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Abstract

Recent research in representation learning has shown
that hierarchical data lends itself to low-dimensional and
highly informative representations in hyperbolic space.
However, even if hyperbolic embeddings have gathered at-
tention in image recognition, their optimization is prone to
numerical hurdles. Further, it remains unclear which appli-
cations stand to benefit the most from the implicit bias im-
posed by hyperbolicity, when compared to traditional Eu-
clidean features. In this paper, we focus on prototypical
hyperbolic neural networks. In particular, the tendency of
hyperbolic embeddings to converge to the boundary of the
Poincaré ball in high dimensions and the effect this has on
few-shot classification. We show that the best few-shot re-
sults are attained for hyperbolic embeddings at a common
hyperbolic radius. In contrast to prior benchmark results,
we demonstrate that better performance can be achieved by
a fixed-radius encoder equipped with the Euclidean metric,
regardless of the embedding dimension.

1. Introduction

Hyperbolic embeddings first appeared in machine learn-
ing as an inductive bias for representing data assumed to
have a latent hierarchical structure [3, 5, 20], outperform-
ing Euclidean-based approaches in community detection,
link prediction and word embedding benchmarks [7]. Not
long after, they were enthusiastically adopted by the com-
puter vision community, finding applications in classifica-
tion [12], zero-shot/few-shot learning [13, 16], contrastive
learning [9,15,28], segmentation [10] and VAEs [17,19,24].
The theoretical motivation underlying their use stems from
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Figure 1. Hyperbolic image embeddings in the Poincaré ball: ex-
pectation (left) versus reality (right). In high-dimensional hyper-
bolic space, the volume of a ball is concentrated near its surface
where the hyperbolic metric varies monotonically with the angle.
Thus, the hierarchy-revealing property of hyperbolic space is lost.

the fact that hyperbolic geometry can theoretically capture
complex hierarchical features that are otherwise elusive in
low-dimensional Euclidean space [3, 20, 21].

In spite of the promising empirical results reported in the
computer vision literature thus far, ascertaining which tasks
can benefit the most from hyperbolic geometry is not yet
clear. Up until recently, even classical cross-entropy based
image classification in the Poincaré ball model of hyper-
bolic space was hardly on par with its Euclidean counter-
part, much less competing with successful non-computer
vision applications. Recent research [12] has linked this
performance gap to embeddings converging towards the
boundary of the ball. There, the Riemannian gradient van-
ishes, which effectively brings the optimization to a halt.
It is known that the hyperboloid model outperforms the
Poincaré ball partly because it circumvents many such nu-
merical issues when learning low-dimensional word embed-
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dings [21]. In image recognition applications, where repre-
sentations are high-dimensional, a possible fix is to clip the
embeddings’ magnitude [12], which prevents the gradient
underflow. Despite producing better classifiers, this tech-
nique does not prevent the embeddings from saturating all
at the boundary of the smaller ‘clipped’ ball. Such a struc-
tural fact was obscured by performance indicators.

Our insight is that hyperbolic prototypical networks with
a high-dimensional output space, typically in the order of
103 in few-shot learning, tend to produce embeddings with
the largest possible magnitude, as illustrated in Fig. 1. In
other words, instead of populating the entire space of the
ball as expected, we observe that top performers place the
visual embeddings near the border. In fact, the prototypical
loss [25] is unbounded below.

We show that the hyperbolic measure of a high-
dimensional ball is concentrated at its boundary, similarly
to what happens in Euclidean space. This is corroborated
by our experiments in popular few-shot datasets, which
demonstrate that, regardless of magnitude clipping, in high-
dimensional hyperbolic space, image embeddings lie at the
maximum radius allowed. Thus, even if we employ a hyper-
bolic metric, the representations are restricted to a sphere
where the distance between points varies monotonically
with the angle between them. Such a scenario can be mir-
rored in Euclidean space since, in this case, there is no
evidence of the property that sets hyperbolic space apart:
its ability to encode hierarchical information in low dimen-
sions.

