
Bag of Tricks for Fully Test-Time Adaptation

Saypraseuth Mounsaveng∗, Florent Chiaroni, Malik Boudiaf, Marco Pedersoli, Ismail Ben Ayed
ÉTS Montréal, Canada

Abstract

Fully Test-Time Adaptation (TTA), which aims at adapt-
ing models to data drifts, has recently attracted wide inter-
est. Numerous tricks and techniques have been proposed
to ensure robust learning on arbitrary streams of unlabeled
data. However, assessing the true impact of each individual
technique and obtaining a fair comparison still constitutes a
significant challenge. To help consolidate the community’s
knowledge, we present a categorization of selected orthog-
onal TTA techniques, including small batch normalization,
stream rebalancing, reliable sample selection, and network
confidence calibration. We meticulously dissect the effect of
each approach on different scenarios of interest. Through
our analysis, we shed light on trade-offs induced by those
techniques between accuracy, the computational power re-
quired, and model complexity. We also uncover the synergy
that arises when combining techniques and are able to es-
tablish new state-of-the-art results.

1. Introduction

Deep neural networks perform well at inference time
when test data comes from the same distribution as train-
ing data. However, they become inaccurate when there is a
distribution shift [25]. This distribution shift can be caused
by natural variations [14] or corruptions [9, 10]. Test-Time
Adaptation (TTA) aims at addressing this problem by adapt-
ing a model pre-trained on source data to make better pre-
dictions on shifted target data [2, 13, 28]. In this work,
we focus on the particular case of Fully Test-Time Adap-
tation (Fully TTA) [22, 30, 36]. In this setting, the adap-
tation is done source free and relies only on: i) a model
pre-trained on data from a source domain and ii) unlabeled
test data from a shifted target domain. Separating the train-
ing phase from the adaptation phase is particularly relevant
for privacy-oriented applications where the training data is
not available or can not be disclosed. Fully TTA is also
online. Test data is received as a continuous stream and the

*Corresponding author: saypraseuth.mounsaveng.1@etsmtl.net
†Code is available at https://github.com/smounsav/tta_

bot

1248163264128256

10

20

30

40

50

60

Batch Size

A
cc

ur
ac

y
(%

)

Tent/ResNet50-BN Tent/ResNet50-GN Tent/VitBase-LN
SAR/ResNet50-BN SAR/ResNet50-GN SAR/VitBase-LN
Delta/ResNet50-BN Delta/ResNet50-GN Delta/VitBase-LN
BoT/ResNet50-BN BoT/ResNet50-GN BoT/VitBase-LN

Figure 1. Classification Accuracy in function of Batch Size
for different methods and architectures on ImageNet-C. In this
work, we choose to focus on small batches (16 and below, white
zone). As the batch size decreases, the model performances re-
main stable until a batch size of 32 and then drops significantly for
methods running on ResNet50-BN. Results reported are averaged
over 15 corruptions and 3 runs. Confidence intervals are too small
to be displayed.

model adaptation is done on-the-fly as data is received. This
makes the setup more realistic and closer to real-world ”in-
the-wild” scenarios where information about potential dis-
tribution shifts or about the quantity of data to be received
is not necessarily available.

Most of the recent solutions proposed to address Fully
TTA are follow-ups of seminal work Tent [30] and aim at
solving problems inherent to the online and unsupervised
aspect of Fully TTA. For example, [32, 36] deal with
the problem of the class imbalance data stream, [22, 35]
improve the quality of the predictions used to adapt a model
by selecting samples with a low entropy or leveraging the
predictions of augmented samples and [18, 35, 35, 36] in-
vestigate different normalization to stabilize the adaptation

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1936



process. However, most of the tricks and techniques are
presented in combination with others, which makes it
difficult to identify their impact on the final model perfor-
mance. Some techniques might already help when applied
alone whereas others might only work or work better in
combination with other tricks. As this area of research
is very active and developing fast, we aim in this study
at disentangling the impact of some techniques recently
proposed and evaluate objectively their contribution to
the performance of Fully TTA models. We also propose
possible improvements in specific cases.

Contribution. To address the Fully Test-Time Adap-
tation problem, we analyzed the following techniques: i)
Usage of batch renormalization or batch-agnostic normal-
ization ii) Class re-balancing iii) Entropy-based sample
selection iv) Temperature scaling. Those analyses were
made considering small batch sizes (16 and below), which
are closer to the potentially uncontrollable batch sizes of
real-world scenarios. Our experimental results show that
those techniques are already boosting the performance at
test time when used alone, but that combining all of them
leads to the best classification accuracy compared to a
vanilla Tent method and 2 recent state-of-the-art methods
on 4 different datasets. Additionally, to the accuracy
improvement, the selected techniques also bring other in-
teresting benefits like higher and more stable performance
with small batch sizes and a reduced computational load by
adapting the model with a reduced set of selected data.

The remainder of the paper is structured as follows. We
conduct a literature review in Section 2. Then we analyze
each trick separately in a different section: architecture de-
sign in Sec. 4, class rebalancing in Sec 5, sample selection
in Sec. 6 and network calibration in Sec. 7 before show-
ing results on combinations of tricks in Sec. 8 and results
on other datasets in Sec. 9. Finally, we conclude about the
presented work in Sec. 10.

2. Related Work

Test-time adaptation (TTA). Test-time adaptation as-
sumes access to a pre-trained model and aims at leveraging
unlabeled test instances from a (shifted) target distribution
to make better predictions. Proposed methods usually em-
ploy one or a combination of the following techniques: self-
training to reinforce the model’s own predictions through
entropy minimization [30] or Pseudo-Labelling schemes
[15], manifold regularization to enforce smoother decision
boundaries through data augmentation [35] or clustering
[4], feature alignment to mitigate covariate shift by batch
norm statistic adaptation [16, 27], and meta-learning meth-
ods [6] that try to meta-learn the best adaptation loss.

TTA in the broader literature. Although recently intro-
duced [30], TTA shares important motivations and similar-
ities with earlier or concurrent settings that are source-free
domain adaptation (SFDA) [3,17,34] and test-time training
(TTT) [23, 28]. In SFDA, methods also leverage samples
from the target distribution of interest but have no access to
source data, and the evaluation is still done on held-out test
data. In other words, TTA is the transductive counterpart of
SFDA. On the other hand, TTT works by constructing an
auxiliary task that can be solved both at training and adap-
tation time and therefore, unlike TTA, is not agnostic to the
training procedure or to the model architecture.

