
Wino Vidi Vici: Conquering Numerical Instability of 8-bit Winograd

Convolution for Accurate Inference Acceleration on Edge

Pierpaolo Mori1,2,3, Lukas Frickenstein2, Shambhavi Balamuthu Sampath2, Moritz Thoma2,
Nael Fasfous2, Manoj Rohit Vemparala2, Alexander Frickenstein2, Christian Unger2,

Walter Stechele3, Daniel Mueller-Gritschneder3, Claudio Passerone1
1Politecnico Di Torino, Turin, Italy; 2BMW Group, Munich, Germany; 3Technical University of Munich, Munich, Germany

{<firstname>.<lastname>}1@polito.it,2@bmw.de,3@tum.de

Abstract

Winograd-based convolution can reduce the total num-

ber of operations needed for convolutional neural network

(CNN) inference on edge devices. Most edge hardware ac-

celerators use low-precision, 8-bit integer arithmetic units

to improve energy efficiency and latency. This makes CNN

quantization a critical step before deploying the model

on such an edge device. To extract the benefits of fast

Winograd-based convolution and efficient integer quantiza-

tion, the two approaches must be combined. Research has

shown that the transform required to execute convolutions

in the Winograd domain results in numerical instability and

severe accuracy degradation when combined with quanti-

zation, making the two techniques incompatible on edge

hardware. This paper proposes a novel training scheme

to achieve efficient Winograd-accelerated, quantized CNNs.

8-bit quantization is applied to all the intermediate results

of the Winograd convolution without sacrificing task-related

accuracy. This is achieved by introducing clipping fac-

tors in the intermediate quantization stages as well as us-

ing the complex numerical system to improve the transform.

We achieve 2.8⇥ and 2.1⇥ reduction in MAC operations

on ResNet-20-CIFAR-10 and ResNet-18-ImageNet, respec-

tively, with no accuracy degradation.

1. Introduction

Convolutional neural networks (CNNs) achieve remark-
able results in many computer vision tasks making them
the state-of-the-art (SotA) solution for a wide variety of
applications. Over the last decade, CNNs have become
more computationally complex, making their deployment
highly challenging on edge. The main computational effort
is due to large amounts of multiply-accumulate operations
(MACs) required to compute the convolution operations.

To reduce their memory and computational footprint,

quantization became a standard technique applied before
deploying CNNs on edge devices [3]. Quantizing a net-
work implies reducing the bit-width of its weights and ac-
tivations to enable low-precision arithmetic on edge hard-
ware. Moving from 32-bit floating-point representation to
low-precision datatypes (INT8, INT4) reduces the com-
plexity of hardware arithmetic units and the on-chip mem-
ory requirements. However, when the hardware architec-
ture does not take advantage of lower-bit data represen-
tation (e.g. 8-bit hardware and 4-bit quantization), quan-
tization does not bring any further performance improve-
ment (NVIDIA Jatson Nano [1], Snapdragon 8 Gen 1 [4],
Google Coral [2]). For such general-purpose hardware,
where quantization below 8-bit is not supported, the latency
of the CNN can be further reduced using fast algorithms
such as Winograd-based convolution. The standard con-
volution operation strides the filters across an input activa-
tion tensor. Each stride in the standard convolution com-
putes a single pixel in an output map. Alternatively, convo-
lution operations can be transformed to the Winograd do-
main to reduce the number of MAC operations [21], result-
ing in faster inference on general-purpose hardware [25].
Winograd-based convolution produces tiles of output pix-
els in each step. For an F (4, 3) Winograd algorithm, a
4⇥ MAC reduction can be achieved. Winograd convolution
consists of three stages: (1) inputs and weights transforma-
tion, (2) element-wise matrix multiplication (EWMM) of
the transformed matrices and (3) inverse transformation to
produce the spatial output feature maps. These three steps
are visualized in Fig. 1. Theoretically, the transform is loss-
less and brings its benefits with a negligible degradation
in full-precision arithmetic [7, 10]. This makes it popular
in training and server settings [5, 6]. While floating-point
Winograd algorithms have been improved to support new
layer types [19], to adopt reuse schemes [18,28] and to fur-
ther reduce the computational complexity throughout prun-
ing [23, 29], bringing the benefits of Winograd to edge de-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

53

𝐵𝑇𝑎𝑙−1𝐵

[𝑚 ×𝑚]

[𝑟 × 𝑟]

[𝑟 × 𝑟]

𝐺𝑤𝑙𝐺𝑇

[𝑘 × 𝑘]

[𝑟 × 𝑟]

𝐴𝑇()𝐴

[𝑟 × 𝑟]

Figure 1. The three steps of the Winograd algorithm. Numerical
instability due to quantization is highlighted.

vices with limited arithmetic precision reveals its numeri-

cal instability problem [16]. The transformation applied to
execute the convolution in the Winograd domain causes nu-
merical overflow by increasing the range of values in the
resulting tiles. With the limited bit-width available on edge
devices and the quantization of all the operands involved
in all three aforementioned stages of the Winograd algo-
rithm, large numerical errors are unavoidable. For example,
a 16-bit standard convolution ResNet-18 achieving 92% ac-
curacy on CIFAR-10, would degrade down to 19.25% when
using 16-bit Winograd F(4,3) convolution [16]. This fun-
damental contradiction of numerical instability during the
transform and limited bit-width on edge arithmetic units
makes the Winograd algorithm incompatible with standard
quantization techniques, severely degrading the accuracy
of the CNNs. A lot of effort has been made to achieve
accurate 8-bit inference with Winograd-based convolution.
However, this goal has always been achieved by quantiz-
ing only a part of the Winograd algorithm (i.e. steps 1, 2,
or 3), while allowing other parts to remain at higher bit-
widths. For example, by quantizing only the EWMM, or
by quantizing the transform and extending the bit-width for
the EWMM, thereby incurring a computational or hardware
overhead [13, 22, 24, 26].