In summary, we make a threefold contribution: 1) We
show that, in high-dimensional hyperbolic space, the vol-
ume of a ball is concentrated at its boundary. This phe-
nomenon, well established in Euclidean space, is often
linked to the curse of dimensionality; 2) We demonstrate
empirically that the boundary saturation is actually the con-
figuration wherein the current best hyperbolic few-shot re-
sults are attained; 3) Since the boundary of the space where
embeddings lie is a hyperbolic sphere, we show that a fixed-
radius Euclidean encoder is able to match and even improve
the hyperbolic classification accuracy without any of the in-
tricacies of Riemannian optimization.

Prior benchmarks did not perform such a comparison,
leading to the belief that hyperbolic embeddings were bet-
ter suited towards few-shot recognition than traditional Eu-
clidean features, by a considerable margin. Our findings
present a stark contrast with previous Euclidean versus hy-
perbolic benchmarks [12, 13], where a considerable differ-
ence between the two geometries was observed.

Intuitively, our results suggest that individual images are
simply instances of visual semantic relations and do not
convey higher level concepts represented by a semantic hi-
erarchy. In fact, while thinking of a concept, say a bird, we
have great difficulty in finding one single image that con-

stitutes a ‘parent’ of the whole class. In this view, the best
classifier should represent all images as leaves of a tree, in
other words, at the same radius in the Poincaré ball.

2. Related work
The use of hyperbolic space in machine learning can be

traced back to earlier works [2, 14] that set forth the hy-
pothesis that complex networks may be thought of as dis-
crete observations of a latent smooth metric space. For
data points which are semantically meaningful and thus,
amenable to being hierarchically categorized, hyperbolic
geometry arises naturally as a consequence of node simi-
larity distances. This duality between hierarchies, or more
generally trees, and hyperbolic geometry was also shown
by Sarkar [23] who proposed a combinatorial algorithm for
embedding any tree in the Poincaré ball, while preserving
the finite graph metric.

Symbolic data As a means to circumvent the limitations
of Euclidean space in capturing complex symbolic patterns,
Chamberlain et al. [3] described a hyperbolic version of
the celebrated word2vec architecture [18] in the Poincaré
ball model. The authors showed that community detection
and node attribute prediction in low-dimensional hyperbolic
space outperforms methods based on higher-dimensional
Euclidean embeddings. Nickel and Kiela [20], adopting
a similar model, reported similar findings for WordNet re-
construction and link prediction tasks. Unlike the former
approach however, the authors derived a stochastic Rie-
mannian optimization method. Subsequent work [21], mo-
tivated by the numerical hurdles presented by optimiza-
tion in the Poincaré ball, proposed supplanting it for the
Lorentz model, also known as the hyperboloid model. It
was through the use of this model that Sala et al. [22] de-
rived a matrix factorization-based hyperbolic multidimen-
sional scaling algorithm (MDS) and Chami et al. designed
hyperbolic graph convolutions [5].

Image recognition In image recognition, hyperbolic rep-
resentation spaces have been employed with different end
goals. One of them being the case wherein a hierarchy is es-
tablished before-hand and the desiderata is for the represen-
tation space to be structured accordingly. Such was the basis
for the zero-shot architecture proposed by Liu et al. [16],
where WordNet was used as prior hierarchical knowledge
of ImageNet, and its embeddings interpreted as class proto-
types. Conversely, actual hyperbolic prototypical learning
approaches have been set forth, such as ideal hyperbolic
prototypes, proposed by Atigh et al. [1], making use of
Busemann functions. More closely related to the original
prototypical learning paper [25] is the work by Khrulkov
et al. [13], where the authors retain the entire architecture,
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replacing simply the Euclidean metric by the Poincaré one,
which yielded superior results. Advances have also been
made in classical image classification. Based on empirical
evidence suggesting that hyperbolic networks were not on
par with their Euclidean counterparts, Guo et al. [12] at-
tributed this to gradient underflow arising from the inverse
Riemannian metric tensor and proposed clipping the magni-
tude of the Euclidean features before these are projected to
the hyperbolic manifold. Finally, hyperbolic space has also
been applied to image segmentation [10], VAEs [17,19,24]
and contrastive learning [9, 15, 28].