Fully TTA. TTA is of particular interest for online appli-
cations, in which the model receives samples as a stream.
Operational requirements for online applications break cru-
cial properties of the vanilla TTA setting e.g. large batch
size or class balance. Under such operational requirements,
standard TTA methods degrade, underperforming the non-
adapted baseline and even degenerating to random per-
formance in some cases [4, 22]. Multiple regularization
procedures have been proposed to address such shortcom-
ings. Among them, (i) Improved feature alignment proce-
dures that interpolate, between source and target statistics
[18, 20, 36], thereby improving overall estimation and de-
creasing reliance upon specific test batches, (ii) Sample re-
weighting [21, 36] to alleviate the influence of class biases,
(iii) Improving loss’ intrinsic robustness to noisy samples,
either encouraging convergence towards local minima [22]
or preventing large deviations from the base model’s pre-
dictions [4, 21]. Recently, [29] explored the update of the
model weights using Hebbian learning instead of just up-
dating the BatchNorm layers. As this line of work grows,
the current study provides an objective evaluation of how
recently proposed ingredients translate into actual robust-
ness for Fully TTA and quantifies the progress made so far,
as well as pinpoints possible areas of improvement. A de-
tailed comparison of the Fully TTA setting with the other
TTA settings is available in the supplementary material.

3. Experimental Setup

In this section, we present the details of our experimental
setup. Firstly, we introduce the datasets used, then the dif-
ferent methods we want to compare and the different mod-
els, and finally, we explain the evaluation metric and proto-
col. For reproducibility purposes, the links to the code and
model weights used in our experiments are provided in the
supplementary material.

3.1. Datasets

We evaluate the different methods on several datasets
used by prior SFDA or TTA studies: (i) ImageNet-C [10]

1937



is a variant of ImageNet [26] where 19 corruption types and
5 levels of severity were applied. For our experiments, we
report results using 15 corruption types at the most severe
level of corruption (level 5) and keep the 4 remaining ex-
tra (speckle noise, gaussian blur, spatter, and saturate) as
”validation” corruptions to select hyperparameters follow-
ing [36] and [22]. (ii) ImageNet-Rendition [9] consists of
30,000 images distributed in 200 Imagenet classes obtained
by the rendition of ImageNet images like art, cartoons, tat-
toos, or video games. (iv) ImageNet-Sketch [31] is a dataset
of 50,0000 images distributed in all ImageNet classes and
obtained by querying Google Images with ”sketch of ”
where is the name of original ImageNet classes. Im-
ages are in the black and white color scheme. (v) Finally,
VisDA2017 [24] is a dataset of over 72K images distributed
in 12 ImageNet classes and containing a mix of synthetic
and real domain images. In the sections where we analyze
tricks (Class rebalancing Sec. 5, Sample Selection Sec. 6,
Calibration Sec. 7, and Tricks combination Sec. 8), all ex-
periments are done using ImageNet-C.

3.2. Methods

In this work, we chose to analyze the following tricks and
methods: (i) Tent [30] is a seminal work in Fully Test-Time
Adaptation and is the first work to use an entropy-based loss
in the adaptation process. (ii) SAR [22] is a state-of-the-art
method in Fully TTA and proposes a method to select the
most useful samples based on their entropy. (iii) Delta [36]
is also a state-of-the-art method in Fully TTA and focuses
on addressing the problem of online class rebalancing. (iv)
in our experimental setup, we call BoT the model combin-
ing the best tricks selected in the different experiments.

3.3. Models

In our experiments, we use different architectures de-
pending on the datasets tested. In experiments with
ImageNet-C, we follow [22] and use two variants of the
ResNet50 architecture [8] and a ViT-Base/16 transformer
architecture. The first ResNet50 variant (ResNet50-BN)
uses batch normalization layers [12] whereas the second
one (ResNet50-GN) uses group normalization [33] layers.
The ViTBase/16 transformer uses layer normalization [1]
and will be referred to as VitBase-LN. For experiments with
VisDA2017, we follow [34] and [3] and use a ResNet101 ar-
chitecture. The number of parameters of each architecture
is available in the supplementary material.

3.4. Evaluation metrics

To evaluate the different approaches, we use the classi-
fication accuracy metric. To compute this metric, we fol-
low [22] and [36] and consider the accumulated predictions
of the test samples after each model update. In other words,
we do not compute the classification accuracy on the whole

test set after the model has seen all test samples but online
after each batch. Results reported are averaged over 3 runs.

4. Architecture and Normalization
In this section, we investigate the influence of different

architectures and normalization on the model performance.
Normalization in particular has been an active area of re-
search in the TTA literature. [36] shows that in the case
of a distribution shift, normalization statistics are inaccu-
rate within test mini-batches and the gradient of the loss
can show strong fluctuations potentially destructive for the
model. To address this issue, [18] proposes to combine lin-
early the statistics learned during training with the statistics
computed at test time to reduce the gap between the source
domain and the target domain. However, this method is
not applicable in Fully TTA as it requires access to labeled
source data to learn the linear combination in a post-training
phase before using it at test time. [19, 35] also use a linear
combination of the training statistics and the test statistics to
handle the distribution shift. [36] adapts batch renormaliza-
tion [11] to test-time adaptation. Batch normalization pa-
rameters are updated using a combination of the mini-batch
statistics and moving averages of these statistics like in the
original paper, but in the TTA context, statistics and moving
averages are computed using test batches. Another way to
address the issues inherent to batch normalization is to use
group or layer normalization instead as investigated in [22].
As the normalization differs a lot between works, this study
aims at disentangling its effect from other techniques used.

In our experiments, we follow [22] and use the fol-
lowing architectures: i) a ResNet50 with BatchNorm lay-
ers (ResNet50-BN) ii) a ResNet50 with GroupNorm lay-
ers (ResNet50-GN) iii) a VitBase/16 with LayerNorm lay-
ers (VitBase-LN) iv) to complete our pool of models to
compare, we also include a variant of ResNet50-BN where
batch normalization is replaced by batch renormalization
(ResNet50-BReN).