In this work, we focus on efficient and accurate full 8-bit
inference of CNNs adopting Winograd algorithms, without
introducing any hardware overhead and minimizing accu-
racy degradation compared to their standard 8-bit convolu-
tion counterpart. Our core focus is to further improve the
efficiency of CNNs on devices that already support 8-bit
quantization [1, 2, 4]. We tackle the challenges of 8-bit
quantized Winograd with the following contributions:

1. Introducing, for the first time, Winograd-based con-
volution using complex numbers during CNN train-
ing time, resulting in a full 8-bit F (4, 3) Winograd-

based ResNet-20-CIFAR-10 with 2.78⇥ MACs reduc-
tion and no accuracy degradation.

2. Introducing a trainable clipping factor for quantizing
transformed parameters in the Winograd domain, re-
sulting in a MACs reduction of 2.45⇥ for ResNet-18-
ImageNet with only ⇠1 p.p. accuracy degradation.

3. After combining training with complex numerical
representations (Contribution 1) with trainable clip-
ping factors in the Winograd domain (Contribution
2) we achieve 2.11⇥ reduction in operations on
ResNet-18-ImageNet and 2.14⇥ operation reduction
for DeepLabV3+ on the CityScapes dataset, with no

prediction quality degradation.

2. Related Work

2.1. Post-Train Winograd-based Quantized CNNs

Li et al. [22] resorted to the Winograd F (4, 3) algorithm
to speed up inference time on CPUs. Full-precision trans-
formations to/from the Winograd domain are used to mini-
mize the accuracy degradation. Post-training quantization is
then used to discretize the transformed weights and activa-
tions to 8-bit, performing only EWMM on 8-bit multipliers.
The input and weights for all the convolutional layers are
stored in 32-bit floating-point, demanding expensive com-
putations for transformations and high memory bandwidth
between two layers. Chikin et al. [13] propose to balance
the data ranges of inputs and filters by scaling them channel-
wise with balancing coefficients in order to equalize chan-
nel ranges to improve the quality of quantization. Further-
more, they also apply scaling factors per pixel within the tile
to better map the transformed inputs/weights from floating-
point to the quantized range. The channel balancing and
channel-wise tile scaling factors increase the computational
complexity of the transformation. Additionally, the pixel-
wise scaling factors lead to the introduction of an expen-
sive dequantization step before performing inverse transfor-
mation. Only the element-wise multiplication is quantized,
similar to Li et al. [22], leading to huge hardware overhead.

Differently, our work realizes CNNs with full 8-bit
Winograd-based convolutions and only needs one scaling

factor for the transformations of one layer.

2.2. Winograd with Other Number Systems

Mattina et al. [24] leverage the residue number system
to avoid accuracy degradation for 8-bit quantized CNNs.
Winograd transformation matrices are converted to residue
number system, turning hardware-friendly operations such
as addition and shift into more costly integer multiplica-
tions. At several stages in the Winograd transformations,
modulo operations are used, requiring dedicated hardware.
For an 8-bit Winograd-based convolution in the residue

54

number system, the computation for F (4, 3) is triplicated,
thereby eliminating the Winograd MAC operation savings.
Their approach works efficiently for large tile sizes (e.g.
F (14, 3)), which is not feasible in modern CNNs demand-
ing more hardware complexity for Winograd transformation
stages. Meng et al. [26] propose to use complex interpola-
tion points to compute the Winograd transformation matri-
ces, leading to lower magnitude values for F (4, 3) algo-
rithm which results in less severe numerical overflow. With
hardware-friendly transformations, and integer-only arith-
metic, numerical error is minimized, at the cost of a lower
MAC savings compared to the standard F (4, 3) Winograd
algorithm (from 4⇥ down to 3.13⇥). Although they ex-
plore the potential of complex Winograd transformations
for quantized CNNs, they adopted 12-bit multipliers for the
EWMM to avoid numerical errors, making the approach not
suitable for common 8-bit edge accelerators.

In our approach we embed the complex-Winograd algo-
rithm in the Winograd-aware training loop, maintaining 8-
bit quantization for the Winograd-based convolution.

2.3. Winograd-Aware Training (WAT)

Marques et al. [16] first included the Winograd algorithm
in the training loop, making the model aware of the numer-
ical instability problem. The authors made the Winograd
transformation matrices trainable to reduce the accuracy
degradation caused by quantization overflow. They further
proposed wiNAS to search for Winograd-aware quantized
networks by deciding the optimal Winograd tile size for
each convolutional layer. However, as transformation matri-
ces are trainable and maintained in floating-point represen-
tation, the computational cost in edge deployment gets ex-
pensive. Different Winograd tiles in various layers demand
additional hardware logic to implement required transfor-
mations. Barabasz [9] resorts to Legendre polynomials to
tackle numerical error for 8-bit Winograd quantization. In
this approach additional floating-point matrix multiplica-
tions are added along with standard Winograd transforms,
increasing the complexity of the method. Moreover, the best
accuracy values are achieved by making trainable Winograd
transformation matrices, increasing the complexity during
CNN inference. Andri et al. [8] propose the use of pixel-
wise scaling factors per tile, similar to those presented in
[13], as a means to prevent quantization overflow in the
Winograd-based convolutions. These scaling factors are
efficiently determined during training through the use of
powers-of-two values. Furthermore, they explore the differ-
ent quantization levels at various stages of transformations
and realize an 8-bit WAT pipeline using knowledge distilla-
tion. However, the quantized model still requires pixel-wise
scaling factors, demanding additional dequantization to per-
form inverse transformation.

Our work also proposes a novel WAT to realize 8-bit

quantized CNNs with no overhead in terms of hardware
logic/storage, using only one scaling factor for all the trans-
formations in one layer.