The remainder of this paper is organized as follows. In
Section 3 we lay out a brief summary of hyperbolic geome-
try, namely the hyperboloid and Poincaré ball models. In
Section 4 we put forward the reasoning behind why we
should expect hyperbolic image encoders to behave simi-
larly to fixed-radius Euclidean ones. Finally, we present
empirical results to validate our approaches in Section 5 and
draw concluding remarks subsequently.

3. Hyperbolic space
Much like Euclidean space, hyperbolic space is isotropic

and completely defined by its constant curvature, which un-
like the former is negative everywhere. Several isomorphic
models of hyperbolic space exist and in the machine learn-
ing literature, the most commonly adopted are the hyper-
boloid, also known as the Lorentz model [5, 7, 21], and the
Poincaré ball [1,3,12,13,20], obtained from a stereographic
projection of the former.

Throughout this paper we will be working with the
Poincaré ball model of hyperbolic space, which can be de-

rived from the hyperboloid model as follows. Consider
the Minkowski space Rd,1 := {x = (x1, . . . , xd+1) ∈
Rd × R}, together with the bilinear form (Lorentz pseu-
dometric)

⟨x,y⟩L :=

d∑
i=1

xiyi − xd+1yd+1. (1)

The form ⟨x,x⟩L is known as a Lorentz quadratic form.
While not positive-definite everywhere in Rd,1 and thus, not
a metric, it is positive-definite when restricted to the upper
sheet of the d-hyperboloid

Hd
k :=

{
x ∈ Rd,1 | ⟨x,x⟩L =

1

k
, xd+1 > 0

}
, (2)

with curvature k < 0. We can write Hd
k in local coordinates

u1, . . . , ud via the inclusion map ϕ : Hd
k → Rd,1

ϕ(u) :=

(
u1, . . . , ud,

√
∥u∥22 −

1

k

)
. (3)

Poincaré model The Poincaré ball model with sectional
curvature k < 0, denoted as P d

k , is obtained via the stere-
ographic projection Π : Hd

k → P d
k of the d-hyperboloid

through the origin (see Figure 2)

Π(x) :=

(
x1

1 +
√
−kxd+1

, . . . ,
xd

1 +
√
−kxd+1

)
. (4)

This yields the ball

Bd
k = Π(Hd

k ) =

{
x ∈ Rd : ∥x∥22 < −1

k

}
, (5)

where the boundary corresponds to infinity. The metric ten-
sor in the canonical basis of Rd is λ(u)2Id, with λ(u) =
2/(1 + k∥u∥22). The inverse projection Π−1 : P d

k → Hd
k

takes the form

Π−1(u) =

(
λ(u)u,

1√
−k

(λ(u)− 1)

)
. (6)

Since λ(u) → ∞ as ∥u∥2 → 1/
√
−k, for numerical rea-

sons the effective radius of the ball is usually capped [8,13]
i.e. for ϵ > 0,

reff :=
1− ϵ√
−k

. (7)

The Poincaré exponential map at the origin Exp0(v) :
TP d

k → P d
k allows us to project a tangent vector back to

the ball. This map is the element responsible for converting
an Euclidean neural network to a hyperbolic one and reads

Exp0(v) = tanh
(√

−k∥v∥2
) v√

−k∥v∥2
. (8)
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Finally, the Poincaré geodesic (shortest-path) distance be-
tween any x and y ∈ P d

k is given by

dPd
k
(x,y) :=

2√
−k

atanh
(√

−k∥ − x⊕ y∥2
)
, (9)

where ⊕ denotes the Möbius addition,

x⊕ y =
(1− 2k⟨x,y⟩ − k∥y∥22)x+ (1 + k∥x∥22)y

1− 2k⟨x,y⟩+ k2∥x∥22∥y∥22
.