Experimental results In Fig. 2, we observe that the per-
formance of Tent method on a ResNet50-BN architecture is
dropping when the batch size is becoming small, with a par-
ticularly low performance when the batch size is 2 (5.53%
accuracy) or 1 (0.14% accuracy). Intuitively, those results
can be explained by the fact that batch normalization lay-
ers are normalizing the weights based on the statistics of
the current batch. When the batch becomes too small, the
statistics computed have a high variance, are not representa-
tive anymore of the test distribution and are not informative
enough about the domain shift. However, we see that us-
ing batch renormalization instead of standard batch normal-
ization improves the performance of a ResNet50 model and
avoids a complete collapse of the model when the batch size
is 1. Also in Fig. 2, we observe that Tent performance on

1938



124816

10

20

30

40

50

Batch Size

A
cc

ur
ac

y
(%

)

ResNet50-BN
ResNet50-BReN

ResNet50-GN
VitBase-LN

Figure 2. Impact of Normalization, Architecture, and Batch
Size on classification accuracy of Tent method on ImageNet-C.
Using a batch renormalization layer leads to better performance
than using a vanilla batch normalization. Tent performance is
more stable on architectures with batch-agnostic normalization
like group or layer normalization.

architectures with batch-agnostic normalization layers such
as GroupNorm or LayerNorm is more stable and less im-
pacted by a reduction of the batch size.

5. Class rebalancing
In this section, we explore the problem of online class

imbalance in the context of Fully TTA. This problem is
strongly relevant in this setting as data is received as a
continuous stream. In this case, there is no guarantee
that classes will appear in a balanced way or that differ-
ent classes will appear in a given batch, especially when
the batch size becomes much smaller than the total num-
ber of classes in the dataset. Imbalanced data can be par-
ticularly detrimental to the model performance as shown
in [22, 32, 36] and can lead in extreme cases to a model
collapse to trivial solutions like assigning all samples to the
dominant class.

To evaluate methods in regard to this problem, we con-
sider two approaches. In the first one, we follow the
setup proposed in [22]. In this setup, the online imbal-
anced label distribution shift is simulated by controlling
the order of the input samples using a dataset generated
using the following sampling strategy: a probability vec-
tor Qt(y) = [q1, q2, ..., qK ] is defined, where t is a time
step and T is the total number of steps and is equal to K
the total number of classes, and qk = qmax if k = t and
qk = qmin ≜ (1 − qmax)/(K − 1) if k ̸= t. The ratio
qmax/qmin represents the imbalance ratio. For ImageNet-
C, at each time step t ∈ 1, 2, ..., T = K, 100 images are
sampled using Qt(y) and so in total, the dataset contains
100x1000 images. An imbalance factor of 500000 is repre-
sented in Fig. 3 as ∞ and represents a setup very close to
the adaptation of the model one class after the other. Then,
in a second approach, we investigate the evolution of the
classification accuracy of different models simply in func-
tion of the batch size. We consider small batch sizes already
as a factor of online class imbalance as not all classes can
be present in the same batch.

We compare three methods: i) Tent without any class re-

balancing method is used as baseline. ii) SAR [22] is not
a class rebalancing method per se but the sample selection
method introduced in this work is presented as a way to ad-
dress the class imbalance problem by the authors. iii) DOT
is an adaptation of the class-wise reweighting method pro-
posed in [5] adapted to the context of test-time adaptation
in [36]. The idea of DOT is to estimate the class frequen-
cies in the test set by maintaining a momentum-based class-
frequency vector z ∈ RK where K is the total number of
classes, based on the prediction of the model of each sam-
ple seen previously. At inference time, each new sample
receives a weight in function of its pseudo label and the
current z vector. A sample belonging to a rare class will re-
ceive a higher weight than a sample from a class seen more
often. The DOT algorithm is detailed in the supplementary
material.

Experimental results In Fig. 3, we can observe the fol-
lowing: i) On the ResNet50-BN architecture, the perfor-
mance of all methods and for all batch sizes is dropping
when the imbalance factor is increasing. Batch normaliza-
tion does not seem to be a suitable normalization method
when the test set is unbalanced ii) The performances of Tent
and SAR are more stable when the imbalance factor varies
on the ResNet50-GN architecture. On this architecture,
DOT is the most performing method when the batch size
is still high and the imbalance factor is still low. However,
DOT performance is dropping drastically when the batch
size becomes very small or the imbalance factor is very
high. iii) Best performances are obtained by the VitBase-
LN architecture. Performances are stable for all methods
when the imbalance factor increases for a batch size of 16
or 8 but decrease when the imbalance factor increases for
lower batch sizes. Our main takeaways from Fig. 3 are
that group normalization and layer normalization are less
sensitive than batch normalization to imbalance classes and
that even if DOT and SAR are both performing better than
Tent, the sample selection of SAR yields more stable per-
formances in the case of small batch sizes and stronger class
imbalance factor.

In Fig. 4, we observe that the performance of all meth-
ods on ResNet50-BN is dropping when the batch size de-
creases. On ResNet50-GN and VitBase-LN, the classifica-
tion accuracy remains stable when the batch size decreases
for all models, DOT yielding the best results except when
the batch size is 1. This particular case is explained in the
next paragraph. Our main takeaways from Fig. 4 are that
architectures with group or layer normalization are more
suitable to handle small batch sizes and that the class rebal-
ancing method DOT is performing better than the sample
selection method SAR for small batch sizes greater than 1.