3. Methodology

We breakdown the proposed methodology into
quantization-aware training, Winograd-aware training,
quantization clipping factors in the Winograd domain,
and complex numbers based Winograd algorithm. The
following subsections detail each part of the method.

3.1. Quantization-Aware Training

Consider a convolutional layer l 2 [1, ..., L] in an L-
layer deep CNN with weights W l 2 Rky⇥kx⇥Ci⇥Co re-
ceiving an input feature map Al�1 2 RHi⇥Wi⇥Ci . Hi, Wi

and Ci represent the feature map’s spatial and channel di-
mensions. ky , kx and Co are the kernel window and output
channel dimensions. The convolution of W l and Al�1 pro-
duces Al 2 RHo⇥Wo⇥Co , where Ho, Wo, and Co are output
spatial and channel dimensions. Each layer requires a vast
number of MAC operations, quantified as:

#MAC = Ho ⇥Wo ⇥ Co ⇥ kx ⇥ ky ⇥ Ci (1)

Modern CNNs are characterized by a huge number of pa-
rameters, usually represented as 32-bit floating-point val-
ues during training. However, inference on limited resource
hardware of such big models limits performance. There-
fore, activations and weights are quantized on fewer N bits
(e.g. 8, 4, 2, 1) to increase throughput, reduce memory con-
sumption and limit power. The quantization of a floating-
point value xf is shown in Eq. 2 and Eq. 3. For activation
quantization, xf is clipped between [�c,+c], where c rep-
resents the trainable clipping threshold value for every layer
and it is determined by the task specific loss function of the
CNN model [14]. Based on the determined c, a scaling fac-
tor is computed as SFa = c/(2N�1 � 1). Considering the
ReLU activation function, the range is clipped to [0, c], re-
sulting in SFa = c/(2N � 1), representing the quantized
value as an unsigned number.

xint = QC(xf) = Round(Clip(xf ,�c,+c)/SFa) (2)

Floating-point weights are quantized following Eq. 3, where
the distribution is limited between [�1,+1] [30].

xint = Q(xf) = Round(xf/SFw) (3)

This results in a scaling factor for weights SFw =
1/(2N�1 � 1). In order to deal with the discreteness of
Eq. 2 and Eq. 3 at training time, a straight-through estima-
tor (STE) is used to update full-precision weights during
backpropagation, while quantized values are used in the for-
ward pass [11]. In this paper we focus on 8-bit quantization,
where all operands are represented as 8-bit integers.

55

3.2. Winograd-Aware training

Winograd algorithms can be used to reduce the number
of MACs in a convolution operation [21]. We refer to 2D
Winograd algorithms as F (mx ⇥my, kx ⇥ ky), where the
output tile size is mx ⇥my and the kernel size is kx ⇥ ky .
To compute an mx ⇥ my output tile, standard convolution
requires (mx ⇥ kx) ⇥ (my ⇥ ky) multiplications, whereas
the 2D Winograd convolution requires only (mx+kx�1)⇥
(my + ky � 1) multiplications. The mx ⇥ my output tile
is obtained through the algorithm flow shown in Fig. 1 and
Eq. 4.

a
l = A

T [(Gw
l
G

T)� (BT
a
l�1

B)]A (4)

Here, a
l�1, w

l, and a
l are 2D tiles of the input feature

map Al�1, of the weight tensor W l, and of the convolu-
tion output Al, respectively. The symbol � represents the
EWMM operator. B, G, A are the constant Winograd ma-
trices responsible for transforming a

l�1, wl and a
l to and

from the Winograd domain [21]. The transformed input tile
B

T
a
l�1

B and weights Gw
l
G

T are of dimensions rx ⇥ ry ,
where rx = mx + kx � 1 and ry = my + ky � 1. For the
whole convolutional layer, the number of MAC operations
needed by the Winograd algorithm is expressed in Eq. 5.

#MACwino =

⇠
Ho

my

⇡
⇥ ry ⇥

⇠
Wo

mx

⇡
⇥ rx ⇥Co ⇥Ci (5)

Therefore, MAC reductions achieved with the Winograd al-
gorithm for a convolutional layer can be computed as the ra-
tio of Eq. 1 to Eq. 5. For the floating-point numerical repre-
sentation, Winograd algorithms can easily replace standard
convolution, with almost zero accuracy degradation in the
CNN. However, when data-precision is reduced, Winograd
transformations cause a non-negligible numerical error that
heavily affects the prediction quality. The lower the data-
width adopted (N) is, the higher the numerical instability.
As mentioned earlier, for Winograd F (4 ⇥ 4, 3 ⇥ 3) 16-bit
integer variant, numerical instability causes a 75 p.p. ac-
curacy degradation for ResNet-18 on CIFAR-10 [16]. This
numerical error is caused by two main reasons: 1) numer-
ical range enlargement after Winograd transform, and 2)
rounding error exacerbated by undertilizing the quantized
range, as visualized in Fig. 2a. Winograd transformation
matrices present non-integer coefficients that cause numeri-
cal errors when the transformation is performed in the quan-
tized domain. Moreover, the transformed input tile values
(BT

a
l�1

B) are a linear combination of activations. Thus,
Winograd transformations enlarge the exploited numerical
range by a factor that can be referred to as the enlargement

factor �. In this work, we consider 2D Winograd algorithms
for convolution kernels of size 3⇥ 3, which are common in
modern CNNs. Therefore, from now on we will refer to
F (mx ⇥ my, 3 ⇥ 3) as F (m, 3), with kx = ky = 3. The
operation reduction ratio, S, is related to the output tile size

m as shown in Eq. 6. The larger the size of m is, the more
MAC reductions can be achieved with respect to standard
convolution.