(10)

Poincaré image encoder Given an Euclidean backbone f
with parameters θ, we consider hyperbolic image encoders
of the type

h(x; θ) = ExpP0 (f(x; θ)) . (11)

The clipping strategy put forward in [12] consists of
setting a maximum magnitude c for f(x; θ), restricting
the Poincaré ball to a ball with effective radius reff =
tanh(

√
−kc)/

√
−k. During training, for a suitable loss

function L, and letting z := h(x; θ) ∈ P d
k , the Euclidean

gradient ∇zL may be backpropagated as is (see implemen-
tation by [13]), or it may be converted to a Riemannian gra-
dient via scaling by the inverse metric tensor gradzL =
λ(z)−2∇zL(z), as in [12].

4. Few-shot in the boundary
It is known that in hyperbolic neural networks, embed-

dings are prone to converge to the boundary of P d
k (in prac-

tice, the effective radius reff ). We focus on the fact that,
from a measure concentration argument, at the dimensions
typically employed in few-shot learning, hyperbolic em-
beddings should concentrate at the boundary, regardless of
whether their magnitude is clipped.

Hyperbolic prototypical learning We assume an image
dataset I with C semantic classes. If M is a manifold and
fθ : I → M an image encoder parameterized by θ, a typ-
ical prototypical learning approach [25] models the proba-
bility of zi being of class c as

p(c|zi) =
exp(−dM(wc, f(zi; θ)))∑
k exp(−dM(wk, f(zi; θ))

, (12)

where wc ∈ M is the centroid of the c-th class. In classi-
cal prototypical networks, the squared Euclidean norm ℓ22 is
chosen as dM [25]. In Poincaré networks, the geodesic dis-
tance (9) is used instead. For simplicity, let xi = f(zi; θ)
and assume we are optimizing over x instead of θ. The neg-
ative log-likelihood associated with the i-th image is then

Li = dM (wc,xi) + log
∑
k

e−dM(wk,xi) (13)

and the loss is L =
∑

i Li. We can easily verify that L is
unbounded below. Pick C directions in Rd, one for each
class centroid wc. Then set the direction of each embed-
ding to match that of its class xi = rwc for a certain r > 0.
The first term of (13) is automatically zero and the sec-
ond goes to −∞ as the embeddings approach the boundary
r → 1/

√
−k. This justification could just as well be ap-

plied to Euclidean space, with the difference that we would
require the output of the encoder to be unbounded. This is
not necessary in the Poincaré model. In fact, the Poincaré
exponential map at the origin (8) used to map points from
the tangent space Rd back to the manifold, is a scaling fac-
tor that allows us to approach the boundary at an exponen-
tial rate.

High-dimensional hyperbolic space In d-dimensional
Euclidean space, the ratio of the volume over the area of a
ball decreases with 1/d i.e., in high-dimensional Euclidean
space the volume is concentrated close to the surface. In
hyperbolic space, the same thing happens.

Proposition 1 (Hyperbolic measure concentration). For
large d, the volume of a hyperbolic ball is concentrated
close to its boundary .

Proof. From III.4 [6], the volume of a hyperbolic ball of
(hyperbolic) radius r is

Vk(r) =
2πd/2

Γ(d/2)

∫ r

0

(
sinh(

√
−kt)√

−k

)d−1

dt (14)

and its area is given by

Ak(r) =
2πd/2

Γ(d/2)

(
sinh(

√
−kr)√

−k

)d−1

. (15)

Hence,

Vk(r)

Ak(r)
=

(
sinh(

√
−kr)√

−k

)1−d ∫ r

0

(
sinh(

√
−kt)√

−k

)d−1

dt

=

∫ r

0

(
sinh(

√
−kt)

sinh(
√
−kr)

)d−1

dt. (16)

For any d > 1, the function sinh(
√
−kt)

sinh(
√
−kr)

is convex for t > 0,
and thus, for t ∈ [0, r], it is bounded above by t/r. From

0 ≤
(
sinh(

√
−kt)

sinh(
√
−kr)

)d−1

≤ td−1

rd−1
, (17)

the integral can be bounded above as

Vk(r)

Ak(r)
≤
∫ r

0

td−1

rd−1
dt =

r

d
. (18)

Thus, Vk(r)
Ak(r)

→ 0 as d → ∞.