1939



1 1K 2K 3K 4K 5K ∞

10

20

30

40

50

60

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(a) ResNet50-BN-16

1 1K 2K 3K 4K 5K ∞10

20

30

40

50

Imbalance Factor
A

cc
ur

ac
y

(%
)

Tent DOT SAR

(b) ResNet50-GN-16

1 1K 2K 3K 4K 5K ∞40

50

60

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(c) VitBase-LN-16

1 1K 2K 3K 4K 5K ∞

10

20

30

40

50

60

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(d) ResNet50-BN-8

1 1K 2K 3K 4K 5K ∞10

20

30

40

50

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(e) ResNet50-GN-8

1 1K 2K 3K 4K 5K ∞40

50

60

Imbalance Factor
A

cc
ur

ac
y

(%
)

Tent DOT SAR

(f) VitBase-LN-8

1 1K 2K 3K 4K 5K ∞

10

20

30

40

50

60

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(g) ResNet50-BN-4

1 1K 2K 3K 4K 5K ∞10

20

30

40

50

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(h) ResNet50-GN-4

1 1K 2K 3K 4K 5K ∞40

50

60

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(i) VitBase-LN-4

1 1K 2K 3K 4K 5K ∞

10

20

30

40

50

60

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(j) ResNet50-BN-2

1 1K 2K 3K 4K 5K ∞10

20

30

40

50

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(k) ResNet50-GN-2

1 1K 2K 3K 4K 5K ∞40

50

60

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(l) VitBase-LN-2

1 1K 2K 3K 4K 5K ∞

10

20

30

40

50

60

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(m) ResNet50-BN-1

1 1K 2K 3K 4K 5K ∞10

20

30

40

50

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(n) ResNet50-GN-1

1 1K 2K 3K 4K 5K ∞40

50

60

Imbalance Factor

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(o) VitBase-LN-1

Figure 3. Impact of Imbalance Factor, Architecture, and
Batch Size on classification accuracy of different methods on
ImageNet-C. On ResNet50-BN, the performance of all models
decreases when the imbalance factor increases. On ResNet50-GN,
DOT, and SAR are more efficient than Tent, but SAR is more sta-
ble with very small batch sizes and stronger imbalance factors.
On VitBase-LN, Tent performs lower than DOT and SAR with a
batch size 4 and a moderate imbalance factor. However, DOT and
SAR performance is dropping significantly for small batch sizes
and strong imbalance factors. The number after the architecture in
the legend is the batch size.

Single point learning for DOT method In Fig. 4, we ob-
serve that in the specific case of batch size 1, the perfor-
mance of DOT drops to the level of Tent. This is because
in DOT, the weight of each sample in a batch is normalized
by the sum of all weights of this batch. So, when the batch
size is 1, the sum of the weights of the batch is equal to the

16 8 4 2 1

10

20

30

40

50

60

Batch Size

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(a) ResNet50-BN

16 8 4 2 1
10

20

30

40

50

Batch Size

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(b) ResNet50-GN

16 8 4 2 1
40

50

60

Batch Size

A
cc

ur
ac

y
(%

)

Tent DOT SAR

(c) VitBase-LN

Figure 4. Impact of Architecture and Batch Size on the classi-
fication accuracy of different methods on ImageNet-C. Batch-
agnostic normalizations like group or layer normalization are more
suitable to handle small batch sizes. Moreover, in this scenario, the
class rebalancing method DOT is performing better than the sam-
ple selection method of SAR.

BatchSize=1 DOT DOT+buff=2 DOT+buff=4 DOT+buff=8 DOT+buff=16
ResNet50-BN 0.14±0.00 20.31±0.02 20.31±0,02 20.31±0.02 20.31±0.02

ResNet50-GN 23.91±0,60 38.94±0.03 38.32±0,06 36.23±0.03 34.13±0.02

VitBase-LN 50.89±0.00 54.15±0.03 50.56±0,04 46.39±0.01 42.13±0.06

Table 1. Impact of Additional Buffer on Tent performance
on different architecture on ImageNet-C in the single point
learning scenario. An additional buffer of size 2 yields a sig-
nificant performance improvement. Higher buffer sizes can lead
to noisy sample weights and yield no additional improvement on
ResNet50-BN or a performance decrease on ResNet50-GN and
VitBase-LN.

weight of the single sample of the batch. Thus, the normal-
ization of the weight of this single sample by the sum of all
weights of the batch gives a weight of 1 and brings back
to the same loss formulation as Tent. To address this issue,
we propose to approximate the weight of a single sample in
this particular case as if it was part of a bigger batch of size
N. This approach does not require any additional processing
time as we can still infer the class of an input test sample im-
mediately and it is very cheap in terms of memory as we do
not need to save any sample in a queue but just the weights
of the N previous samples, which are only scalars. In Tab. 1,
we analyze the impact of a buffer of different sizes on Tent
performance on different architecture when the batch size
is 1. We can see that an additional buffer of size 2 yields a
significant performance improvement. Higher buffers yield
no additional improvement on ResNet50-BN and a perfor-
mance decrease on ResNet50-Gn and VitBase-LN. We as-
sume that they lead to sample weights that are too noisy.

6. Sample selection

In the previous sections, we explored standard mecha-
nisms to address covariate shift (through normalization) and
label shift (through class rebalancing). In this section, we
go one step further and explore mechanisms that cast TTA
as a noisy learning problem. In particular, we explore the
sample selection method first proposed in [21] and analyzed
more thoroughly after in [22]. The main idea of this method
is to select only reliable samples for the model adaptation.

1940



Indeed, in [22], authors show that samples with high en-
tropy are more likely to have a strong and noisy gradient po-
tentially harmful to the model performance. Furthermore,
low-entropy samples contribute more to the model adapta-
tion than high-entropy ones. However, there is no easy way
to directly filter out samples with a strong gradient from
the optimization process. So, instead, an entropy-based fil-
tering method was proposed. More precisely, a threshold
entropy E0 is defined as the maximum entropy logK mul-
tiplied by a factor F , which is a scalar with a value between
0 and 1, 1 meaning no selection at all. All samples with
an entropy below this threshold F logK are kept whereas
the others are discarded when computing the loss value to
update the model. Formally, this filtering method can be
expressed as a sample selection function S:

S(x) = II{E(x;Θ)<E0}(x) (1)

where II{.}(.) is an indicator function, E(x; Θ) is the en-
tropy of sample x, and E0 is a threshold predefined as:

E0 = F logK (2)

where K is the total number of classes in the dataset and F
is a real number in [0; 1].

Experimental results In Fig. 5, we can see that fine-
tuning the selection threshold via factor F can lead to a sig-
nificant increase in the performances in all cases. We also
observe that in the case of smaller batch sizes, the optimal
value for F is smaller than the value of 0.5 recommended
in [22] for a batch size of 64. Moreover, as mentioned
in [22], another advantage of this method is that it requires
less computational power to perform the adaptation as fewer
samples are used in the optimization. e.g. for the Gaussian
noise corruption, severity level 5, on ResNet50-GN and an
entropy factor F of 0.4, the model forward passes 50K sam-
ples but keep less than 13K after selection for the backward
pass, which is only 26% of the whole dataset.