S =
m

2 ⇥ 32

(m+ 3� 1)2
(6)

In Table 1, we compare four different Winograd algorithms
named F (2, 3), F (3, 3), F (4, 3), and F (6, 3). For each
Winograd variant, we report the theoretical reduction in the
number of operations (S) with respect to standard convo-
lution and the maximum enlargement factor (�) computed
considering the worst-case scenario. Moreover, according
to the SotA [9, 13], we consider that the weight transfor-
mation (Gw

l
G

T) is performed offline, using floating-point
representation to avoid unnecessary transform latency and
quantization error at run-time.

The offline, accurately pre-transformed, quantized
Winograd weights are readily available for the EWMM at
runtime. Although F (6, 3) presents the highest theoretical
MAC reduction, it also has the greatest enlargement factor
(�) and memory overhead for storing weights. Moreover,
F (6, 3) transformation matrices require non-integer mul-
tiplications (supplementary S1.C), making the 8-bit trans-
formation of the activations challenging for 8-bit hardware.
F (2, 3) with its small enlargement factor and simple trans-
formation matrices (supplementary S1.D) guarantees a lim-
ited numerical error, however, it presents the smallest oper-
ations reduction. A further point to consider is that the theo-
retical MAC reduction S cannot always be achieved across
the whole CNN. For layers not supported by the Winograd
algorithm, standard convolution has to be used with no op-
eration savings. The real MAC reduction is also related to
layer spatial dimensions (Eq. 5). If either Ho or Wo are not
divisible by m, extra unnecessary operations are performed
in the Winograd algorithm. For instance, if Ho = Wo = 7
(as in the fifth residual module in ResNet-18 [17]), each out-
put tile of F (6, 3) will have m⇥m = 6⇥ 6 pixels, leading
to a 12 ⇥ 12 output feature map and 256 MACs. Instead,
in the F (4, 3) algorithm, each output tile will have 4 ⇥ 4
pixels, leading to an 8⇥ 8 output feature map and only 144
MACs, resulting in better MAC reductions. For this rea-
son, in Table 1, we also reported the real MAC reductions
for the analyzed algorithms for a case study CNN model,
ResNet-18. In this work, we focus on the F (4, 3) Wino-
grad algorithm since it represents the best compromise in
terms of real operation reduction, weight memory overhead,
and enlargement factor among the analyzed algorithms. The
Winograd matrices for the F (4, 3) algorithm are shown in
supplementary S1.A.

We embedded the Winograd algorithm in the train-
ing loop, replacing standard convolution with Winograd-
based convolution where possible. Contrary to other works
[9, 13, 22, 26], we implement full 8-bit quantization for
the Winograd algorithm, making our models ready to be

56

Table 1. Comparison of different Winograd algorithms to stan-
dard convolution in terms of enlargement factor (�), weight mem-
ory, theoretical and practical (ResNet-18) number of MAC savings
(#MAC).

Algorithm �
Weight #MAC Reduction

Memory Theoretical (S) ResNet-18

F(2,3) 4⇥ 1.78⇥ 2.25⇥ 1.76⇥
F(3,3) 36⇥ 2.78⇥ 3.24⇥ 2.05⇥
F(4,3) 100⇥ 4⇥ 4⇥ 2.45⇥
F(6,3) 156.25⇥ 7.1⇥ 5.06⇥ 2.24⇥

deployed on 8-bit hardware (e.g. [1–4, 28]). We quan-
tize weights, activations, transformed weights, and trans-
formed activations. For weights and activations, we use the
standard quantization approaches in [30] and [14], respec-
tively. Furthermore, we introduce two other quantization
steps within the Winograd domain. For quantizing trans-
formed weights and activations, we first use Eq. 3 with
SF = max(|Xf |)/28 � 1. Xf represents the weight or ac-
tivation tensor containing the xf elements. The Winograd
algorithm (Eq. 4) can be rewritten as Eq. 7.

a
l = A

T
⇥
Q(GQ(wl)GT)� Q(BT QC(a

l�1)B)
⇤
A (7)

3.3. Clipping Factors in the Winograd Domain

We investigate Winograd algorithms to fully understand
the main reasons that make them challenging to deploy on
edge hardware. For this, we analyze the distribution of nu-
merical values for different quantized layers for weights and
activations before and after Winograd transformation. The
data range for activations gets bigger after transformation
because of the enlargement factor introduced in Sec. 3.2.
Moreover, by analyzing the distribution of the transformed
activations and weights within the range, we observe that
only a small interval contains 99.9% of the data, while the
rest of the range is very sparsely used (Fig. 3). Quantiz-
ing such a big floating-point range to 8-bit causes an under-
utilization of the 28 discrete, quantized values available.
Moreover, small magnitude values (99.9%) in the floating-
point representation are mapped to close or same values in
the quantized representation, causing under-utilization and
a high rounding error. This is visualized in Fig. 2a. To ad-
dress this issue, we introduce the concept of clipping fac-

tors (↵t) within the Winograd domain. The transformed
range is clipped to ↵t according to layer statistics, in partic-
ular, [�↵t,+↵t] is defined as the range that contains 99.9%
of the available data distribution. We allow weights and
activations to have independent clipping factors (i.e. ↵ta

and ↵tw). With this approach, the transformed inputs and
weights better exploit the available discrete, quantized val-
ues (Fig. 2b).