2085



Note that this result holds for hyperbolic space in gen-
eral, namely the Poincaré ball and the hyperboloid models
commonly employed in machine learning. These arguments
lead us to our hypothesis: given the high dimensionality of
the Poincaré ball used in the hyperbolic few-shot literature,
embeddings should lie at, or close to, reff . If this holds, it
brings into question the hyperbolicity of the learnt represen-
tation space. In fact, a hyperbolic (d−1)-sphere containing
embeddings at reff from the origin is isometric to an Eu-
clidean (d− 1)-sphere of radius

2/
√
−k + 2reff

1/
√
−k − reff

. (19)

This can be shown by attending to the fact that any (d −
1)-sphere in hyperbolic space with hyperbolic radius r
is isometric to an Euclidean (d − 1)-sphere with radius

1√
−k

sinh(r
√
−k). If embeddings lie at reff from the ori-

gin, their hyperbolic radius is

1√
−k

log

(
1/
√
−k + reff

1/
√
−k − reff

)
(20)

and (19) follows. This isometry, in turn, implies that the
representation space is not negatively curved.

The Euclidean vs hyperbolic disparity Assume our hy-
pothesis holds and the embeddings all concentrate at reff .
While the metric (9) employed in prior work [11, 13] is hy-
perbolic, it only encodes the angular distance. In fact, con-
sider two embeddings x,y in P d

k such that ∥x∥2 = ∥y∥2 =
reff and ∠(x,y) = α. The hyperbolic distance between
them is

dPd
k
(x,y) =

1√
−k

acosh (a+ b cos(α)) , (21)

where b =
4kr2eff

(1+kr2eff )
2 and a =

(
1−kr2eff
1+kr2eff

)2
(see supplemen-

tal material), which up to a multiplicative factor, depends
only on θ and kr2eff . A comparison between this metric, the
ℓ2 and the ℓ22 is shown in Fig. 3. As we observe on the
rightmost plot, the derivative of dPd

k
at α → 0 surges as

we approach the boundary. As this happens, the penalty ap-
plied to the angular distance α increases. Surprisingly, the
Euclidean metric ℓ2 (center plot) is not that different from
the hyperbolic. In fact, it becomes a good approximation
far from the boundary. In contrast, consider the squared Eu-
clidean distance ℓ22 depicted in the leftmost plot, often em-
ployed in prototypical networks since it defines a Bregman
divergence [25]. Its derivative approaches 0 as α → 0.

Prior work conducted on hyperbolic prototypical learn-
ing benchmarked Euclidean space via ℓ22. Based on the pre-
vious paragraph, we propose instead fixed-radius Euclidean
embeddings with the ℓ2 ∝

√
1− cos(α) metric. Given a

radius hyperparameter r = 1/
√
k (k > 0 is a spherical

curvature), and the Euclidean backbone f(·; θ), the embed-
dings fed to the prototypical loss (13) are computed as

r
f(x; θ)

∥f(x; θ)∥2
. (22)

As our experiments show, this Euclidean architecture is
ahead of the hyperbolic few-shot state-of-the-art in most of
the experiments conducted.

5. Experiments
We conducted our empirical evaluation in the CUB-

200-2011 [27] and MiniImageNet [26] few-shot recognition
tasks, in a prototypical learning regime.

Architecture We used a 4-layer ConvNet as backbone,
with variable output dimension equal to d. These embed-
dings were then projected to the Poincaré ball through the
exponential map at the origin (8) and through magnitude
rescaling in the Euclidean case (22). In the latter, the radius
is a hyperparameter, similarly to the curvature in the former.
In the 5-shot 5-way setting, Poincaré centroids are com-
puted through the Einstein midpoint closed-form expression
set forth in [13]. In the Euclidean and the fixed-radius case,
the Euclidean centroid was used. In terms of preprocessing,
instead of cropping a centered square patch and resizing it
to 84× 84 during inference as done in [13], we padded the
cropped bounding boxes in the case of CUB, and the origi-
nal images in MiniImageNet, so as to obtain a square image
and then resized them. All other data augmentations were
the same and can be consulted in the supplemental material.