7. Calibration

In this section, we investigate the problem of network
calibration in the context of Fully TTA. The calibration of
classification networks is a measure of the confidence of
the predictions. It is of utmost importance in the context
of Fully TTA as it impacts directly the predictions entropy.
Temperature scaling is one technique introduced in [7] to
improve the calibration of under- or overconfident neural
networks by correcting the logits in the softmax function.
Formally, it is expressed as:

softmaxτ (z)i =
ezi/τ∑K
j=1 e

zj/τ
(3)

0.10.20.30.40.50.60.70.80.9 1
20

30

40

50

60

Entropy Factor F

A
cc

ur
ac

y
(%

)

(a) Batch Size=16

0.10.20.30.40.50.60.70.80.9 1
20

30

40

50

60

Entropy Factor F

A
cc

ur
ac

y
(%

)

(b) Batch Size=8

0.10.20.30.40.50.60.70.80.9 1
0

20

40

60

Entropy Factor F

A
cc

ur
ac

y
(%

)

(c) Batch Size=4

0.10.20.30.40.50.60.70.80.9 1
0

20

40

60

Entropy Factor F

A
cc

ur
ac

y
(%

)

(d) Batch Size=2

0.10.20.30.40.50.60.70.80.9 1
0

20

40

60

Entropy Factor F

A
cc

ur
ac

y
(%

)

ResNet50-BN
ResNet50-GN
VitBase-LN

(e) Batch Size=1

Figure 5. Impact of Sample Selection and Architecture on clas-
sification accuracy of different methods on ImageNet-C. The
best results are circled in red. The optimal threshold varies in
function of the architecture and the batch size and is lower for
the smaller batch sizes than the values 0.5 or 0.4 for a batch size
of 64 recommended in [21].

where τ is the temperature scaling factor, z is the logits
vector of an input sample, i is a class index and K is the
total number of classes. A τ value above 1 will lead to
a higher entropy with a flattened distribution of the model
predictions whereas a τ value smaller than 1 will lead to
a low entropy with a more peaky predictions distribution.
In the context of test-time adaptation, [6] shows that us-
ing temperature scaling improves the model accuracy af-
ter adaptation when using an entropy minimization-based
method. [15] also shows that when meta-learning the op-
timal loss for test-time adaptation, the result is an entropy
minimization loss with a temperature scaling factor. To de-
termine the temperature scaling factor in our experiments,
we follow [36] in the way to select hyperparameters using
the 4 Imagenet-C validation corruptions. For each network
architecture, we select the temperature scaling factor τ for
each validation corruption using a grid search on values be-
tween 0.5 and 1.5 with a step of 0.1 and keep the average of
the 4 values.

For the 3 network architectures considered, we obtain a
temperature scaling factor of 1.2, which means that without
correction, the models are too confident in their predictions.

Experimental results In Tab. 2, we observe that applying
temperature scaling during adaptation leads to an increase
in Tent performance on ResNet50-BN and VitBase-LN. On
ResNet50-GN, the mean is slightly lower, but the standard
deviation is significantly reduced, which means overall a
better performance in terms of statistical significance. The
performance increase is not very high when using temper-
ature alone. However, we will see in Sec. 8 that it leads to
higher performance when combined with other tricks.

1941



16 8 4 2 1
ResNet50-BN 39.43±0.13 33.30±0.04 20.81±0.08 5.53±0.01 0.14±0.00

ResNet50-BN+ temp 39,45±0,06 33,86±0,04 20,84±0,07 6,11±0,01 0,15±0,00

ResNet50-GN 24,15±0,55 24,00±0,54 23,99±0,56 23,92±0,57 23,90±0,58

ResNet50-GN+ temp 24,01±0,17 23,87±0,17 23,82±0,15 23,76±0,19 23,74±0,19

VitBase-LN 50,97±0,07 50,90±0,04 50,91±0,07 50,89±0,06 50,89±0.04

VitBase-LN + temp 52,84±0,27 52,81±0,26 52,76±0,26 52,76±0,20 52,77±0,22

Table 2. Impact of Temperature on classification accuracy
of Tent method performance on different architecture on
ImageNet-C. Using a temperature scaling factor increases the
mean accuracy on ResNet50-BN and VitBase-LN. On ResNet50-
GN, using temperature decreases slightly the mean classification
accuracy but decreases also the standard deviation, which means
that the model is better with respect to statistical significance.

8. Tricks combinations
In this section, we investigate the performance of Tent

using different combinations of the tricks presented in the
previous sections. For ResNet50-BN, we consider the usage
of batch renormalization as an essential trick when dealing
with very small batch sizes as presented in Sec. 4 and al-
ways integrate it in the different tricks combinations tested.
In the ResNet50-BN section of Tab. 3, we report first the re-
sults already presented in Fig. 2 to see the performance im-
provement with batch renormalization. Then we consider
all the possible combinations of 2 of the tricks presented
and finally, we consider the combination of all the tricks.
For ResNet50-GN and VitBase-LN, we also present results
considering all the possible combinations of 2 of the tricks
presented previously and then combining all the tricks.

Experimental results In Tab. 3, we observe that when us-
ing a ResNet50-BN network, the best pair of tricks is the
class rebalancing method DOT combined with the entropy-
based sample selection. The best results overall are ob-
tained when using this pair with a temperature scaling fac-
tor, in other words when using all tricks together. In this
case, compared to Tent, we obtain an average improvement
of +17.08% accuracy over all batch sizes. In the case of a
ResNet50-GN architecture, the best pair of tricks is class
rebalancing combined with the temperature scaling factor.
Surprisingly, combining temperature scaling with sample
selection is performing better than vanilla Tent but much
lower than other pairs of tricks. We assume that as the tem-
perature scaling is changing the entropy of the test samples,
a finer tuning of the sample selection margin should be done
to ensure that samples useful for the model adaptation are
not discarded. The best performances are obtained using all
tricks. In this case, we obtain an average improvement of
+19.92% accuracy over all batch sizes compared to Tent.
When considering the VitBase-LN architecture, we can see
that the two pairs of tricks class rebalancing and temper-
ature and class rebalancing and sample selection are close
over all the batch sizes and yield the best results of the pairs