The algorithm in Eq. 7 can be reformulated as in Eq. 8,
where QCw denotes the clipping in the Winograd domain.

a
l = A

T
⇥
QCw(GQ(wl)GT)� QCw(B

T QC(a
l�1)B)

⇤
A (8)

Trainable Clipping Factors ↵ta, ↵tw: Although clip-
ping factors help in better exploiting the quantized range,
computing them in a static, handcrafted way is a sub-
optimal solution. Therefore, we make ↵ta, ↵tw dynami-
cally adjustable through gradient descent training with the
aim of minimizing the numerical error brought by Wino-
grad transformations and quantization. Firstly, we clip the
floating-point range to [�↵t,+↵t] (Eq. 9).

xc = 0.5(|xf+↵t|�|xf�↵t|) =

8
><

>:

�↵t, xf 2 (�1,�↵t)

xf , xf 2 [�↵t,+↵t)

+↵t, xf 2 [+↵t,+1)
(9)

Then, we linearly quantize xc on the available 8-bits quan-
tized range:

xq = Round(xc ·
2(8�1) � 1

↵t

) (10)

During backpropagation, the gradient �xq

�↵t
is evaluated

using STE [11] to approximate �xq

�xf
= 1:

�xq

�↵t

=
�xq

�xf

�xf

�↵t

=

8
><

>:

�1, xf 2 (�1,�↵t)

0, xf 2 [�↵,+↵t)

+1, xf 2 [+↵t,+1)

(11)

In summary, for each layer of a CNN model, we have
three different scalar clipping factors: c, used for clipping
input activations [14], ↵ta, used for clipping transformed
activations in the Winograd domain, and ↵tw, adopted to
limit the range for transformed weights in the Winograd do-
main. In terms of hardware, our novel approach requires
only two scalar scaling factors per layer: one for the ac-
tivation transform and one for standard output quantization
(since weights are quantized offline), resulting in a negli-
gible computation overhead. Initialization of clipping fac-
tors is a crucial operation that affects the prediction qual-
ity during training. In order to properly initialize ↵ta and
↵tw, we evaluate the data distribution during warm-up, se-
lecting the initial ↵ values so that 99.9% of the data values
(transformed weights and activations) are within the range
[�↵t,+↵t]. We do not apply L2 regularization loss on any
of our clipping factors, since it penalizes high magnitude
values for clipping instead of their effect on accuracy.

3.4. Complex Numbers based Winograd Algorithm

We use complex interpolation points to compute Wino-
grad transformation matrices (A,B,G), as proposed by

57

(float) (INT8) (float) (INT8)

+127

-127scale

+127

-127scale

count
count

(a) Standard Winograd transformation.

(float) (INT8) (float) (INT8)

+127

-127scale

+127

-127
scale

count
count

−𝛼𝑡

+𝛼𝑡

(b) Proposed Trainable Clipping in Winograd Transformation.

Figure 2. Comparison of the (a) standard Winograd quantized transformation against (b) our Winograd quantized transformation that
leverages clipping factors to better exploit the quantized range.

[26]. In supplementary (S1.B), we report the complex-
Winograd matrices B

T , G and A
T for the F (4, 3) Wino-

grad algorithm. Comparing the complex matrices with
those of standard F (4, 3) (S1.A), we observe that the mag-
nitude of values involved in the transform is reduced, result-
ing in a smaller enlargement factor (�).

Although the complex number representation is not
hardware friendly, by exploiting the properties of complex
conjugates and the Karatsuba algorithm, a total of 46 real

integer multiplications have to be performed, compared to
the 36 in the F (4, 3) algorithm [26]. The MAC opera-
tion reduction is then only slightly reduced, going down
from 4⇥ to 3.13⇥. With proper tile organization there is
no memory overhead (supplementary S2). Complex-based
Winograd represents an interesting alternative to the stan-
dard Winograd algorithm presented in Sec. 3.2. We ana-
lyze the data distribution for the complex-Winograd algo-
rithm to elaborate on why it outperforms standard Wino-
grad when considering the numerical instability problem.
In Table 2, we compared standard and complex Winograd
variants of F (4, 3). The smaller integer values of the com-
plex Winograd transformation matrices reduce the enlarge-
ment factor from 100⇥ to 16⇥. As discussed in Sec. 3.2,
the smaller the enlargement factor is, the smaller the aver-
age rounding error becomes when the floating-point range is
mapped to the quantized range. The weight memory over-
head is the same as in standard F (4, 3), while the overall
MAC reduction for the ResNet-18 model is only slightly af-
fected (2.11⇥ vs. 2.45⇥).We embed, for the first time, the
complex-Winograd algorithm in the training loop as pre-
sented in Sec. 3.2, thereby improving its prediction quality.
We then combine it with the trainable clipping factors intro-
duced earlier to achieve further improvements. Ultimately,
this enables the acceleration of complex 8-bit Winograd on
hardware without accuracy degradation for the first time.
Clipping factors are initialized according to the method de-
scribed in Sec. 3.3, and the same clipping factors are used
for imaginary and real parts.

Table 2. Comparison between Winograd F (4, 3) and complex-
Winograd F (4, 3) algorithms.

Algorithm �
Weight #MAC Savings

Memory Theoretical ResNet-18

F(4,3) 100⇥ 4⇥ 4⇥ 2.45⇥
F(4,3) complex 16⇥ 4⇥ 3.13⇥ 2.11⇥

4. Experiments

This section presents the results of applying the pro-
posed techniques on ResNet-20, ResNet-18 [17], and
DeepLabv3+ [12] evaluated on CIFAR-10 [20], Ima-
geNet [27] and CityScapes [15] datasets. If not otherwise
mentioned, all the training hyperparameters are adopted
from the base implementation.