Training All encoders were trained for 200 episodes,
where each episode consisted of 15 queries, each of which
associated with s-shot and w-way images. Adam was used
with an initial learning rate of 10−3 on CUB and 5×10−3 on
MiniImageNet. Similarly to prior work, a step LR scheduler
was used (see supplemental material). Both on the CUB
dataset and on MiniImageNet, we used the train-validation-
test split from [13]. In the former, 100 classes were used
for training, 50 for validation and 50 for testing, and the
shot-way was the same for training and inference i.e., 1-
shot 5-way and 5-shot 5-way. In the latter, the 100 class
split was 64-16-20. The 1-shot 5-way model was trained in
a 1-shot 30-way regime, and the 5-shot 5-way model in a
1-shot 20-way setting.

Results The CUB 200 2011 results are shown in Tables
1 and 2. Those of MiniImageNet are presented in Tables 3
and 4. Given that hyperbolic space is often praised for its
ability to encode information in few dimensions, for each
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Figure 3. Comparison of metrics at different distances from the origin from 0 to reff = 0.99 (color encodes fraction of reff ). Left: squared
Euclidean distance (ℓ22). Middle: Euclidean distance (ℓ2). Right: Poincaré distance (dPd

k
) for k = −1.

dataset we present the test accuracy computed for four em-
bedding dimensions d = 128, 256, 512 and 1024. For hy-
perbolic and fixed-radius architectures the minimum, av-
erage and maximum ℓ2 embedding norms are reported as
rmin, ravg and rmax, respectively. The traditional Euclidean
architecture used in the literature as the Euclidean baseline
(ProtoNet) is denoted as (Rd, ℓ22), the Poincaré ball with
curvature k reads as P d

k and the proposed fixed-radius Eu-
clidean embeddings as (Sd, ℓ2). The curvatures used in the
latter were 0.006, 0.002 in 1s5w, 5s5w (CUB) and 0.002,
0.0002 in 1s5w, 5s5w (Mini), respectively.

As posited, when d increases the Poincaré embeddings
approach the effective radius. In fact, plugging ϵ = 0.01
in (7) we obtain reff = 4.47 for k = −0.05, reff = 9.99
for k = −0.01 and reff = 14.13 for k = −0.005. In the
CUB dataset, the 5s5w training configuration avoids bound-
ary saturation up to d = 512, however, the results are worse
than the fixed-radius Euclidean architecture for the same di-
mensions. In MiniImageNet 5s5w, we observe embeddings
not at the boundary for the largest dimension d = 1024 con-
sidered. That being the case, the test accuracy is higher than
that obtained in lower dimensions with embeddings farther
from reff . Note that in the two datasets considered, we ob-
served the same Euclidean versus hyperbolic ProtoNet few-
shot accuracy gap reported in prior work [12,13], especially
in the 1s5w setting. However, the empirical advantage of
hyperbolic representations no longer holds once normal-
ized Euclidean embeddings together with the ℓ2-norm are
introduced in the benchmark. In fact, even when Poincaré
embeddings yield better results, the difference w.r.t fixed-
radius embeddings is minor. Further, this is verified across
all the dimensions considered, unlike e.g., graph or word
embeddings where, in low dimensions, hyperbolic space of-
fers a sizeable advantage.