Tent + Batch Size
BR CR SS T 16 8 4 2 1

R
es

N
et

50
-B

N

39.40±0.13 33.30±0.04 20.81±0.08 5.53±0.01 0.14±0.00

✓ 43.26±0.01 41.39±0.06 37.72±0.05 30.84±0.04 20.25±0.01

✓ ✓ ✓ 45.89±0.06 43.70±0.05 39.17±0.05 31.44±0.04 20.31±0.02

✓ ✓ ✓ 45.17±0.26 43.03±0.11 39.02±0.07 31.60±0.05 20.26±0.01

✓ ✓ ✓ 46.57±0.07 44.46±0.01 39.95±0.01 31.65±0.01 20.30±0.02

✓ ✓ ✓ ✓ 46.90±0.12 44.90±0.09 40.42±0.14 32.03±0.05 20.31±0.02

R
es

N
et

50
-G

N 24.15±0.55 24.06±0.54 23.99±0.57 23.92±0.57 23.90±0.58

✓ ✓ 46.35±0.07 45.89±0.09 44.77±0.01 42.07±0.03 39.31±0.64

✓ ✓ 26.85±0.17 27.34±0.55 29.03±0.59 30.19±0.20 27.20±0.48

✓ ✓ 45.78±0.09 45.31±0.11 44.21±0.01 41.33±0.01 38.94±0.03

✓ ✓ ✓ 46.50±0.05 46.07±0.08 45.02±0.01 42.32±0.01 39.70±0.04

V
itB

as
e-

L
N 50.97±0.07 50.90±0.04 50.91±0.07 50.89±0.06 50.89±0.04

✓ ✓ 59.26±0.03 59.20±0.02 58.97±0.04 58.52±0.05 54.68±0.03

✓ ✓ 57.59±0.44 58.11±0.14 57.88±0.09 57.02±0.10 55.10±0.07

✓ ✓ 59.31±0.06 59.22±0.04 58.96±0.00 57.51±0.78 54.15±0.03

✓ ✓ ✓ 59.80±0.07 59.77±0.04 59.59±0.03 59.04±0.06 55.15±0.03

BR=BatchRenorm, T=Temperature, CR=Class Rebalancing, SS=Sample Selection

Table 3. Effect of Tricks Combination on model performance.
Best results are obtained when combining all tricks and this for the
3 architectures and the different batch sizes considered. Among
the different architectures, VitBase-LN has the best classification
accuracy in all the different setups.

of tricks. The overall best results are obtained when com-
bining all tricks. Doing this leads to an average improve-
ment compared to Tent of +7.66% over all batch sizes. Our
main takeaway for this series of experiments is that the best
results are obtained when combining all tricks (class rebal-
ancing, sample selection, and temperature scaling), and this
for the 3 architectures and the different batch sizes con-
sidered. Among the different architectures, VitBase-LN
has the best classification accuracy when combining all the
tricks and on all the batch sizes tested.

9. Comparison to other methods and on other
datasets

In this final experimental section, we compare the per-
formance of BoT (i.e. Tent with all the tricks presented in
this article) to a vanilla Tent and 2 state-of-the-art meth-
ods, SAR [22] and Delta [36]. This comparison is per-
formed on different network architectures and different
datasets: ResNet50-BN, ResNet50-GN, VitBase-LN for
ImageNet-C, ImageNet-Rendition and ImageNet-Sketch,
and ResNet101 for VisDA2017.

Experimental results In Tab. 4, we can see that on
the ImageNet-C dataset, BoT obtains better results than a
vanilla Tent, and the two state-of-the-art methods for all
the batch sizes considered. Interesting to see is the col-
lapse of SAR performance for very small batch sizes (2
and 1) on ResNet50-BN that we do not observe with Delta
due to the usage of batch renormalization. If the perfor-
mance increase by using all the tricks is not significant on
ResNet50-BN (+0.78% accuracy on average versus Delta),
it is much more noticeable on ResNet50-GN (+4.31% ac-

1942



Method Batch Size
16 8 4 2 1

R
es

N
et

50
-B

N Tent 39.43±0.13 33.30±0.04 20.81±0.08 5.53±0.01 0.14±0.00

SAR 41.02±0.29 31.10±0.08 18.90±0.04 6.78±0.00 0.14±0.00

Delta 46.33±0.78 43.67±0.05 39.16±0.04 31.26±0.05 20.25±0.01

BoT 46.90±0.1 44.90±0.09 40.42±0.14 32.03±0.05 20.31±0.02

R
es

N
et

50
-G

N Tent 24.15±0.55 24.05±0.54 23.99±0.57 23.92±0.57 23.90±0.58

SAR 39.32±0.17 38.80±0.14 37.61±0.39 35.66±0.28 33.86±0.06

Delta 45.22±0.06 44.70±0.09 43.47±0.02 40.77±0.01 23.91±0.60

BoT 46.50±0.05 46.07±0.08 45.02±0.01 42.32±0.01 39.70±0.04

V
itB

as
e-

L
N Tent 50.97±0.07 50.90±0.04 50.91±0.07 50.90±0.06 50.89±0.04

SAR 56.87±0.15 56.92±0.10 56.69±0.13 55.71±0.16 53.16±0.16

Delta 58.95±0.05 58.86±0.04 58.57±0.03 57.98±0.04 50.89±0.04

BoT 59.80±0.07 59.77±0.04 59.59±0.03 59.04±0.06 54.68±0.03

Table 4. Results on ImageNet-C. BoT obtains better results
than Tent and the 2 state-of-the-art methods in all cases. If the
performance increase of BoT is not significant on ResNet50-BN
(+0.78% accuracy in average versus Delta), it is much more notice-
able on ResNet50-GN (+4.31% accuracy in average versus Delta)
and VitBase-LN (+1.53.31% accuracy in average versus Delta).