4.1. Transformed Weight Distribution

In Sec. 3.3, we described our approach to reduce nu-
merical error in the Winograd domain by resorting to clip-
ping factors for better exploitation of the quantized range.
We compare our approach with post-training quantization
(PTQ), where the model is trained using standard quantized
convolution and the Winograd algorithm is enabled at in-
ference time. We also compare against a vanilla Winograd-
aware training approach (WAT), where the Winograd nu-
merical error is considered at training time. Fig. 3 reports a
comparison among the three approaches, showing the trans-
formed weights distributions for a ResNet-20 model [17].
The range of numerical values (x-axis) is plotted against
the number of times the value appears in the layer (y-axis,
logarithmic scale). The trend described below is similar
for all the layers, therefore we reported the one with the
highest number of weight values. In all three distributions,
most of the values are concentrated in a narrow interval.
Winograd-awareness allows better exploitation of the avail-
able quantized range, as seen for the WAT (middle) and
our trainable-clip approach (bottom). This is indicated by
fully using the range between the symmetric clipping fac-

58

Figure 3. Transformed weight distribution of last layer of ResNet-
20 for F (4, 3) algorithm for PTQ (top), WAT (middle) and our
Winograd-aware trainable clipping approach (bottom).

tors (black bars). The PTQ Winograd-transformed weights
(top) do not fully exploit the range allocated, as they show
an asymmetric distribution. In summary, PTQ unaware of
the Winograd transform has a severe disadvantage when be-
ing executed on integer arithmetic units as it does not effec-
tively use the quantized range. WAT improves the utiliza-
tion of the range, but leads to more rounding error due to its
wider quantized range. Finally, our trainable clipping pa-
rameter WAT achieves a narrower numerical distribution to
reduce the rounding error and fully exploits the quantized
range. In supplementary S.3, we report distributions of mul-
tiple layers and we also show the effectiveness of clipping
for transformed activations.

4.2. Effectiveness of Clipping Factors for Winograd

The ablation study for ResNet-20 [17] on the CIFAR-10
dataset [20] is reported in Table 3. For each experiment we
report the accuracy value and the overall MAC reduction
brought by Winograd. We first evaluated the effectiveness
of our trainable clipping approach against a post-training
quantized network. We restored the standard 8-bit quan-
tized model (QConv) and enabled the Winograd F (4, 3) al-
gorithm in the forward pass (WinoQConv). We froze the
model weights and calibrated only the clipping factors for
each layer and batch normalization parameters. Although
there is still an accuracy degradation, clipping improves
prediction quality by +46.75 p.p. compared to the stan-
dard PTQ Winograd F (4, 3) algorithm. To further reduce
the accuracy gap, we then enabled WAT. Vanilla WAT alone
achieves 89.69% accuracy and improves to 90.89% with our
approach with trainable-clipping.

We then enabled the complex-Winograd algorithm in
training. We evaluated the effectiveness of the full 8-
bit complex algorithm with and without clipping factors.
In both cases, it is interesting to note that the complex-
Winograd algorithm not only closes the accuracy gap but
achieves even better accuracy than the standard quantized
model (+0.53 p.p. and +0.9 p.p.). This improvement is

due to the higher representation capabilities of the complex
domain. Although no complex operations are performed
in hardware since only integer multiplications are executed
(supplementary S.2), the real and the imaginary part can be
combined to represent more than 256 unique values on 8-bit
hardware with slightly lower MAC reductions (Sec. 3.4).

Table 3. Influence of WinoVidiVici on ResNet-20-CIFAR-10.

Method NW/A

QAT/ Winograd Top-1

WAT Algorithm Complex Clipping Saving [%]

Conv [17] 32 7 - - - - 91.61
QConv [14] 8 3 - - - - 91.39
WinoQConv 8 7 F(4,3) 7 7 3.4⇥ 35.36

WinoVidiVici

(Ours)
8

7 F(4,3) 7 3 3.4⇥ 82.11
3 F(4,3) 7 7 3.4⇥ 89.69
3 F(4,3) 7 3 3.4⇥ 90.89

3 F(4,3) 3 7 2.8⇥ 91.92
3 F(4,3) 3 3 2.8⇥ 92.29

We then evaluated the efficacy of our approach on more
complex tasks. Accuracy values of the ResNet-18 [17]
model on the ImageNet [27] dataset are reported in Table 4.
In all the experiments, we trained the model for 80 epochs,
adopting cosine decay for the learning rate scheduler (ini-
tial value 0.08, final value 0.0). We again observe the
clear benefits of trainable-clipping factors in the Winograd
domain to improve prediction quality. For the Winograd-
aware trained model with F (4, 3), we improved prediction
quality by +3.43 p.p. by adding the trainable-clipping pa-
rameters. Accuracy is further improved by the complex
Winograd F (4, 3) algorithm with clipping factors, achiev-
ing +0.45 p.p. with respect to standard convolution 8-bit
quantized model.

Table 4. Influence of WinoVidiVici on ResNet-18-ImageNet.

Method NW/A

QAT/ Winograd Top-1

WAT Algorithm Complex Clipping Saving [%]

Conv [17] 32 7 - - - - 71.00
QConv [14] 8 3 - - - - 70.54
WinoQConv 8 7 F(4,3) 7 7 2.45⇥ 5.45

WinoVidiVici

(Ours)
8

3 F(4,3) 7 7 2.45⇥ 65.71
3 F(4,3) 7 3 2.45⇥ 69.14

3 F(4,3) 3 3 2.11⇥ 70.99

We then evaluated the benefits of the Winograd algo-
rithm on a semantic segmentation task (Table 5). For this
experiment, we used the DeepLabv3+ [12] model on the
CityScapes [15] dataset. We used a modified version of
ResNet-18 as the backbone, where the last two residual
blocks (Conv5) are removed. Winograd-awareness with
trainable clipping factors again minimizes the accuracy
degradation compared to a standard quantized convolution
implementation. Further combining the complex-Winograd
8-bit algorithm with trainable clipping matches the predic-
tion quality of a standard convolution 8-bit model (+0.03
p.p.), fully eliminating the negative effects of numerical

instability typically caused by quantized Winograd.

59

Table 5. Influence of WinoViniVici on DeepLabv3+-CityScapes.