Finally, results on the effect of magnitude clipping in
high-dimensions for the CUB dataset are shown in Table
5. These experiments were performed for d = 1024,
k = −0.05 and using Riemannian gradient as mentioned

d Space Test acc rmin ravg rmax

27

(Rd, ℓ22) 59.94± 0.23 - - -
P d
−0.05 64.08± 0.23 4.47 4.47 4.47

P d
−0.01 56.46± 0.22 9.98 9.99 9.99

(Sd, ℓ2) 66.13± 0.23 12.91 12.91 12.91

28

(Rd, ℓ22) 56.27± 0.23 - - -
P d
−0.05 65.70± 0.23 4.47 4.47 4.47

P d
−0.01 59.74± 0.22 9.99 9.99 9.99

(Sd, ℓ2) 66.47± 0.23 12.91 12.91 12.91

29

(Rd, ℓ22) 56.71± 0.23 - - -
P d
−0.05 66.65± 0.23 4.47 4.47 4.47

P d
−0.01 61.52± 0.23 9.99 9.99 9.99

(Sd, ℓ2) 67.90± 0.23 12.91 12.91 12.91

210

(Rd, ℓ22) 55.64± 0.23 - - -
P d
−0.05 67.21± 0.23 4.47 4.47 4.47

P d
−0.01 63.85± 0.23 9.99 9.99 9.99

(Sd, ℓ2) 67.92± 0.23 12.91 12.91 12.91

Table 1. CUB 200 2011 1-shot 5-way test results, 95% confi-
dence intervals and embedding radii.

in the original paper. For each clipping value c, the corre-
sponding effective ball radius can be obtained by plugging
c in the exponential map (8) and taking the ℓ2-norm. Thus,
for c = 2, 3 and 4 we have 1.877, 2.618 and 3.191, respec-
tively. We see the saturation effect occurring, especially for
larger clipping values, where the test accuracy is coinciden-
tally higher.

6. Discussion

As evidence by our results, in few-shot recognition, Eu-
clidean embeddings do not perform worse than hyperbolic
ones, as previously assumed. In fact, they can fare even bet-
ter. This disparity with respect to the state-of-the-art can be
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d Space Test acc rmin ravg rmax

27

(Rd, ℓ22) 78.95± 0.16 - - -
P d
−0.05 79.17± 0.17 4.35 4.47 4.47

P d
−0.01 82.30± 0.15 8.07 9.59 9.87

(Sd, ℓ2) 83.13± 0.14 22.36 22.36 22.36

28

(Rd, ℓ22) 80.14± 0.16 - - -
P d
−0.05 80.58± 0.16 4.33 4.47 4.47

P d
−0.01 84.51± 0.14 9.89 9.99 9.99

(Sd, ℓ2) 85.01± 0.14 22.36 22.36 22.36

29

(Rd, ℓ22) 79.95± 0.15 - - -
P d
−0.05 81.04± 0.16 4.46 4.47 4.47

P d
−0.01 84.60± 0.14 9.90 9.99 9.99

(Sd, ℓ2) 85.18± 0.14 22.36 22.36 22.36

210

(Rd, ℓ22) 78.83± 0.15 - - -
P d
−0.05 81.06± 0.16 4.47 4.47 4.47

P d
−0.01 84.70± 0.14 9.99 9.99 9.99

(Sd, ℓ2) 85.37± 0.14 22.36 22.36 22.36

Table 2. CUB 200 2011 5-shot 5-way test results, 95% confi-
dence intervals and embedding radii.

d Space Test acc rmin ravg rmax

27

(Rd, ℓ22) 49.11± 0.20 - - -
P d
−0.005 49.10± 0.20 3.78 5.85 7.41
P d
−0.01 49.60± 0.20 2.78 3.53 4.15

(Sd, ℓ2) 50.24± 0.20 22.36 22.36 22.36

28

(Rd, ℓ22) 49.14± 0.20 - - -
P d
−0.005 49.25± 0.20 8.77 9.93 10.44
P d
−0.01 47.07± 0.19 7.54 8.05 9.43

(Sd, ℓ2) 50.36± 0.20 22.36 22.36 22.36

29

(Rd, ℓ22) 48.84± 0.20 - - -
P d
−0.005 45.59± 0.18 14.12 14.13 14.13
P d
−0.01 48.71± 0.19 9.98 9.99 9.99

(Sd, ℓ2) 50.97± 0.19 22.36 22.36 22.36

210

(Rd, ℓ22) 49.10± 0.20 - - -
P d
−0.005 49.19± 0.19 14.13 14.13 14.13
P d
−0.01 51.37± 0.20 9.99 9.99 9.99