Method Batch Size
16 8 4 2 1

R
es

N
et

50
-B

N Tent 40.80±0.11 37.75±0.12 29.70±0.21 14.24±0.05 0.56±0.00

SAR 42.11±0.10 38.95±0.21 30.07±0.05 16.13±0.12 0.57±0.00

Delta 43.11±0.15 41.80±0.23 39.64±0.16 35.17±0.06 26.75±0.01

BoT 44.68±0.24 43.12±0.11 40.61±0.22 35.55±0.04 26.75±0.00

R
es

N
et

50
-G

N Tent 39.35±0.16 39.29±0.18 39.28±0.19 39.27±0.18 39.26±0.18

SAR 42.94±0.108 42.75±0.05 42.28±0.09 41.75±0.06 41.84±0.05

Delta 43.10±0.05 43.11±0.05 42.74±0.12 41.89±0.10 42.18±0.03

BoT 44.21±0.06 44.18±0.10 43.84±0.20 42.96±0.16 42.49±0.08

V
itB

as
e-

L
N Tent 43.28±1.04 42.81±1.04 42.48±0.87 42.28±1.05 42.49±1.32

SAR 52.72±0.19 52.59±0.25 52.20±0.16 50.92±0.11 49.95±0.18

Delta 53.32±0.23 53.31±0.28 53.03±0.24 52.25±0.34 49.76±0.20

BoT 54.63±0.18 57.74±0.19 54.62±0.25 53.86±0.28 51.91±0.15

Table 5. Results on ImageNet-Rendition. The performance in-
crease of BoT compared to Delta is similar on ResNet50-BN and
ResNet50-GN (respectively +0.85% and +0.87% accuracy) but
reaches +1.23% accuracy on VitBase-LN.

curacy on average versus Delta) and VitBase-LN (+1.53%
accuracy in average versus Delta). In Tab. 5, we also ob-
serve that BoT performs the best in all cases. Interest-
ing to note is that results are more stable over the differ-
ent batch sizes with ResNet50-GN compared to ResNet50-
BN, which is in line with observations from previous ex-
periments. Delta performs better than SAR but worse than
BoT. The performance increase of BoT compared to Delta
is similar on ResNet50-BN and ResNet50-GN (respectively
+0.85% and +0.87% accuracy) but reaches +1.23% accu-
racy on VitBase-LN. In Tab. 6, we make the same obser-
vations on ImageNet-Sketch as on the other ImageNet vari-
ants. ResNet50-BN performance drops when the batch size
becomes small. In all cases, Delta performs better than SAR
but not as good as BoT. BoT performs best in all cases. The
performance increase of BoT versus Delta is +0.72% accu-
racy on ResNet50-BN, +1.32% accuracy on ResNet50-GN,
and +1.03% accuracy on VitBase-LN. In Tab. 7, we observe
that also for the VisDA2017 dataset, results are in line with
previous experiments. Delta performs better than Tent and
SAR but not as well as BoT. The performance improvement
of BoT versus Delta is +0.36% accuracy on ResNet101.

Method Batch Size
16 8 4 2 1

R
es

N
et

50
-B

N Tent 27.82±0.30 22.47±0.40 10.71±0.42 2.94±0.08 0.13±0.00

SAR 31.05±0.29 26.73±0.20 16.80±0.07 6.72±0.05 0.13±0.00

Delta 31.92±0.11 30.36±0.16 27,32±0.16 22.56±0.16 15.58±0.04

BoT 33.24±0.13 31.50±0.21 28.16±0.12 22.86±0.16 15.58±0.04

R
es

N
et

50
-G

N Tent 23.04±0.40 22.95±0.38 22.93±0.38 22.92±0.38 22.92±0.35

SAR 32.11±0.50 32.26±0.07 31.89±0.16 31.16±0.20 31.64±0.25

Delta 34.50±0.20 34.26±0.09 33.57±0.18 31.56±0.08 30.93±0.07

BoT 35.77±0.03 35.49±0.19 34.91±0.15 33.19±0.10 32.07±0.09

V
itB

as
e-

L
N Tent 5.83±0.32 5.69±0.43 5.59±0.44 5.38±0.28 5.51±0.49

SAR 25.40±0.65 25.88±0.64 27.87±0.08 32.89±0.57 30.68±0.99

Delta 38.67±0.08 38.50±0.08 38.18±0.11 37.18±0.14 33.90±0.08

BoT 39.69±0.06 39.68±0.06 39.50±0.09 38.64±0.03 34.09±0.10

Table 6. Results on ImageNet-Sketch. BoT performs best in all
case. The performance increase of BoT versus Delta is +0.72% ac-
curacy on ResNet50-BN, +1.32% accuracy on ResNet50-GN and
+1.03% accuracy on VitBase-LN.

Method
Batch Size

16 8 4 2 1

R
es

N
et

10
1 Tent 65.30±0.08 64.65±0.18 63.47±0.12 58.89±0.33 49.10±0.04

SAR 63.08±0.03 57.47±0.05 46.20±0.09 24.81±0.16 18.63±0.01

Delta 73.20±0.08 71.52±0.12 68.16±0.11 61.41±0.20 49.08±0.03

BoT 73.54±0.09 71.70±0.07 68.17±0.19 61.49±0.10 50.28±0.09

Table 7. Results on VisDA2017. Delta performs better than Tent
and SAR but not as good as BoT. The performance improvement
of BoT versus Delta is +0.36% accuracy and +4.75% versus Tent
on ResNet101.

10. Conclusion
In this work, we addressed the Fully Test-Time Adapta-

tion problem when dealing with small batch sizes by ana-
lyzing the following tricks and methods: i) Usage of Batch
renormalization or batch-agnostic normalization ii) Class
re-balancing iii) Entropy-based sample selection iv) Tem-
perature scaling. Our experimental results show that if those
tricks used alone already yield an improved classification
accuracy, using them in pairs is even better, and the best re-
sults are obtained by combining them all. By doing that,
we significantly improve the current state-of-the-art across
4 different image datasets in terms of prediction perfor-
mances. Furthermore, the selected tricks bring additional
benefits concerning the computational load: i) Using group
normalization instead of batch normalization in ResNet50
yields more stable results for the same number of total pa-
rameters ii) using the entropy-based sample selection im-
proves the adapted model performance by using fewer sam-
ples. We hope that this study will be useful for the com-
munity and that the presented tricks and techniques will be
integrated into future baselines and benchmarks.

11. Acknowledgment
This research was supported by the National Science and

Engineering Research Council of Canada (NSERC), via its
Discovery Grant program, and enabled in part by support
provided by Calcul Québec and the Digital Research Al-
liance of Canada .