Method NW/A

QAT/ Winograd mIoU

WAT Algorithm Complex Clipping Saving [%]

QConv [14] 8 3 - - - - 67.82

WinoViniVici

(Ours)
8 3 F(4,3) 7 3 2.56⇥ 66.57

3 F(4,3) 3 3 2.14⇥ 67.85

4.3. Comparison with State of the Art

In this section we compare our approach with recent
state-of-the-art works [8, 9, 13, 16, 22], all aiming to reduce
numerical error for the 8-bit quantized Winograd algorithm.
For each work, we reported the CNN model, the algorithm,
the number of scaling factors (SF) for the transformation
in each layer layer, bit-width of the transformed activations
and the weights (NWa, NWw respectively), the number of
MAC Operations (OPs) of the vanilla model and the real
MAC reduction brought by the Winograd algorithm. Scal-
ing and quantization operations are not considered in the
number of operations since they add a negligible overhead
(e.g. 0.2% for ResNet18 model). In the CIFAR-10 compar-
ison, our approach achieves better or equal accuracy com-
pared to all other works without adding any complexity to
the algorithm. In particular, the authors of [13] adopted
channel balancing and pixel-wise scaling factors within the
tile to tackle the accuracy degradation, adding a significant
amount of extra scaling factors (36 for transformation per
layer). Furthermore, pixel-wise scaling factors force val-
ues within the same tile to belong to different ranges, re-
quiring a complicated dequantization operation before in-
verse transformation. Moreover, output feature maps are
not quantized. In [16], element-wise multiplication is per-
formed in 8-bit. However, Winograd transformation ma-
trices are not standard anymore (must be represented in
floating-point), thereby increasing the computation com-
plexity of the Winograd transformations at runtime. More-
over, having different transformation matrices for each layer
is not as hardware-friendly as the standard Winograd matri-
ces (A,B,G) (supplementary S1.A). Similarly, in [9] Wino-
grad matrices are also not standard and the complexity of
the algorithm is increased further with additional floating-
point matrix multiplications. Note that in [9] and [16],
the ResNet-18 model is used, which is much bigger than
ResNet-20. The differences in number of operations among
the ResNet-18 models is due to the channel-wise scaling
coefficient of the model in the approach proposed in [9].
Our full 8-bit standard Winograd algorithms achieve bet-
ter or equal accuracy to other works, with only one scaling
factor and no hardware overhead. Our F (4, 3) complex im-
plementation outperforms other ResNet-20 models (+0.54
p.p.) and achieves accuracy comparable to the ResNet-18
model (-0.17 p.p.) with 13.9⇥ fewer total operations.

For the more challenging ImageNet comparison, our ap-
proaches outperform other works using ResNet-18 (+1.6

p.p. for trainable-clipping F (4, 3), +3.45 p.p. for complex
F (4, 3)). Although other works use different, deeper mod-
els such as ResNet-34 and ResNet-50, our method achieves
similar accuracy values. Works such as [8, 13] need an ex-
tra dequantization operation because of pixel-wise scaling
factors within the transformation tile. The work in [13]
achieves the best accuracy but resorts to channel-wise and

pixel-wise scaling factors (36 · Co). Li et al. [22] perform
only element-wise matrix multiplication on 8-bit, while us-
ing floating-point representation for the other steps in the
Winograd algorithm. Moreover, ResNet-50 is composed
of 53 layers, of which only 16 are accelerated by Wino-
grad convolution, resulting in lower MAC reductions. This
makes ResNet-50 training with Winograd less challenging
compared to ResNet-18/-34, as most of its layers are exe-
cuted with standard convolution.

Table 6. Comparison of our approach with SotA.

Data- Model|
NW /NA

Winograd OPs Saving Top-1

set Method Algorithm SF [108] [⇥] [%]

C
I
F

A
R

-1
0

[2
0
]

ResNet-20 | [13] 8/8 F(4,3) 36 0.41 3.4⇥ 91.75

ResNet-18* | [9]

8/8 F(4,3)
1 1.39* 2.9⇥

85.00
8/9 89.40
8/8 F(4,3)-flex 91.80
8/9 92.30

ResNet-18 | [16] 8/8 F(4,3)-flex 1 5.63 2.45⇥ 92.46

ResNet-20 | (Ours) 8/8 F(4,3)
1 0.41 3.4⇥ 90.89

8/8 F(4,3)-complex 2.8⇥ 92.29

I
m

a
g
e
N

e
t

[2
7
]

ResNet-18 | [13] 8/8 F(4,3) 36 18.1 2.45⇥ 67.54
8/8 36·Co 68.94

ResNet-34 | [8] 8/8 F(4,3) 1 36.6 2.83⇥ 59.00
8/8 36 71.10

ResNet-50 | [22] 8/8 F(4,3) 1 38.6 1.54⇥ 75.53

ResNet-18 | (Ours) 8/8 F(4,3)
1 18.1 2.45⇥ 69.14

8/8 F(4,3)-complex 2.11⇥ 70.99

*: Resnet18 with number of channels coefficient equal to 0.5.

5. Conclusion

In this paper, we proposed two approaches to tackle the
numerical instability problem affecting 8-bit quantized ex-
ecution of Winograd algorithms on edge devices. Using a
trainable clip parameter during Winograd-aware training al-
lowed the transform to become more stable on integer hard-
ware. Then, we introduced, for the first time, complex num-
bers in Winograd-aware training, improving the represen-
tation capabilities of the low-bitwidth Winograd operands
and enabling the use of complex transformation matrices
that yield lower enlargement factors. Combining these two
techniques, which do not add hardware overheads, we elim-
inated the negative effects of Winograd numerical insta-
bility on the prediction quality of CNNs. We achieved
2.11⇥ and 2.14⇥ MAC reduction on ResNet-18-ImageNet
and DeepLabV3+ on CityScapes, with no prediction quality
degradation. In cases where below-8-bit quantization does
not bring any performance benefits, the contributions of this
work enable the use of accelerated, Winograd-based convo-
lution on a wide range of 8-bit general-purpose hardware
without degrading the prediction quality.

