagewoof, v1 Imagewoof, v2

Layers Base DAC Base DAC
20 23.20±0.26 22.61±0.25 22.61±0.17 21.70±0.22
32 23.06±0.24 21.32±0.29 21.75±0.17 20.65±0.14

GFLOPs
0.509 0.542 0.509 0.542
0.865 0.918 0.865 0.918

aligns with typical values for networks of similar complex-
ity found in the literature. Both the figure and table suggest
that using unshared biases in ResNet architectures leads
to measurable performance improvements across most ver-
sions and benchmark datasets. In some instances, using un-
shared biases improves the corresponding baselines despite
having fewer layers.

We performed also an experiment on CIFAR-10 using
a four times wider ResNet20 v2 architecture, with 64, 128
and 256 kernels in the three stages, resulting in a total of
4.3M parameters for the baseline model. Using unshared
biases instead of shared biases, the minimum test error
dropped from 5.69% to 5.16%, while the number of param-
eters increased as usual by 11%, and the FLOPs by 5.5%.

ResNet networks on Imagenette and Imagewoof. Im-
agenette and Imagewoof [14] are subsets of ImageNet that
are frequently utilized for model benchmarking. They of-
fer a simpler and faster alternative to ImageNet while pre-
serving many of its challenges. Imagenette comprises about
10k images belonging to 10 easily distinguishable classes,
whereas Imagewoof includes 10 classes that are more chal-

Table 3. Ablation study isolating the contribution made by pre-
activation only (with shared biases) for ResNet20 architectures
on CIFAR. Reported values (absolute) are the estimated improve-
ments in test accuracy when replacing the standard post-activation
with pre-activation. Relative values are relative with respect
to the estimated improvement when using full DACs, with pre-
activations and unshared biases.

Absolute Relative to DAC
v1 v2 v1 v2

CIFAR-10 −0.13% +0.08% −41% +31%
CIFAR-100 +0.08% +0.07% +9% +8%

lenging to classify due to their similarities, as they represent
10 different dog breeds.

For each dataset, we selected the 160-pixel version and
resized it to 80 × 80 pixels. We used the 20 and 32 lay-
ers ResNet structure of the CIFAR-10 experiments, with the
same training hyperparameters.

Table 2 summarizes the resulting lowest test error rates
(calculated as the minimum over the epochs of the aver-
age of the 5 replicates). The performance of the baselines
aligns with typical values for networks of similar complex-
ity found in the literature. Using unshared biases (DAC)
shows marked performance improvements, again at the cost
of a marginal increase in size and complexity. In partic-
ular it can be observed that the baseline ResNet v1 (post-
activated) is much worse than baseline v2 and DACs (both
pre-activated).

ResNet networks on images for melanoma diagno-
sis. To investigate performances in image classification
tasks that are both more difficult and more applied, we con-
ducted an experiment using a ResNet v1 model on a real-
world dataset from International Skin Imaging Collabora-
tion (ISIC). We used ISIC 2019 [13], a collection of 25330
quality-controlled dermoscopic images of skin lesions, di-
vided into 8 classes. With 20 layers, the baseline error
is 27.05%, and with DAC is 26.47%, for an improvement
of 0.58%. The same figures for 32 layers are 26.30% and
25.04%, for an improvement of 1.26%.

Ablation study: pre-activation with shared biases.
Since unshared biases cannot be realized without pre-
activations, in all previous DAC experiments we used both
together. We decided then to investigate briefly with pre-
activation only (hence, with shared biases). We trained
ResNet20 v1 and v2 architectures, on CIFAR-10 and
CIFAR-100.

We found that these models performed comparably to the
baseline model, but distinctly worse than using full DACs,
with pre-activations and unshared biases, see Table 3. In
one case the result was slightly worse than the baseline, and
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even in the other cases the improvements were never statis-
tically significant.

Comparison with MBA. Since multi-bias activation
(see Section 3) introduced in [19] is based on a principle
close to DAC, we tested it on the same ResNet20 archi-
tecture on CIFAR-100. When converting a baseline struc-
ture to MBA, the number of parameters increases K-fold,
so these models are much larger than DAC, that increases
the parameters by 11%. In spite of this, we found improve-
ments over the baseline smaller than using DACs (0.52%,
0.64%, 0.14% for MBA with K = 2, 4, 8, and 0.97% for
DAC). It is possible that MBA might require a specific tun-
ing of hyperparameters to reach better performances, but
since we did not do this for DAC models, we did not inves-
tigate the matter further.