1943



References
[1] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer

normalization. arXiv preprint arXiv: 1607.06450, 2016. 3
[2] Alexander Bartler, Andre Bühler, Felix Wiewel, Mario

Döbler, and Bin Yang. Mt3: Meta test-time training for self-
supervised test-time adaption. In Conference on Artificial
Intelligence and Statistics (AISTATS), 2022. 1

[3] Malik Boudiaf, Tom Denton, Bart van Merriënboer, Vincent
Dumoulin, and Eleni Triantafillou. In search for a generaliz-
able method for source free domain adaptation. International
Conference on Machine Learning (ICML), 2023. 2, 3

[4] Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and
Luca Bertinetto. Parameter-free online test-time adaptation.
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 2

[5] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J.
Belongie. Class-balanced loss based on effective number
of samples. Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 4

[6] Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and
Zico Kolter. Test-time adaptation via conjugate pseudo-
labels. Advances in Neural Information Processing Systems
(NeurIPS), 2022. 2, 6

[7] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger.
On calibration of modern neural networks. In International
Conference on Machine Learning (ICML), 2017. 6

[8] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015. 3

[9] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt,
and Justin Gilmer. The many faces of robustness: A critical
analysis of out-of-distribution generalization. International
Conference on Computer Vision (ICCV), 2021. 1, 3

[10] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. International Conference on Learning Representations
(ICLR), 2019. 1, 2

[11] Sergey Ioffe. Batch renormalization: Towards reducing
minibatch dependence in batch-normalized models. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2017. 3

[12] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International Conference on Machine Learn-
ing (ICML), 2015. 3

[13] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier
adjustment module for model-agnostic domain generaliza-
tion. In Advances in Neural Information Processing Systems
(NeurIPS), 2021. 1

[14] Pang Wei Koh, Shiori Sagawa, Henrik Marklund,
Sang Michael Xie, Marvin Zhang, Akshay Balsubra-
mani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, Tony Lee, Etienne David, Ian Stavness,
Wei Guo, Berton A. Earnshaw, Imran S. Haque, Sara Beery,
Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey

Levine, Chelsea Finn, and Percy Liang. WILDS: A bench-
mark of in-the-wild distribution shifts. In International
Conference on Machine Learning (ICML), 2021. 1

[15] Dong-Hyun Lee. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks.
In International Conference on Machine Learning (ICML)
Workshop on challenges in representation learning, 2013. 2,
6

[16] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and
Xiaodi Hou. Revisiting batch normalization for practical do-
main adaptation. In International Conference on Learning
Representations (ICLR), 2017. 2

[17] Jian Liang, D. Hu, and Jiashi Feng. Do we really need to
access the source data? source hypothesis transfer for unsu-
pervised domain adaptation. In International Conference on
Machine Learning (ICML), 2020. 2

[18] Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha
Choi. Ttn: A domain-shift aware batch normalization in test-
time adaptation. In International Conference on Learning
Representations (ICLR), 2023. 1, 2, 3

[19] M. Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and
Horst Bischof. The norm must go on: Dynamic unsuper-
vised domain adaptation by normalization. Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 3

[20] Zachary Nado, Shreyas Padhy, D Sculley, Alexander
D’Amour, Balaji Lakshminarayanan, and Jasper Snoek.
Evaluating prediction-time batch normalization for robust-
ness under covariate shift. International Conference on Ma-
chine Learning (ICML) Uncertainty and Robustness in Deep
Learning Workshop, 2020. 2

[21] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shi Dong Zheng, Peilin Zhao, and Mingkui Tan. Efficient
test-time model adaptation without forgetting. In Interna-
tional Conference on Machine Learning (ICML), 2022. 2, 5,
6

[22] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen,
Yaofo Chen, Peilin Zhao, and Mingkui Tan. Towards stable
test-time adaptation in dynamic wild world. In International
Conference on Learning Representations (ICLR), 2023. 1, 2,
3, 4, 5, 6, 7

[23] David Osowiechi, Gustavo Adolfo Vargas Hakim, Mehrdad
Noori, Milad Cheraghalikhani, Ismail Ben Ayed, and Chris-
tian Desrosiers. Tttflow: Unsupervised test-time training
with normalizing flow. Winter Conference on Applications
of Computer Vision (WACV), 2023. 2

[24] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,
Dequan Wang, and Kate Saenko. Visda: The visual domain
adaptation challenge. arXiv preprint arXiv: 1710.06924,
2017. 3

[25] Joaquin Quionero-Candela, Masashi Sugiyama, Anton
Schwaighofer, and Neil D Lawrence. Dataset shift in ma-
chine learning. Yale University Press in association with the
Museum of London, 2009. 1

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

1944



lenge. International Journal of Computer Vision (IJCV),
2015. 3

[27] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bring-
mann, Wieland Brendel, and Matthias Bethge. Improving
robustness against common corruptions by covariate shift
adaptation. Advances in Neural Information Processing Sys-
tems (NeurIPS), 2020. 2

[28] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In In-
ternational Conference on Machine Learning (ICML), 2020.
1, 2

[29] Yushun Tang, Ce Zhang, Heng Xu, Shuoshuo Chen, Jie
Cheng, Luziwei Leng, Qinghai Guo, and Zhihai He. Neuro-
modulated hebbian learning for fully test-time adaptation.
In Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 2

[30] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In International Conference on
Learning Representations (ICLR), 2021. 1, 2, 3

[31] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P
Xing. Learning robust global representations by penalizing
local predictive power. In Advances in Neural Information
Processing Systems (NeurIPS), 2019. 3

[32] Shuo Wang, Leandro L. Minku, and Xin Yao. Dealing with
multiple classes in online class imbalance learning. In Inter-
national Joint Conference on Artificial Intelligence, 2016. 1,
4

[33] Yuxin Wu and Kaiming He. Group normalization. Interna-
tional Journal of Computer Vision, 2018. 3

[34] Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz,
and Shangling Jui. Exploiting the intrinsic neighborhood
structure for source-free domain adaptation. In Advances in
Neural Information Processing Systems (NeurIPS), 2021. 2,
3

[35] Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo:
Test time robustness via adaptation and augmentation. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2022. 1, 2, 3

[36] Bowen Zhao, Chen Chen, and Shutao Xia. Delta:
degradation-free fully test-time adaptation. In International
Conference on Learning Representations (ICLR), 2023. 1, 2,
3, 4, 6, 7

1945