60

References

[1] Nvidia jetson nano developer kit.
https://cdn.sparkfun.com/assets/0/7/f/9/d/jetson-nano-
devkit-datasheet-updates-us-v3.pdf, 2019. 1, 2, 5

[2] Google coral. https://coral.ai/static/files/Coral-M2-Dual-
EdgeTPU-datasheet.pdf, 2020. 1, 2, 5

[3] Implementing the tensorflow deep learning framework
on qualcomm’s low-power dsp. https://www.edge-ai-
vision.com/2017/07/implementing-the-tensorflow-deep-
learning-framework-on-qualcomms-low-power-dsp-a-
presentation-from-google/, 2020. 1, 5

[4] Snapdragon 8 gen 1 mobile platform.
https://www.qualcomm.com/content/dam/qcomm-
martech/dm-assets/documents/snapdragon-8-gen-1-mobile-
platform-product-brief.pdf, 2021. 1, 2, 5

[5] Convolution functions and data
type support in cudnn framework.
https://docs.nvidia.com/deeplearning/cudnn/developer-
guide/index.html#convolution, 2023. 1

[6] Winograd based convolution in ten-
sorflow framework for 3x3 kernels.
https://github.com/tensorflow/tensorflow/blob/210fbf4ccf2b
7c6987228000a8a1a39957a5d4f3/tensorflow/lite/delegates/
gpu/common/winograd util.cc, 2023. 1

[7] Syed Asad Alam, Andrew Anderson, Barbara Barabasz, and
David Gregg. Winograd convolution for deep neural net-
works: Efficient point selection, 2022. 1

[8] Renzo Andri, Beatrice Bussolino, Antonio Cipolletta, Lukas
Cavigelli, and Zhe Wang. Going further with winograd con-
volutions: Tap-wise quantization for efficient inference on
4x4 tiles. In 2022 55th IEEE/ACM International Symposium

on Microarchitecture (MICRO), pages 582–598. IEEE, 2022.
3, 8

[9] Barbara Barabasz. Quantaized winograd/toom-cook convo-
lution for dnns: Beyond canonical polynomials base. arXiv

preprint arXiv:2004.11077, 2020. 3, 4, 8
[10] Barbara Barabasz, Andrew Anderson, Kirk M Soodhalter,

and David Gregg. Error analysis and improving the accuracy
of winograd convolution for deep neural networks. ACM

Transactions on Mathematical Software (TOMS), 46(4):1–
33, 2020. 1

[11] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013. 3, 5
[12] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision

(ECCV), pages 801–818, 2018. 6, 7
[13] Vladimir Chikin and Vladimir Kryzhanovskiy. Channel bal-

ancing for accurate quantization of winograd convolutions.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2, 3, 4, 8
[14] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,

Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash

Gopalakrishnan. Pact: Parameterized clipping activa-
tion for quantized neural networks. arXiv preprint

arXiv:1805.06085, 2018. 3, 5, 7, 8
[15] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Scharwächter, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset. In CVPR Workshop on The Future of Datasets in

Vision, 2015. 6, 7
[16] Javier Fernandez-Marques, Paul Whatmough, Andrew

Mundy, and Matthew Mattina. Searching for winograd-
aware quantized networks. In I. Dhillon, D. Papailiopoulos,
and V. Sze, editors, Proceedings of Machine Learning and

Systems, volume 2, pages 14–29, 2020. 2, 3, 4, 8
[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 4, 6, 7
[18] Jingbo Jiang, Xizi Chen, and Chi-Ying Tsui. A reconfig-

urable winograd cnn accelerator with nesting decomposition
algorithm for computing convolution with large filters, 2021.
1

[19] Minsik Kim, Cheonjun Park, Sungjun Kim, Taeyoung Hong,
and Won Woo Ro. Efficient dilated-winograd convolutional
neural networks. In 2019 IEEE International Conference on

Image Processing (ICIP), pages 2711–2715, 2019. 1
[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 6, 7, 8
[21] Andrew Lavin and Scott Gray. Fast algorithms for convo-

lutional neural networks. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages
4013–4021, 2016. 1, 4

[22] Guangli Li, Zhen Jia, Xiaobing Feng, and Yida Wang.
Lowino: Towards efficient low-precision winograd convolu-
tions on modern cpus. In 50th International Conference on

Parallel Processing, pages 1–11, 2021. 2, 4, 8
[23] Xingyu Liu, Jeff Pool, Song Han, and William J. Dally. Effi-

cient sparse-winograd convolutional neural networks, 2018.
1

[24] Zhi-Gang Liu and Matthew Mattina. Efficient residue
number system based winograd convolution. In Computer

Vision–ECCV 2020: 16th European Conference, Glasgow,

UK, August 23–28, 2020, Proceedings, Part XIX, pages 53–
68. Springer, 2020. 2

[25] Partha Maji, Andrew Mundy, Ganesh Dasika, Jesse Beu,
Matthew Mattina, and Robert Mullins. Efficient winograd
or cook-toom convolution kernel implementation on widely
used mobile cpus, 2019. 1

[26] Lingchuan Meng and John Brothers. Efficient wino-
grad convolution via integer arithmetic. arXiv preprint

arXiv:1901.01965, 2019. 2, 3, 4, 6
[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 6, 7, 8

[28] Chen Yang, Yizhou Wang, Xiaoli Wang, and Li Geng. Wra:
A 2.2-to-6.3 tops highly unified dynamically reconfigurable

61

accelerator using a novel winograd decomposition algorithm
for convolutional neural networks. IEEE Transactions on

Circuits and Systems I: Regular Papers, 66(9):3480–3493,
2019. 1, 5

[29] Tao Yang, Yunkun Liao, Jianping Shi, Yun Liang, Naifeng
Jing, and Li Jiang. A winograd-based cnn accelerator with a
fine-grained regular sparsity pattern. In 2020 30th Interna-

tional Conference on Field-Programmable Logic and Appli-

cations (FPL), pages 254–261, 2020. 1
[30] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,

and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. arXiv

preprint arXiv:1606.06160, 2016. 3, 5

62