6. Theoretical discussion
This section explores theoretical arguments that support

the efficiency of using pre-activations with unshared biases,
highlighting the fact that this improves considerably the
flexibility of the model.

Last and first layers. In a plain fully connected neu-
ral network with ReLU activations and standard units, one
would expect a ReLU activation at the output of the very last
layer. However, this is undesirable as the final output should
be informative and compatible with the loss function (e.g.,
logits for cross-entropy). So one usually has to remove that
last activation, which, using pre-activations, would not have
existed in the first place.

Symmetrically, consider the first layer of a similar net-
work: with standard units, it would not make sense to filter
the input nodes with ReLU. Nevertheless, with unshared bi-
ases, it is instead very reasonable to apply the nonlinearity
to the input nodes, because different units in the first layer
might benefit from tailored filtering of the input.

In both cases pre-activated units with unshared biases
seem more natural.

Input replication. Filtering the input as just described
might be even more useful if the input is replicated multi-
ple times. Consider the toy example of a one-dimensional
input x and a shallow network with only one layer of one
unit aiming at approximating some function f : R → R.
A pre-activated unit ‘0’ with input replicated n times x =
(x, x, . . . , x) and unshared biases gives:

f̂DAC(x) =

n∑
j=1

w0,j φ(b0,j + x), (6)

which is a universal approximator of a large class of func-
tions R → R, for n → ∞. On the other hand, a standard
post-activated unit with replicated inputs would give:

f̂std(x) = φ

(
b0 +

n∑
j=1

w0,j x

)
= φ(b0 + w̃0 x),

equivalent to the same without replicating the inputs, re-
gardless of n. To gain expressivity we can add a hidden
layer with n standard units (with or without replicated in-
puts is the same), obtaining:

f̂2×std(x) = φ

(
b0 +

n∑
j=1

w0,j φ(bj + w̃j x)

)
.

To show that f̂2×std has a representation power similar to
f̂DAC, we reparametrize, putting w̃0,j = w0,j |w̃j | and b̃j =
bj/|w̃j | in the above expression, which gives:

f̂2×std(x) = φ

(
b0 +

n∑
j=1

w̃0,j φ
(
b̃j + sign(w̃j)x

))
.

Thus, in this toy problem, one needs a two-layers standard
neural network to get a representation power similar to a
single pre-activated unit.

Backpropagation. We consider a DAC multi-layer per-
ceptron, and compute the derivatives of a loss E with re-
spect to the parameters. Let yi, wi,j and bi,j denote the
outputs, weights, and DAC biases of layer k, respectively,
and let m denote the number of units and y⋄j denote the out-
puts of layer k− 1. Then yi =

∑m
j=1 wi,j φ(bi,j + y⋄j ), and

we get: 
∂E

∂wi,j
= φ(bi,j + y⋄j )

∂E
∂yi

∂E
∂bi,j

= wi,j φ
′(bi,j + y⋄j )

∂E
∂yi

∂E
∂yi

=
∑n

l=1 w
∗
l,i φ

′(b∗l,i + yi)
∂E
∂y∗

l

(7)

Here n, w∗
l,i, b

∗
l,i and y∗l are the units, the weights, the pre-

activation biases and the outputs of layer k+1, respectively.
If we were to use post-activated units with shared biases

instead, then φ′(b∗i + yi) in the last equation would not de-
pend on l and could be taken out of the sum. This would
result in a single 0-1 factor regulating the entire derivative.
Therefore, unshared biases provide a more granular mask-
ing of the different contributions to the gradient.

7. Conclusions
This paper is intended as a foundational study on archi-

tectures that leverage pre-activation with unshared biases. It
provides qualitative arguments and empirical evidence that
this choice has measurable advantages and promising po-
tential and that there are situations in which trading some
weights for additional biases is more efficient. As a future
development, one could investigate if and how DAC units
can be integrated on diverse architectures, like for instance
mobileNet [28], EfficientNet [33], Transformers [34], ViT
[7], generative models [9,15] or in a reinforcement learning
setting like the ones described in [24–27, 32, 35].
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