(Sd, ℓ2) 51.36± 0.20 22.36 22.36 22.36

Table 3. MiniImageNet 1-shot 5-way test results, 95% confi-
dence intervals and embedding radii.

attributed to the fact that the benchmarks conducted in pre-
vious papers considered Euclidean networks endowed with
the squared ℓ2-norm as a distance function, as originally
proposed by Snell et al. [25]. We, on the other hand, used
the ℓ2-norm and normalized the embeddings’ magnitude,

d Space Test acc rmin ravg rmax

27
(Rd, ℓ22) 67.32± 0.16 - - -
P d
−0.005 67.87± 0.16 12.40 13.42 13.69

(Sd, ℓ2) 68.57± 0.16 70.71 70.71 70.71

28
(Rd, ℓ22) 67.32± 0.16 - - -
P d
−0.005 69.40± 0.16 13.03 13.78 13.93

(Sd, ℓ2) 69.10± 0.16 70.71 70.71 70.71

29
(Rd, ℓ22) 66.83± 0.16 - - -
P d
−0.005 70.20± 0.16 14.06 14.13 14.13

(Sd, ℓ2) 69.95± 0.16 70.71 70.71 70.71

210
(Rd, ℓ22) 67.92± 0.16 - - -
P d
−0.005 70.76± 0.16 14.06 14.13 14.13

(Sd, ℓ2) 70.48± 0.16 70.71 70.71 70.71

Table 4. MiniImageNet 5-shot 5-way test results, 95% confi-
dence intervals and embedding radii.

Clipping value Test acc rmin ravg rmax

2.0 62.21± 0.24 1.873 1.877 1.877
3.0 65.04± 0.24 2.618 2.618 2.618
4.0 66.26± 0.23 3.191 3.191 3.191

Table 5. Effect of feature clipping before the exponential map.
CUB 200 2011 1-shot 5-way test results, 95% confidence inter-
vals and embedding radii in P d

k for d = 1024 and k = −0.05.

resulting in a chordal metric on a sphere.

In order to interpret these results in light of the suc-
cess that hyperbolic embeddings have had in other areas,
one must take into account that the dimensions required
to have reasonable few-shot classification accuracies, (typ-
ically d > 103 [12, 13]), are much higher than those
used to embed words [3, 20], taxonomies or graphs [4, 5]
in general. In addition, while in natural language one
may argue that hyperbolicity arises naturally from the co-
occurrence of symbols and hence the graph-like nature of
the data, this property does not translate directly to the im-
ages. For instance, ImageNet is endowed with a taxonomy,
inherited from the hypernymy and hyponymy relations in
WordNet. The latter has been successfully embedded in
low-dimensional hyperbolic space given its symbolic na-
ture [16, 20, 21]. However, there may not be a unique vi-
sual representation of the abstract concepts in high-levels
of this hierarchy. Only labels in leaf-nodes can be ascribed
a unique image. In the case of balanced hierarchies or trees,
from a symmetry standpoint, the embeddings of these leaf
nodes are expected to lie at the same distance from the ori-
gin, akin to what is obtained for the image embeddings.
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7. Conclusion
In this paper we set out to demonstrate that, contrary

to widespread belief, hyperbolic embeddings are not nec-
essarily better than Euclidean ones in few-shot learning.
We showed that, in high-dimensional Poincaré balls, em-
beddings tend to saturate at the effective boundary. Con-
sequently, the hierarchy-encoding property of hyperbolic
space is lost and, in this situation, whatever accuracy hy-
perbolic few-shot classifiers have, can be ascribed to the
angular separation of their representations. Based on this,
we presented empirical results demonstrating that hyper-
bolic performance on two popular few-shot learning tasks
can actually be matched and even improved upon via tra-
ditional Euclidean encoders with fixed-radius embeddings.
We believe this work can open up new research directions
on the design of more effective benchmarks for hyperbolic
embeddings, as well as on the identification of computer vi-
sion applications wherein hyperbolic geometry presents an
unambiguous advantage over Euclidean space.
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